一、主成分分析基本原理

合集下载

主成分分析方法及其应用效果评估

主成分分析方法及其应用效果评估

主成分分析方法及其应用效果评估主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,被广泛应用于数据分析、模式识别和机器学习等领域。

本文将介绍主成分分析的基本原理、具体方法以及其在实际应用中的效果评估。

一、主成分分析的基本原理主成分分析是一种统计分析方法,旨在将具有相关性的多个变量转化为一组线性无关的新变量,称为主成分。

通过降维,主成分分析可以有效减少数据的维度,并保留原始数据中的大部分信息。

主成分分析的基本原理是通过找到数据中的最大方差方向来构建主成分。

具体步骤如下:1. 标准化数据:对原始数据进行标准化处理,使得每个变量具有相同的尺度。

2. 计算协方差矩阵:计算标准化后数据的协方差矩阵。

3. 计算特征值与特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

4. 选择主成分:根据特征值的大小排序,选择前k个特征值对应的特征向量作为主成分。

5. 构建主成分:将选择的主成分按权重线性组合,得到原始数据的主成分。

二、主成分分析的具体方法主成分分析可以通过多种计算方法实现,其中最常用的是基于特征值分解的方法。

下面介绍主成分分析的具体计算步骤:1. 标准化数据:对原始数据进行标准化处理,使得每个变量具有均值为0、方差为1的特性。

2. 计算协方差矩阵:将标准化后的数据计算协方差矩阵。

3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

4. 选择主成分:根据特征值的大小选择前k个特征向量作为主成分。

5. 构建主成分:将选择的主成分按权重线性组合,得到原始数据的主成分。

三、主成分分析在实际应用中的效果评估在应用主成分分析时,我们需要对其效果进行评估,以确保选择的主成分能够充分保留原始数据的信息。

常用的效果评估方法有以下几种:1. 解释方差比(Explained Variance Ratio):解释方差比可以衡量每个主成分对原始数据方差的贡献程度。

主成分分析的原理与方法

主成分分析的原理与方法

主成分分析的原理与方法主成分分析(Principal Component Analysis, PCA)是一种常用的降维技术,用于数据的降维和特征提取。

它通过线性变换将原始数据映射到新的特征空间,使映射后的数据在新的特征空间中具有最大的方差。

一、主成分分析的原理主成分分析的核心思想是将高维数据映射到低维空间,同时保留最重要的信息。

具体而言,将原始数据映射到新的特征空间后,希望得到的新特征具有以下特性:1. 最大化方差:在新的特征空间中,希望找到使数据方差最大化的方向。

这样做的目的是将数据的主要变化方向保留下来,有利于更好地区分不同的样本。

2. 无相关性:希望得到的新特征之间是相互独立的,即它们之间没有任何相关性。

这样可以减少数据中的冗余信息,提取出更具代表性的特征。

二、主成分分析的方法主成分分析通常分为以下几个步骤:1. 标准化数据:由于主成分分析是基于数据的协方差矩阵进行计算的,所以首先需要将数据进行标准化处理,使各个维度的数据具有相同的尺度。

2. 计算协方差矩阵:通过计算标准化后的数据的协方差矩阵,可以得到各个维度之间的相关性。

3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,可以得到特征值和对应的特征向量,其中特征值表示对应特征向量方向上的方差。

4. 选择主成分:根据特征值的大小,选择方差解释最大的前k个特征向量作为主成分。

5. 数据映射:将原始数据映射到选择的主成分上,得到降维后的数据。

三、主成分分析的应用主成分分析在数据分析和特征工程中有广泛的应用,可以用于数据降维、数据可视化和去除数据冗余等方面。

1. 数据降维:主成分分析可以将高维数据映射到低维空间,减少数据的维度,降低计算复杂度,并且保留了大部分的数据信息。

2. 数据可视化:通过将数据映射到二维或三维空间,可以将高维数据可视化,更好地观察数据的分布和结构。

3. 特征提取:主成分分析可以提取出数据中最具代表性的特征,对于后续的模型建立和训练有重要的意义。

主成分分析

主成分分析

一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。

从数学角度来看,这是一种降维处理技术。

思路:一个研究对象,往往是多要素的复杂系统。

变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。

原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。

2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。

从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。

从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。

二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。

主成分分析的基本原理

主成分分析的基本原理

主成分分析的基本原理主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维技术,用于在数据集中找到最具代表性的特征。

