利用导数求切线方程

合集下载

求切线方程的三种方法

求切线方程的三种方法

求切线方程的三种方法宝子们,今天咱们来唠唠求切线方程的那些事儿。

这切线方程啊,就像是给曲线找到一个最亲密接触的直线小伙伴,可有意思啦。

一、利用导数求切线方程。

咱先说说这个用导数的方法。

导数这玩意儿啊,其实就是曲线在某一点的斜率。

比如说有个函数y = f(x),咱们先求出它的导数f'(x)。

那在某一点x = a处的切线斜率k呢,就等于f'(a)。

这时候啊,我们已经知道了斜率,再知道这个点(a, f(a))在切线上,就可以用点斜式y - y₁ = k(x - x₁)来求出切线方程啦。

就像你知道一个朋友的走路速度(斜率),又知道他从哪个地方(点)出发,就能算出他走的路线(切线方程)啦。

二、设切点法。

再来说说设切点法。

有时候啊,题目没有直接告诉你切点是啥。

这时候咱就可以聪明点,设切点为(x₀, y₀)。

那这个点既在曲线上又在切线上哦。

如果曲线方程是y = f(x),那y₀ = f(x₀)。

然后呢,求出函数在x₀处的导数f'(x₀),这就是切线的斜率啦。

再根据点斜式写出切线方程y - y₀ = f'(x₀)(x - x₀)。

这就像是在玩一个猜谜游戏,我们先假设一个神秘的点(切点),然后通过各种线索(曲线方程和导数)来找出这个切线方程这个宝藏呢。

三、利用已知切线方程的形式来求。

还有一种方法呢,就是利用已知切线方程的形式。

比如说对于圆的方程(x - a)²+(y - b)² = r²,在点(x₁, y₁)处的切线方程是(x₁ - a)(x - a)+(y₁ - b)(y - b)= r²。