它通过线性变换将原始数据投影到一个新的坐标系中,使得新坐标系下的特征具有最大的方差。

本文将介绍主成分分析的基本原理及其应用。

一、基本原理主成分分析的目标是找到能够最大化数据方差的投影方向。

设有一个包含n个样本的m维数据集X,其中X={x1,x2,…,xn},每个样本包含m个特征。

首先对数据进行中心化处理,即将每个维度的特征减去该维度在整个数据集上的均值,得到新的数据集X'={x'1,x'2,…,x'n}。

通过求解数据集X'的协方差矩阵C,可得到该矩阵的特征向量和特征值。

特征向量表示了数据在各个主成分上的投影方向,特征值表示了数据在该方向上的方差。

为了实现降维,需要选择前k个最大特征值对应的特征向量作为新的投影方向。

这些特征向量构成了数据集在新坐标系上的主成分,并且它们是两两正交的。

将原始数据集X投影到这k个主成分上,即可得到降维后的数据集Y={y1,y2,…,yn}。

其中,每个样本yi={yi1,yi2,…,yik},表示样本在新坐标系上的投影结果。

二、应用场景主成分分析在数据分析和模式识别中有广泛的应用。

以下是几个常见的应用场景:1. 数据可视化主成分分析可以将高维数据降低到二维或三维空间,使得数据可以被可视化展示。

通过可视化,可以更好地理解数据之间的关系,发现隐藏在数据中的模式和规律。

2. 特征选择在机器学习和数据挖掘中,特征选择是一个重要的任务。

通过主成分分析,可以选择最具代表性的特征,减少特征的维度,并保留数据中的关键信息。

这有助于提高模型的性能和减少过拟合的风险。

3. 去除冗余当数据集中存在冗余特征时,主成分分析可以帮助我们发现这些特征,并将其去除。

剩下的主成分可以更好地表示数据集,减少数据的冗余信息,提高数据的效率和精确性。

主成分分析完整版

主成分分析完整版

主成分分析完整版一、主成分分析的原理1.标准化数据:先对原始数据进行标准化处理,以确保不同变量的尺度一致。

2.计算协方差矩阵:对标准化后的数据计算协方差矩阵,矩阵中的元素表示不同变量之间的相关性。

3.计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

4.选择主成分:按照特征值的大小选择最重要的k个特征值和它们对应的特征向量,称之为主成分。

5.数据转换:将原始数据投影到选取的主成分上,得到降维后的数据。

二、主成分分析的方法1.方差解释比:主成分分析通过特征值展示了每个主成分的重要性。

方差解释比是计算每个主成分的方差所占总方差的比例。

选择解释总方差的比例较高的主成分,可以保留更多的信息。

2.累计方差解释比:累计方差解释比是计算前n个主成分的方差解释比之和。

通过选择累计方差解释比较高的主成分,可以保留更多的原始数据信息。

3.维度选择:主成分分析可以通过选择合适的主成分数来实现数据降维。

通过观察特征值的大小和累计方差解释比,可以选择合适的主成分数。

三、主成分分析的应用1.数据可视化:主成分分析可以将高维度的数据转换为低维度的数据,从而方便可视化。

通过在二维或三维空间中绘制主成分,可以更好地理解数据的分布和关系。

2.特征提取:主成分分析可以提取数据中的最重要特征,从而减少数据维度并保留主要信息。

特征提取可以在分类、聚类等问题中提高算法的效果。

3.数据压缩:主成分分析可以将高维度的数据压缩为低维度的数据,从而节省存储空间和计算时间。

压缩后的数据可以用于后续分析和处理。

4.噪音过滤:主成分分析通过保留数据中最重要的特征,可以减少噪音的影响。

通过滤波后的数据可以提高实验测量的准确性和稳定性。

综上所述,主成分分析是一种强大的数据降维技术,可以在许多领域中应用。

熟悉主成分分析的原理、方法和应用,对于理解数据和提升数据分析的能力具有重要意义。

主成分分析法的原理和步骤

主成分分析法的原理和步骤

主成分分析法的原理和步骤主成分分析(Principal Component Analysis,简称PCA)是一种常用的多元统计分析方法,它通过线性变换将高维数据转换为低维数据,从而实现降维和数据可视化。