对于椭圆、双曲线等一些特殊的曲线也有类似的固定形式的切线方程哦。

这就像是有个小秘籍一样,直接套用这个形式就能求出切线方程啦。

就好比你有一把万能钥匙,遇到特定的锁(特殊曲线在某点的切线),直接一插就能打开(求出切线方程)啦。

宝子们,这三种求切线方程的方法是不是很有趣呀?只要多练练,你就能在求切线方程这个小天地里畅游无阻啦。

(完整版)利用导数求曲线的切线和公切线

(完整版)利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线一.求切线方程【例1】.已知曲线f(x)=x3-2x2+1.(1)求在点P(1,0)处的切线l1的方程;(2)求过点Q(2,1)与已知曲线f(x)相切的直线l2的方程.提醒:注意是在某个点处还是过某个点!二.有关切线的条数【例2】.(2014•北京)已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)【解答】解:(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3,令f′(x)=0得,x=﹣或x=,∵f(﹣2)=﹣10,f(﹣)=,f()=﹣,f(1)=﹣1,∴f(x)在区间[﹣2,1]上的最大值为.(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y),则y0=2﹣3x,且切线斜率为k=6﹣3,∴切线方程为y﹣y0=(6﹣3)(x﹣x),∴t﹣y0=(6﹣3)(1﹣x),即4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1),∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.∴g(0)>0且g(1)<0,即﹣3<t<﹣1,∴当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(﹣3,﹣1).(Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.【例3】.已知函数f(x)=lnax(a≠0,a∈R),.(Ⅰ)当a=3时,解关于x的不等式:1+e f(x)+g(x)>0;(Ⅱ)若f(x)≥g(x)(x≥1)恒成立,求实数a的取值范围;(Ⅲ)当a=1时,记h(x)=f(x)﹣g(x),过点(1,﹣1)是否存在函数y=h(x)图象的切线?若存在,有多少条?若不存在,说明理由.【解答】解:(I)当a=3时,原不等式可化为:1+e ln3x+>0;等价于,解得x,故解集为(Ⅱ)∵对x≥1恒成立,所以,令,可得h(x)在区间[1,+∞)上单调递减,故h(x)在x=1处取到最大值,故lna≥h(1)=0,可得a=1,故a的取值范围为:[1,+∞)(Ⅲ)假设存在这样的切线,设切点T(x,),∴切线方程:y+1=,将点T坐标代入得:即,①设g(x)=,则∵x>0,∴g(x)在区间(0,1),(2,+∞)上是增函数,在区间(1,2)上是减函数,故g(x)极大=g(1)=1>0,故g(x)极,小=g(2)=ln2+>0,.又g()=+12﹣6﹣1=﹣ln4﹣3<0,由g(x)在其定义域上的单调性知:g(x)=0仅在(,1)内有且仅有一根,方程①有且仅有一解,故符合条件的切线有且仅有一条.【作业1】.(2017•莆田一模)已知函数f (x )=2x 3﹣3x+1,g (x )=kx+1﹣lnx . (1)设函数,当k <0时,讨论h (x )零点的个数;三.切线与切线之间的关系 【例4】.(2018•绵阳模拟)已知a ,b ,c ∈R ,且满足b 2+c 2=1,如果存在两条互相垂直的直线与函数f (x )=ax+bcosx+csinx 的图象都相切,则a+c的取值范围是 .23a b c ++=则23b c +,∵b 2+c 2=1,∴sin ,cos b a ββ==设,∴235sin()b c βϕ+=+,故a+c ∈[﹣,],【例5】.已知函数f (x )=lnx ﹣a (x ﹣1),g (x )=e x ,其中e 为自然对数的底数. (Ⅰ)设,求函数t (x )在[m ,m+1](m >0)上的最小值;(Ⅱ)过原点分别作曲线y=f (x )与y=g (x )的切线l 1,l 2,已知两切线的斜率互为倒数,求证:a=0或.【解答】(Ⅰ)解:,令t'(x)>0得x>1,令t'(x)<0得x<1,所以,函数t(x)在(0,1)上是减函数,在(1,+∞)上是增函数,∴当m≥1时,t(x)在[m,m+1](m>0)上是增函数,∴当0<m<1时,函数t(x)在[m,1]上是减函数,在[1,m+1]上是增函数,∴t(x)min=t(1)=e.(Ⅱ)设l2的方程为y=k2x,切点为(x2,y2),则,∴x2=1,y2=e∴k2=e.由题意知,切线l1的斜率,∴切线l1的方程为,设l1与曲线y=f(x)的切点为(x1,y1),∴,∴,,又y1=lnx1﹣a(x1﹣1),消去y1,a后整理得,令,则,∴m(x)在(0,1)上单调递减,在(1,+∞)上单调递增,若x1∈(0,1),∵,,∴,而,在单调递减,∴.若x1∈(1,+∞),∵m(x)在(1,+∞)上单调递增,且m(e)=0,∴x1=e,∴综上,a=0或.【作业2】.(2017•黄山二模)已知函数f(x)=(ax2+x﹣1)e x+f'(0).(1)讨论函数f(x)的单调性;(2)若g(x)=e﹣x f(x)+lnx,h(x)=e x,过O(0,0)分别作曲线y=g(x)与y=h(x)的切线l1,l2,且l1与l2关于x轴对称,求证:﹣<a <﹣.四.求公切线的方程【例6】.(2018•安阳一模)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)试判断曲线y=f(x)与y=g(x)是否存在公共点并且在公共点处有公切线.若存在,求出公切线l的方程;若不存在,请说明理由.【解答】解:(Ⅰ)由,得,令f′(x)=0,得.当且x≠0时,f′(x)<0;当时,f′(x)>0.∴f(x)在(﹣∞,0)上单调递减,在上单调递减,在上单调递增;(Ⅱ)假设曲线y=f(x)与y=g(x)存在公共点且在公共点处有公切线,且切点横坐标为x>0,则,即,其中(2)式即.记h(x)=4x3﹣3e2x﹣e3,x∈(0,+∞),则h'(x)=3(2x+e)(2x﹣e),得h(x )在上单调递减,在上单调递增,又h(0)=﹣e3,,h(e)=0,故方程h(x0)=0在(0,+∞)上有唯一实数根x=e,经验证也满足(1)式.于是,f(x0)=g(x)=3e,f′(x)=g'(x)=3,曲线y=g(x)与y=g(x)的公切线l的方程为y﹣3e=3(x﹣e),即y=3x.【作业3】.已知函数f (x)=lnx,g(x)=2﹣(x>0)(1)试判断当f(x)与g(x)的大小关系;(2)试判断曲线 y=f(x)和 y=g(x)是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;(3)试比较(1+1×2)(1+2×3)…(1+2012×2013)与 e4021的大小,并写出判断过程.五.与公切线有关的参数取值范围问题【例7】.已知函数f(x)=blnx,g(x)=ax2﹣x(a∈R).(Ⅰ)若曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,求实数a、b的值;(Ⅱ)当b=1时,若曲线f(x)与g(x)在公共点P处有相同的切线,求证:点P唯一;(Ⅲ)若a>0,b=1,且曲线f(x)与g(x)总存在公切线,求正实数a的最小值.【解答】解:(Ⅰ)f′(x)=,g'(x)=2ax﹣1.∵曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,∴,解得a=b=1.(Ⅱ)设P(x0,y),则由题设有lnx=ax2﹣x…①,又在点P有共同的切线,∴f′(x0)=g′(x),∴,∴a=,代入①得lnx0=x,设h(x)=lnx ﹣+x,则h′(x)=+(x>0),则h′(x)>0,∴h(x)在(0,+∞)上单调递增,所以 h(x)=0最多只有1个实根,从而,结合(1)可知,满足题设的点P只能是P(1,0).(Ⅲ)当a>0,b=1时,f(x)=lnx,f′(x)=,f(x)在点(t,lnt)处的切线方程为y﹣lnt=(x﹣t),即y=x+lnx﹣1.与y=ax2﹣x,联立得ax2﹣(1+)x﹣lnt+1=0.∵曲线f(x)与g(x)总存在公切线,∴关于t(t>0)的方程△=+4a(lnt﹣1)=0,即=4a(1﹣lnt)(*)总有解.若t>e,则1﹣lnt<0,而>0,显然(*)不成立,所以 0<t<e,从而,方程(*)可化为4a=.令H(t)=(0<t<e),则H′(t)=.∴当0<t<1时,h'(t)<0;当1<t<e时,h'(t)>0,即 h(t)在(0,1)上单调递减,在(1,e)上单调递增.∴h(t)在(0,e)上的最小值为h(1)=4,∴要使方程(*)有解,只须4a≥4,即a≥1.∴正实数a的最小值为1.【例8】.(2017•韶关模拟).已知函数f(x)=ae x(a≠0),g(x)=x2(Ⅰ)若曲线c1:y=f(x)与曲线c2:y=g(x)存在公切线,求a最大值.(Ⅱ)当a=1时,F(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)内有零点,求实数b的取值范围.【解答】解:(Ⅰ)设公切线l与c1切于点(x1,a)与c2切于点(x2,),∵f′(x)=ae x,g′(x)=2x,∴,由①知x2≠0,①代入②:=2x2,即x2=2x1﹣2,由①知a=,设g(x)=,g′(x)=,令g′(x)=0,得x=2;当x<2时g′(x)>0,g(x)递增.当x>2时,g′(x)<0,g(x)递减.∴x=2时,g(x)max =g(2)=,∴amax=.(Ⅱ)F(x)=f(x)﹣bg(x)﹣cx﹣1=e x﹣bx2﹣cx﹣1,∵F(2)=0=F(0),又F(x)在(0,2)内有零点,∴F(x)在(0,2)至少有两个极值点,即F′(x)=e x﹣2bx﹣c在(0,2)内至少有两个零点.∵F″(x)=e x﹣2b,F(2)=e2﹣4b﹣2c﹣1=0,c=,①当b≤时,在(0,2)上,e x>e0=1≥2b,F″(x)>0,∴F″(x)在(0,2)上单调增,F′(x)没有两个零点.②当b≥时,在(0,2)上,e x<e2≤2b,∴F″(x)<0,∴F″(x)在(0,2)上单调减,F′(x)没有两个零点;③当<b<时,令F″(x)=0,得x=ln2b,因当x>ln2b时,F″(x)>0,x<ln2b时,F″(x)<0,∴F″(x)在(0,ln2b)递减,(ln2b,2)递增,所以x=ln2b时,∴F′(x)最小=F′(ln2b)=4b﹣2bln2b﹣+,设G(b)=F′(ln2b)=4b﹣2bln2b﹣+,令G′(b)=2﹣2ln2b=0,得2b=e,即b=,当b<时G′(b)>0;当b>时,G′(b)<0,当b=时,G(b)最大=G()=e+﹣<0,∴G(b)=f′(ln2b)<0恒成立,因F′(x)=e x﹣2bx﹣c在(0,2)内有两个零点,∴,解得:<b <,综上所述,b 的取值范围(,).【作业4】.已知函数f(x)=a(x ﹣)﹣blnx(a,b∈R),g(x)=x2.(1)若a=1,曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,求b的值;(2)若b=2,试探究函数f(x)与g(x)在其公共点处是否有公切线,若存在,研究a的个数;若不存在,请说明理由.六.公切线的条数问题【例9】.已知函数f(x)=lnx,g(x)=e x.(1)确定方程f(x)=实数根的个数;(2)我们把与两条曲线都相切的直线叫作这两条曲线的公切线,试确定曲线y=f (x),y=g(x)公切线的条数,并证明你的结论.【解答】解:(1)由题意得lnx==1+,即lnx﹣1=.分别作出y=lnx﹣1和y=的函数图象,由图象可知:y=lnx﹣1和y=的函数图象有两个交点,∴方程f(x)=有两个实根;(2)解:曲线y=f(x),y=g(x)公切线的条数是2,证明如下:设公切线与f(x)=lnx,g(x)=e x的切点分别为(m,lnm),(n,e n),m≠n,∵f′(x)=,g′(x)=e x,∴,化简得(m﹣1)lnm=m+1,当m=1时,(m﹣1)lnm=m+1不成立;当m≠1时,(m﹣1)lnm=m+1化为lnm=,由(1)可知,方程lnm=有两个实根,∴曲线y=f(x),y=g(x)公切线的条数是2条.【作业5】.已知函数f(x)=x2+2(1﹣a)x﹣4a,g(x)=﹣(a+1)2,则f (x)和g(x)图象的公切线条数的可能值是.