PCA的基本思想是通过选取少数几个主成分,将原始变量的方差最大化,以便保留大部分的样本信息。

下面我将详细介绍PCA的原理和步骤。

一、主成分分析的原理主成分分析的核心原理是将n维的数据通过线性变换转换为k维数据(k<n),这k维数据是原始数据最具有代表性的几个维度。

主成分是原始数据在新坐标系中的方向,其方向与样本散布区域最大的方向一致,而且不同主成分之间互不相关。

也就是说,新的坐标系是通过原始数据的协方差矩阵的特征值分解得到的。

具体来说,假设我们有一个m个样本、维度为n的数据集X,其中每个样本为一个n维向量,可以表示为X=\left ( x_{1},x_{2},...,x_{m} \right )。

我们的目标是找到一组正交的基变量(即主成分)U=\left ( u_{1},u_{2},...,u_{n} \right ),使得原始数据集在这组基变量上的投影方差最大。

通过对协方差矩阵的特征值分解,可以得到主成分对应的特征向量,也就是新的基变量。

二、主成分分析的步骤主成分分析的具体步骤如下:1. 标准化数据:对于每一维度的数据,将其减去均值,然后除以标准差,从而使得数据具有零均值和单位方差。

标准化数据是为了消除不同维度上的量纲差异,确保各维度对结果的影响是相等的。

2. 计算协方差矩阵:对标准化后的数据集X,计算其协方差矩阵C。

协方差矩阵的元素c_{ij}表示第i维度与第j维度之间的协方差,可以用以下公式表示:\[c_{ij}=\frac{\sum_{k=1}^{m}\left ( x_{ik}-\bar{X_{i}} \right )\left( x_{jk}-\bar{X_{j}} \right )}{m-1}\]其中,\bar{X_{i}}表示第i维度的平均值。

主成分分析法例子

主成分分析法例子

x7 0.79 0.009 -0.93 -0.046 0.672 0.658 1 -0.03 0.89
x8 0.156 -0.078 -0.109 -0.031 0.098 0.222 -0.03 1
0.29
x9 0.744 0.094 -0.924 0.073 0.747 0.707 0.89 0.29
▲贡献率:
i
p
k
k 1
(i 1,2,, p)
▲合计贡献率:
i
k
k 1
p
k
k 1
(i 1,2,, p)
一般取合计贡献率达85—95%旳特征值 1, 2 ,, m
所相应旳第一、第二、…、第m(m≤p)个主成份。
④各主成份旳得分
l11 l12 l1p x1
Z
l21
l22
l2
p
x2
二主成份z2代表了人均资源量。
③第三主成份z3,与x8呈显出旳正有关程度 最高,其次是x6,而与x7呈负有关,所以能 够以为第三主成份在一定程度上代表了农业 经济构造。
显然,用三个主成份z1、z2、z3替代原来9个变量(x1, x2,…,x9),描述农业生态经济系统,能够使问题更进
一步简化、明了。
x4
0.0042
0.868
0.0037
75.346
x5
0.813
0.444
-0.0011
85.811
x6
0.819
0.179
0.125
71.843
x7
0.933
-0.133
-0.251
95.118
x8
0.197
-0.1
0.97
98.971

主成分分析

主成分分析

主成分分析主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维技术,它可以从高维数据中提取出最重要的特征,并将其映射到一个低维空间中。

通过降维,可以简化数据分析过程,减少计算复杂度,去除冗余信息,同时保留了数据主要的结构和规律。

本文将详细介绍主成分分析的原理、算法和应用。

一、主成分分析的原理主成分分析的目标是找到一组新的变量,称为主成分,这些主成分是原始数据中更高次特征的线性组合。

其中,第一主成分是数据中最大方差对应的一个线性组合,第二主成分是与第一主成分不相关的捕捉第二大方差的线性组合,以此类推。

主成分的数量等于原始数据的特征数。

主成分分析的基本思想是通过线性变换将高维数据映射到低维空间上,使得降维后的数据能够尽可能地保留原始数据的信息。

在降维过程中,主成分分析还会对不同特征之间的相关性进行考虑,以达到尽量保留原有信息的目的。

二、主成分分析的算法主成分分析的算法可以分为以下几个步骤:1. 数据标准化:首先对原始数据进行预处理,将每个特征按照零均值和单位方差的方式进行标准化。

这样可以保证特征之间的量纲一致,降低不同特征对主成分的影响。

2. 计算协方差矩阵:通过计算标准化后的数据的协方差矩阵来度量不同特征之间的相关性。

协方差矩阵的对角线元素为各个特征的方差,非对角线元素为各个特征之间的协方差。

3. 特征值分解:对协方差矩阵进行特征值分解,可以得到特征值和对应的特征向量。

特征值表示某个主成分所解释的总方差,特征向量表示主成分的方向。

4. 选择主成分:根据特征值的大小排序,选择前k个特征向量对应的主成分作为降维后的新特征。

5. 映射原始数据:将原始数据通过特征向量的线性组合映射到低维空间上,得到降维后的数据。

三、主成分分析的应用主成分分析在许多领域都有广泛的应用,下面介绍其中的几个典型应用。

1. 数据压缩:主成分分析可以将高维数据映射到低维空间,从而实现数据的压缩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、主成分分析基本原理
概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。

从数学角度来看,这是一种降维处理技术。

思路:一个研究对象,往往是多要素的复杂系统。

变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。

原理:假定有n个样本,每个样本共有p个变量,构成一个n×p阶的数据矩阵,
记原变量指标为x
1,x
2
,…,x
p
,设它们降维处理后的综合指标,即新变量
为 z
1,z
2
,z
3
,…,z
m
(m≤p),则
系数l
ij
的确定原则:
①z
i 与z
j
(i≠j;i,j=1,2,…,m)相互无关;
②z
1是x
1
,x
2
,…,x
P
的一切线性组合中方差最大者,z
2
是与z
1
不相关的x
1
,x
2
,…,
x P 的所有线性组合中方差最大者; z
m
是与z
1
,z
2
,……,z
m-1
都不相关的x
1

x 2, (x)
P
,的所有线性组合中方差最大者。

新变量指标z
1
,z
2
,…,z
m
分别称为原变量指标x
1
,x
2
,…,x
P
的第1,第2,…,
第m主成分。

从以上的分析可以看出,主成分分析的实质就是确定原来变量x
j
(j=1,
2 ,…, p)在诸主成分z
i (i=1,2,…,m)上的荷载 l
ij
( i=1,2,…,m;
j=1,2 ,…,p)。















=
np
n
n
p
p
x
x
x
x
x
x
x
x
x
X
2
1
2
22
21
1
12
11







+
+
+
=
+
+
+
=
+
+
+
=
p
mp
m
m
m
p
p
p
p
x
l
x
l
x
l
z
x
l
x
l
x
l
z
x
l
x
l
x
l
z
2
2
1
1
2
2
22
1
21
2
1
2
12
1
11
1
..
..........
从数学上可以证明,它们分别是相关矩阵m 个较大的特征值所对应的特征向量。

二、主成分分析的计算步骤 1、计算相关系数矩阵
r ij (i ,j =1,2,…,p )为原变量x i 与x j 的相关系数, r ij =r ji ,其计算公式为
2、计算特征值与特征向量
解特征方程
,常用雅可比法(Jacobi )求出特征值,并使其按大小顺序排列
; 分别求出对应于特征值 的特征向量 ,要求 =1,即 其中
表示向量 的第j 个分量。