【作业1解答】解:(1)f′(x)=(2x+1)(x﹣1)2=0,x=﹣或1,∴x=﹣是h(x)的零点;∵g′(x)=k﹣,k<0,g′(x)<0,g(x)在[1,+∞)上单调递减,g(x)的最大值为g(1)=k+1.k<﹣1,g(1)<0,g(x)在[1,+∞)上无零点;k=﹣1,g(1)=0,g(x)在[1,+∞)上有1个零点;﹣1<k<0,g(1)>0,g(e1﹣k)=ke1﹣k+k<0,g(x)在[1,+∞)上有1个零点;综上所述,k<﹣1时,h(x)有1个零点;﹣1≤k<0时,h(x)有两个零点;(2)设切点(t,f(t)),f′(x)=6x2﹣6x,∴切线斜率f′(t)=6t2﹣6t,∴切线方程为y﹣f(t)=(6t2﹣6t)(x﹣t),∵切线过P(a,﹣4),∴﹣4﹣f(t)=(6t2﹣6t)(a﹣t),∴4t3﹣3t2﹣6t2a+6ta﹣5=0①由题意,方程①有3个不同的解.令H(t)=4t3﹣3t2﹣6t2a+6ta﹣5,则H′(t)=12t2﹣6t﹣12at+6a=0.t=或a.a=时,H′(t)≥0,H(t)在定义域内单调递增,H(t)不可能有两个零点,方程①不可能有两个解,不满足题意;a时,在(﹣),(a,+∞)上,H′(t)>0,函数单调递增,在(,a)上,H′(t)<0,函数单调递减,H(t)的极大值为H(),极小值为H (a);a时,在(﹣∞,a),(,+∞)上,H′(t)>0,函数单调递增,在(a,)上,H′(t)<0,函数单调递减,H(t)的极大值为H(a),极小值为H ();要使方程①有三个不同解,则H()H(a)<0,即(2a﹣7)(a+1)(2a2﹣5a+5)>0,∴a>或a<﹣1.【作业2解答】解:由已知得f'(x)=[ax2+(2a+1)x]e x,f'(0)=0,所以f (x)=(ax2+x﹣1)e x.(1)f'(x)=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x.①若a>0,当或x>0时,f'(x)>0;当时,f'(x)<0,所以f(x)的单调递增区间为;单调递减区间为.②若a=0,f(x)=(x﹣1)e x,f'(x)=xe x,当x>0时,f'(x)>0;当x<0时,f'(x)<0,所以f(x)的单调递增区间为(0,+∞);单调递减区间为(﹣∞,0).③若,当或x<0时,f'(x)<0;当时,f'(x)>0,所以f(x)的单调递增区间为;单调递减区间为.④若,故f(x)的单调递减区间为(﹣∞,+∞).⑤若,当或x>0时,f'(x)<0;当时,f'(x)>0,所以f(x)的单调递增区间为;单调递减区间为.当a>0时,f(x)的单调递增区间为;单调递减区间为.当a=0时,f(x)的单调递增区间为(0,+∞);单调递减区间为(﹣∞,0).,当时,f(x)的单调递增区间为;单调递减区间为.当时,f(x)的单调递减区间为(﹣∞,+∞);当时,f(x)单调递增区间为;单调递减区间为,(0,+∞);(2)证明:g(x)=e﹣x f(x)+lnx=﹣e﹣x(ax2+x﹣1)e x+lnx=ax2+x﹣1+lnx,设l2的方程为y=k2x,切点为(x2,y2),则,所以x2=1,y2=e,k2=e.由题意知k1=﹣k2=﹣e,所以l1的方程为y=﹣ex,设l1与y=g(x)的切点为(x1,y1),则.又,即,令,在定义域上,u'(x)>0,所以(0,+∞)上,u(x)是单调递增函数,又,所以,即,令,则,所以,故.【作业3解答】解:(1)证明:设F(x)=f(x)﹣g(x),则F′(x)=﹣,由F'(x)=0,得x=3,当0<x<3时,F'(x)<0,当x>3时F'(x)>0,可得F(x)在区间(0,3)单调递减,在区间(3,+∞)单调递增,所以F(x)取得最小值为F(3)=ln3﹣1>0,∴F(x)>0,即f(x)>g(x);(2)假设曲线f(x)与g(x)有公切线,切点分别为P(x0,lnx)和Q(x1,2﹣).因为f′(x)=,g′(x)=,所以分别以P(x0,lnx)和Q(x1,2﹣)为切线的切线方程为y=+lnx﹣1,y=+2﹣.令,即2lnx1+﹣(3+ln3)=0.令h(x)=2lnx1+﹣(3+ln3).所以由h′(x)=﹣=0,得x1=3.显然,当0<x1<3时,h'(x)<0,当x1>3时,h'(x)>0,所以h(x)min=ln3﹣1>0,所以方程2lnx1+﹣(3+ln3)=0无解,故二者没有公切线.所以曲线y=f(x)和y=g(x)不存在公切线;(3)(1+1×2)(1+2×3)•…•(1+2012×2013)>e4021.理由:由(1)可得lnx>2﹣(x>0),可令x=1+n(n+1),可得ln(1+n(n+1))>2﹣>2﹣=2﹣3(﹣),则ln(1+1×2)+ln(1+2×3)+…+ln(1+2012×2013)>2×2012﹣3(1﹣+﹣+…+﹣)=4024﹣3+>4021.即有(1+1×2)(1+2×3)…(1+2012×2013)>e4021.【作业4解答】解:(Ⅰ)∵f(x)=x﹣﹣blnx,∴f′(x)=1+﹣,由于曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,故该切线斜率为0,即f′(1)=0,即1+1﹣b=0,∴b=2;(2)假设f(x),g(x)的图象在其公共点(x0,y)处存在公切线,由f(x)=a(x﹣)﹣2lnx,得f′(x)=,g′(x)=2x,由f′(x0)=g′(x),得=2x,即2x3﹣ax2+2x﹣a=0,即(x02+1)(2x﹣a)=0,则x=,又函数的定义域为(0,+∞),当a≤0时,x0=≤0,则f(x),g(x)的图象在其公共点(x,y)处不存在公切线;当a>0时,令f()=g(),﹣2ln﹣2=,即=ln,令h(x)=﹣ln(x>0),h′(x)=x﹣=,则h(x)在(0,2)递减,(2,+∞)递增.且h(2)=﹣<0,且当x→0时,h(x)→+∞;当x→+∞时,h(x)→+∞,∴h(x)在(0,+∞)有两个零点,∴方程=ln在(0,+∞)解的个数为2.综上:当a≤0时,函数f(x)与g(x)的图象在其公共点处不存在公切线;当a>0时,函数f(x)与g(x)的图象在其公共点处存在公切线,a的值有2个.在导数的练习中,常见这一类题型:已知含有的一个不等式,以及的一些其他性质,让解不等式或者比较大小。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型用导数求切线方程是导数的重要应用之一。

求曲线的切线方程的关键在于求出切点P(x,y)及斜率。

设P(x,y)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-y=f'(x)(x-x)。

若曲线y=f(x)在点P(x,f(x))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x。

下面例析四种常见的类型及解法。

类型一:已知切点,求曲线的切线方程这类题较为简单,只需求出曲线的导数f'(x),并代入点斜式方程即可。

例如,曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为y-(-1)=-3(x-1),即y=-3x+2.类型二:已知斜率,求曲线的切线方程这类题可利用斜率求出切点,再用点斜式方程加以解决。

例如,与直线2x-y+4=0平行的抛物线y=x^2的切线方程为2x-y-1=0.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法。

例如,求过曲线y=x^3-2x上的点(1,-1)的切线方程。

设想P(x,y)为切点,则切线的斜率为y'|(x=x)=3x^2-2.故所求切线方程为y-(1-2)=(3-2)(x-1),或5x+4y-1=0.类型四:已知两曲线的交点,求切线方程这类题一般需先求出两曲线在交点处的导数,再代入点斜式方程加以解决。

例如,已知曲线y=x^3-x和y=2x-x^2的交点为(1,0),求它们在该点的切线方程。

两曲线在交点处的导数分别为1和-1.故所求切线方程为y-(0)=1(x-1),或y-(0)=-1(x-1),即y=x-1或y=-x+1.类型四:已知过曲线外一点,求切线方程对于这类问题,我们可以先设定切点,再求解切点,使用待定切点法来解决。

例4:求过点(2,0)且与曲线$y=x/(1+x^2)$相切的直线方程。

解:设P(x,y)为切点,则切线的斜率为$y'=\frac{1-x^2}{(1+x^2)^2}$。

考点49 利用导数求切线方程(讲解)(解析版)

考点49 利用导数求切线方程(讲解)(解析版)

考点49:利用导数求切线方程【思维导图】【常见考法】考点一:求切线的斜率或倾斜角1.曲线1x y xe -=在点(1,1)处切线的斜率等于 . 【答案】2【解析】由1x y xe -=,得,故,故切线的斜率为.2.点P在曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围为 . 【答案】2,3ππ⎡⎫⎪⎢⎣⎭【解析】根据题意可知:''1xy e ==+⎝⎭ 则()()()221111'111x xxx e y e e e ⎫+-⎪=-=-⎪+++⎝⎭令()1,0,11x t t e =∈+所以)()2',0,1y t t t =-∈可知)'y ⎡∈⎣ 曲线在点P 处的切线的斜率范围为)⎡⎣,所以)tan α⎡∈⎣故2,3παπ⎡⎫∈⎪⎢⎣⎭3.已知函数()()21,.f x g x xx==若直线l 与曲线()f x ,()g x 都相切,则直线l的斜率为 . 【答案】4-【解析】设直线l 的斜率为k ,则()21'k f x x ==-,解得x =,切点为⎛⎝;且()'2kg x x ==,解得2kx =,切点为2,24k k ⎛⎫⎪⎝⎭; 因为l 与曲线()f x ,()g x 都相切,所以2k k +=,解得4k =-.考法二:在某点处求切线方程1.设曲线3ln(1)y x x =-+ 在点(0,0)处的切线方程_________________. 【答案】20x y -=【解析】由题意,函数3ln(1)y x x =-+的导数为131y x '=-+, 可得曲线3ln(1)y x x =-+在点(0,0)处的切线斜率为312-=,即切线的斜率为2, 则曲线在点(0,0)处的切线方程为02(0)y x -=-,即为2y x =,即20x y -=. 故答案为:20x y -=.2.函数3()2ln 2f x x x =-+的图象在1x =处的切线方程为______________________. 【答案】20x y -+=【解析】由题3(1)12ln123f =-+=,又22'()3f x x x=-,故3()2ln 2f x x x =-+在(1,3)处的斜率为2'(1)311f =-=,故在(1,3)处的切线方程为31(1)20y x x y -=⨯-⇒-+= 故答案为:20x y -+= 3.已知函数()2()1xf x x x e =++,则()f x 在(0, (0))f 处的切线方程为 .【答案】210x y -+=【解析】因为()2()32x f x e x x '=++,所以(0)2f '=,又因为(0)1f =,所以切点为(0)1,, 所以曲线()f x 在(0, (0))f 处的切线方程为210x y -+=.4.已知()()221f x x xf '=+,则曲线()y f x =在点()()00f ,处的切线方程为 .【答案】40x y +=【解析】由题:()()221f x x xf =+',所以()()'221f x x f +'=,()()'1221f f =+',所以()'12f =-,所以()24f x x x =-,()24f x x '=-,()00f =,()04f '=-所以切线方程为40x y +=.5.设a 为实数,函数()()322f x x ax a x =++-的导函数是fx ,且fx 是偶函数,则曲线()y f x =在原点处的切线方程为 . 【答案】2y x =-【解析】由()()322f x x ax a x =++-所以()()2'322f x x ax a =++-,又()f x '是偶函数,所以20a =,即0a =所以()2'32f x x =-则()'02f =-,所以曲线()y f x =在原点处的切线方程为2y x =-考法三:过某点求切线方程1.曲线ln y x =过点(0,1)-的切线方程为_________. 【答案】10x y --= 【解析】由题, 1'y x=,设切点为()00,ln x x ,则在切点处的切线斜率为01x ,又切线过点(0,1)-,故0000ln (1)11x x x x --=⇒=.故切点为()1,0. 故切线方程为()101101x y y x -=---=⇒.故答案为:10x y --= 2.求函数()32f x x x x =-+的图象经过原点的切线方程为 . 【答案】0x y -=【解析】由函数()32f x x x x =-+,则()2321f x x x '=-+,所以()01f '=,所以函数()32f x x x x =-+的图象经过原点的切线方程为()010y x -=-,即0x y -=.3.若过原点的直线l 与曲线2ln y x =+相切,则切点的横坐标为 . 【答案】1e【解析】设切点坐标为()00,2ln x x +,由1y x'=,切线方程为00012ln ()y x x x x --=-, 原点坐标代入切线方程,得02ln 1x +=,解得01ex =.4.已知函数()3f x x x =-,则曲线()y f x =过点()1,0的切线条数为 .【答案】2【解析】设切点坐标 3000(,)P x x x -,由()3f x x x =-,得2()31x f x '=-,∴切线斜率2031k x =-,所以过3000(,)P x x x -的切线方程为320000(31)()y x x x x x -+=--,即2300(31)2y x x x =--,切线过点()1,0,故32002310x x -+=,令()32000231h x x x =-+,则()200066h x x x '=-,由()00h x '=,解得00x =或01x =,当0(,0),(2,)x ∈-∞+∞时,()00h x '>,当0(0,2)x ∈时,()00h x '<,所以()0h x 的极大值极小值分别为 h (0)10=>,(1)0h =, 故其图像与x 轴交点2个,也就是切线条数为2.考法四:已知切线求参数1.已知函数()()e xf x x a =+的图象在1x =和1x =-处的切线相互垂直,则a = .【答案】-1 【解析】因为'()(1)xf x x a e =++ ,所以1'(1)(2)'(1)af a e f aee,-=+-==,由题意有(1)'(1)1f f -=- ,所以1a =-.2.已知在曲线()21ax f x x =+在点()()1,1f 处切线的斜率为1,则实数a 的值为 .【答案】43【解析】当0x >时,()()2221ax axf x x +'=+,()11f '=,即314a=,得43a =.. 3.已知函数()ln f x x x ax =+,过点()1,1P 可作两条直线与()f x 的图象相切,则a 的取值范围是 。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