3、计算主成分贡献率及累计贡献率
贡献率:
累计贡献率:
一般取累计贡献率达85%-95%的特征值, 所对应的第1、第2、…、第m (m ≤p )个主成分。

4、计算主成分载荷
5、各主成分得分
⎥⎥⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎢⎣
⎡=pp p p p p r r r r r r r r r R 212222111211∑∑∑===----=
n
k n
k j kj
i ki
n
k j kj i ki
ij x x
x x
x x x x
r 1
1
2
2
1
)()
()
)((0=-R I λ021≥≥≥≥p λλλ i λ),,2,1(p i e i L =i e 1
1
2
=∑=p
j ij e ij e i e )
,,2,1(1
p i p
k k
i
L =∑=λ
λ)
,,2,1(11
p i p
k k
i
k k
L =∑∑==λ
λm λλλ,,,21L )
,,2,1,(),(p j i e x z p l ij i j i ij L ===λ
三、主成分分析法在SPSS 中的操作 1、指标数据选取、收集与录入(表1)
2、Analyze →Data Reduction →Factor Analysis ,弹出Factor Analysis 对话框:
3、把指标数据选入Variables 框,Descriptives: Correlation Matrix 框组中选中Coefficients,然后点击Continue, 返回Factor Analysis 对话框,单击OK 。

注意:SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标

⎥⎥
⎥⎦
⎤⎢⎢⎢⎢⎣⎡=nm n n m m z z z z z z z z z Z 2
1
22221
11211
准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。

从表3 可知GDP 与工业增加值, 第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系, 与海关出口总额存在着显著关系。

可见许多变量之间直接的相关性比较强, 证明他们存在信息上的重叠。

主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。

特征值在某种程度上可以被看成是表示主成分影响力度大小的指标, 如果特征值小于1, 说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大, 因此一般可以用特征值大于1作为纳入标准。

通过表4( 方差分解主成分提取分析) 可知, 提取2个主成分, 即m=2, 从表5( 初始因子载荷矩阵) 可知GDP、工业增加
值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷, 说明第一主成分基本反映了这些指标的信息; 人均GDP 和农业增加值指标在第二主成分上有较高载荷, 说明第二主成分基本反映了人均GDP 和农业增加值两个指标的信息。

所以提取两个主成分是可以基本反映全部指标的信息, 所以决定用两个新变量来代替原来的十个变量。

但这两个新变量的表达还不能从输出窗口中直接得到, 因为“Component Matrix”是指初始因子载荷矩阵, 每一个载荷量表示主成分与对应变量的相关系数。

用表5( 主成分载荷矩阵) 中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数。

将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数据编辑窗口( 为变量B1、B2) , 然后利用“Transform→Compute Variable”, 在Compute Variable对话框中输入
“A1=B1/SQR(7.22)”[注: 第二主成分SQR后的括号中填1.235, 即可得到特征向
量A
1(见表6)。

同理, 可得到特征向量A
2。

将得到的特征向量与标准化后的数据相
乘, 然后就可以得出主成分表达式[注: 因本例只是为了说明如何在SPSS 进行主成分分析, 故在此不对提取的主成分进行命名, 有兴趣的读者可自行命名。

标准化:通过Analyze→Descriptive Statistics→Descriptives 对话框来
实现: 弹出Descriptives 对话框后, 把X
1~X
10
选入Variables 框, 在Save
standardized values as variables 前的方框打上钩, 点击“OK”, 经标准化的数据会自动填入数据窗口中, 并以Z开头命名。

以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算主成分综合模型, 即用第一主成分F1 中每个指标所对应的系数乘上第一主成分F1 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 然后加上第二主成分F2 中每个指标所对应的系数乘上第二主成分F2 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 即可得到综合得分模型:
根据主成分综合模型即可计算综合主成分值, 并对其按综合主成分值进行
排序, 即可对各地区进行综合评价比较, 结果见表8。

具体检验还需进一步探讨与学习。

相关文档
最新文档