添加标题
添加标题
添加标题
导数大于0表示函数在对应区间内 单调递增
导数小于0表示函数在对应区间内 单调递减
导数在几何上表导数等于0时,函数可能存在拐点或极值点 导数小于0时,函数在对应区间内单调递减
导数等于切线斜率 导数可以求出切线的斜率
导数在求切线方程中起到关 键作用
添加标题
添加标题
切线与该点处的切线垂直
添加标题
添加标题
切线方程的求解需要用到切点处的 坐标和斜率
确定函数表达式 确定导数表达式 计算导数值 代入切点坐标
代入切点坐标求斜率要细心 切线斜率与函数值大小无关 切线方程的形式要正确 切线方程与函数解析式不同
切线方程的书写格式要正确 切线斜率的计算要准确 切点坐标的选取要合理 切线方程的求解方法要规范
切线斜率:通 过将切点坐标 代入导函数中,
求得斜率为 f'(x0)
切线方程:利 用点斜式方程 y-y0=f'(x0)(xx0),得到切线
方程
确定函数在某点的导数 利用导数求出该点的切线斜率 根据切线斜率和已知点写出切线方程 验证切线方程是否符合题意
切点是曲线上某一点,在该点处函 数的导数存在
切点处函数值必须为零
汇报人:XX
导数与切线斜率的关系是密 切相关的
切点是曲线上某 一点,在该点处 曲线的切线存在
切点处的导数值 即为切线的斜率
切点坐标由曲线 方程和切线斜率 共同确定
切点是唯一确定 的,但切线方程 可能有多种形式
确定函数表达 式
求导函数
代入切点坐标
计算切线斜率
切点坐标:已 知曲线上的一 个点,记为(x0,
y0)
定义:切线方 程是表示切点 与曲线在某一 点的切线关系

利用导数求切线方程

利用导数求切线方程

3
题型二:求曲线过一点的切线方程 例:已知曲线C:f (x) x3 x 2 ,求经
过点 P(1, 2) 的曲线C的切线方程。
思考(1)判断P点 所处的位置? (2)从图像探究, 过该点有几条切线, 如何印证你的探究
答案:2x-y=0或x+4y-9=0
点P是曲线 y x2 ln x上任意一点,则点P 到直线 y x 2 的最小距离是多少?
T 切线
P
o
x
3.基本初等函数的导数公式
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sinx f(x)=cosx
导函数 f′(x)=__0
f′(x)=___α_x_α_-1
f′(x)=_c_o__s_x f′(x)=__-s_i_n_x_
原函数
导函数
f(x)=ax(a>0,且a≠1) f(x)=ex
答案:
求曲线上的点到直线的最小距离。
• 练习:
1.求y xex 2x 1在(0,0)处的切线
3x y 1 0
2.曲线y x2 ax b在(0,b)处的切线方程是
x y 1 0,求a,b
a 1,b 1
已知切线方程为y ex,曲线为f (x) ex ,
求切点坐意义
函数 y f (x) 在x x0 处的导数就是函数
y f (x) 的图像在点 (x0 , f (x0 )) 处的切线的 斜率,即
k f (x0 )
一.曲线的切线
请看当点Q沿着曲线逐渐向点P接近时,割线PQ
绕着点P逐渐转动的情况.
y
y=f(x)

线 Q
解:f ' (x) 6x2 3 k f '(1) 3 y 1 3(x 1)3x y 4 0

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型在微积分中,切线是曲线上某一点的切线。

通过使用导数,我们可以求解给定曲线上某一点的切线方程。

在本文中,我们将探讨四种使用导数求解切线方程的常见类型。

1. 曲线方程已知的情况首先,我们考虑的是当曲线方程已知时求解切线方程的情况。

假设我们有一个曲线y=f(x),其中f(x)是一个可导函数。

要求解曲线上某一点(x1,y1)处的切线方程,我们可以执行以下步骤:1.计算函数f(x)在点(x1,y1)处的导数f′(x1)。

2.使用点斜式或一般式等方程形式得到切线方程。

点斜式切线方程的一般形式为y−y1=m(x−x1),其中m是斜率。

一般式切线方程的一般形式为ax+by=c,其中a,b,c是常数。

2. 给定两个点的情况其次,我们考虑的是当曲线上两个点已知时求解切线方程的情况。

与上一种情况不同,我们不知道曲线的具体方程,但我们已知曲线上的两个点(x1,y1)和(x2,y2)。

为了求解这种情况下的切线方程,我们可以按照以下步骤进行:1.使用点斜式求解斜率。

2.写出点斜式的一般方程形式y−y1=m(x−x1)。

3.将另一个点(x2,y2)替代初始点(x1,y1)。

4.解方程得出切线方程。

3. 已知切线方程的情况接下来,我们讨论已知切线方程的情况。

假设我们已经知道了曲线上某一点处的切线方程,我们的目标是求解曲线方程。

我们可以按照以下步骤进行操作:1.确定切线方程的斜率m。

2.使用导数的定义f′(x)=m来设置方程。

3.解方程以获得曲线方程。

4. 求解切线与坐标轴的交点最后,我们研究切线与坐标轴相交的情况。

为了求解切线与x轴和y轴的交点,我们可以按照以下步骤进行:1.求解切线与x轴的交点:将y值设为0,然后解方程得到x坐标的值。

2.求解切线与y轴的交点:将x值设为0,然后解方程得到y坐标的值。

通过上述四种类型的方法,我们可以使用导数来求解切线方程。

这些方法在解决微积分问题以及实际问题中的应用非常广泛。

导数的切线方程

导数的切线方程

导数的切线方程
导数作为微积分中的重要概念,在物理学、工程学、经济学等领域都具有广泛应用。

本文将重点介绍导数的切线方程。

首先,需要明确什么是导数。

导数是一个函数在某一点处的变化率或斜率,可以用以下公式表示:
f'(x) = lim (h → 0) [f(x+h) - f(x)]/h
其中f(x)表示函数的值,f(x+h)表示函数在x+h处的值,h为趋近于0的极小值。

得到导数后,就可以计算出函数在该点的切线斜率。

切线斜率即为导数值,可以用点斜式或一般式来表示切线方程。

点斜式公式为y - y0 = k(x - x0),其中(x0, y0)为切点,k为切线斜率。

一般式公式为Ax + By + C = 0,其中A、B、C为常数,表示切线的一般性质。

接下来,我们以一个具体例子来说明如何求解切线方程。

假设我们有函数f(x) = x^2 + 2x + 1,求出该函数在x=2处的切线方程。

首先,求出导数f'(x) = 2x + 2,在x=2处导数为6。

其次,确定切点,即x=2处的函数值为f(2) = 9。

最后,将切点和导数代入点斜式公式中,得到切线方程y - 9 = 6(x - 2)或y = 6x - 3。

至此,我们成功求出了函数f(x)在x=2处的切线方程。

总的来说,导数作为微积分的基础概念,其应用广泛,特别是在计算机图像处理、机器学习等领域都有着重要作用。

了解导数的切线方程,能够帮助我们更好地理解函数、优化算法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切线方程的求法
●基础知识总结和逻辑关系
一、 函数的单调性
求可导函数单调区间的一般步骤和方法:
1) 确定函数的()f x 的定义区间;
2) 求'()f x ,令'()0f x =,解此方程,求出它在定义区间内的一切实根;
3) 把函数()f x 的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来,
然后用这些点把函数()f x 的定义区间分成若干个小区间;
4) 确定'()f x 在各个区间内的符号,由'()f x 的符号判定函数()f x 在每个相应小区
间内的单调性.
二、 函数的极值
求函数的极值的三个基本步骤
1) 求导数'()f x ;
2) 求方程'()0f x =的所有实数根;
3) 检验'()f x 在方程'()0f x =的根左右的符号,如果是左正右负(左负右正),则()
f x 在这个根处取得极大(小)值.
三、 求函数最值
1) 求函数()f x 在区间(,)a b 上的极值;
2) 将极值与区间端点函数值(),()f a f b 比较,其中最大的一个就是最大值,最小的一个就
是最小值.
四利用导数证明不等式
1) 利用导数得出函数单调性来证明不等式
我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减).因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的.即把证明不等式转化为证明函数的单调性.具体有如下几种形式:
① 直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)
区间,自变量越大,函数值越大(小),来证明不等式成立.
② 把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目
的.
2) 利用导数求出函数的最值(或值域)后,再证明不等式.
导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立.从而把证明不等式问题转化为函数求最值问题.
●解题方法总结和题型归类
1导数的几何意义及切线方程的求法
1)曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: 曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.
2)解决方案:解这类问题的关键就是抓住切点.看准题目所求的是“在曲线上某点处的切线方程”还是“过某点的切线方程”,然后求某点处的斜率,用点斜式写出切线方程.
【题】求过曲线cos y x =上点1
(,)32
P π且与在这点的切线垂直的直线方程.
【答案】:22032
x π--+= 【难度】*
【点评】
【题】已知曲线3:2C y x x =+,按下列条件求切线方程:
(1)切线过曲线C 上一点(1,3);
(2)切线过曲线C 外一点(1,2);
(3)切线的斜率为2.
【答案】:(1)520x y --=或11410x y -+=
(2)20x y -=或354270x y --=
(3)20x y -=
【难度】**
【点评】求切线方程要讨论过点是否为切点,(1)如果是切点,利用000()()y y f x x x '-=-求出切线方程。

(2)不是切点,①设出切点11(,)M x y ,②写出过切点的切线方程111()()y y f x x x '-=-,③将点00(,)P x y 带入,求出x1,④讲x1的值带入,
11
1()()y y f x x x '-=-可得到切线方程。

【题】曲线313y x x =+在点4(1,)3
处的切线与坐标轴围成的三角形面积为( )
A. 19
B. 29
C. 13
D. 23
【答案】:A
【难度】**
【题】.点P 在曲线323
y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是()
A. [0,]2π
B. 3[0,)[,)24πππ
C. 3[,)4
ππ D. 3(,]24
ππ 【答案】: B
【难度】**
【题】已知曲线33y x x =-,分别求满足下述条件的的切线方程。

(1)在点(0,0)P 处;
(2)过点(0,16)M -;
(3)过点(2,2)N 。

【答案】:(1)3y x =-
(2)9160x y --=
(3)2y =
【难度】**
【题】.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,]4
π
,则点P 横坐标的取值范围是( ) A. 1[1,]2
-- B. [1,0]- C. [0,1] D. 1[,1]2
【答案】: A
【难度】**
【题】设()f x 是偶函数,若曲线()y f x =在点(1,(1))f 处的切线
的斜率为1,则该曲线在(1,(1))f --处的切线的斜
率为_________.
【答案】:1-
【难度】*
【题】设P 是函数ln y x =图像上的动点,则点P 到直线y x =的距离的最小值为________.
【答案】:2
【难度】**
【题】设函数2()f x x ax b =++,()()x g x e cx d =+,若曲线
()y f x =和曲线()y g x =都过点(0,2)P ,
且在点P 处有相同的切线42y x =+,求a ,b ,c ,d 的值.
【答案】:a =4,b =2,c =2,d =2
【难度】**
【题】已知函数3()f x x =的切线的斜率等于3,则切线有
( )
A. 1条
B. 2条
C. 3条
D.不确定
【答案】: B
【难度】**
【题】设函数()ln f x x =,当120x x <<,下列结论正确的是
( )
A. 12112()()1f x f x x x x ->-
B. 12212
()()1f x f x x x x ->- C. 12112
()()1f x f x x x x +<+ D. 以上都不对 【答案】: A
【难度】**
【题】若函数3211()(1)(2)332
f x x f x f x ''=+-+,则()f x 在点(0,(0))f 处切线的倾斜角为( )
A. 4π
B. 3π
C. 23π
D. 34
π 【答案】: D
【难度】***
【题】求曲线ln y x =在点(,1)M e 处的切线的斜率和切线的方程。

【答案】:1y x e
= 【难度】**
【题】(1)求曲线32y x x =-在点(1,1)A -处的切线方程
(2)求过曲线32y x x =-上的点(1,1)A -处的切线方程
【答案】:(1)20x y --=,
(2) 20x y --=或5410x y +-=
【难度】***
【题】在32()3610f x x x x =++-的切线中,斜率最小的切线方程为( )
A. 3110x y +-=
B. 360x y -+=
C. 3110x y --=
D. 3110x y --=
【答案】: D
【难度】**
【题】已知直线1y kx =+与曲线3y x ax b =++相切于点(1,3),则b 的值为()
A .3
B .3-
C .5
D .5-
【答案】:A
【难度】**
【题】曲线3231y x x =-+在点(1,1)-处的切线方程为()
A. 34y x =-
B. 32y x =-+
C. 43y x =-+
D. 45y x =-
【答案】: B
【难度】** 【题】已知曲线2
3ln 4
x y x =-的一条切线的斜率为12,则切点的横坐标为( )
A. 3
B. 2
C. 1
D. 12
【答案】: A
【难度】**
【题】与直线240x y -+=的平行的抛物线2y x =的切线方程是( )
A. 230x y -+=
B. 230x y --=
C.210x y -+=
D. 210x y --=
【答案】: D
【难度】**
【题】求过点(2,0)且与曲线1y x
=相切的直线方程. 【答案】:20x y +-=
【难度】**
【题】已知函数2,1()(2),1
ax bx c x f x f x x ⎧++≥-=⎨--<-⎩其图像在点(1,(1))
f 处的切线方程为2+1y =x ,则它在点(3,(3))f --处的切线方程为()
A. 23y x =--
B. 23y x =-+
C. 23y x =-
D. 23y x =+
【答案】: A
【难度】***。

相关文档
最新文档