用导数求切线方程的四种类型

合集下载

导数法求指数衰减函数切线方程的三种题型

导数法求指数衰减函数切线方程的三种题型

导数法求指数衰减函数切线方程的三种题型一、已知曲线上一点求切线方程要求使用导数法来求解指数衰减函数的切线方程。

首先,我们考虑已知曲线上一点的情况。

设指数衰减函数为$f(x)=a \cdot e^{-bx}$,其中$a$和$b$为常数。

假设我们已知曲线上一点$P(x_0, y_0)$,我们需要求解过该点的切线方程。

首先,我们需要计算曲线在该点的斜率。

根据导数的定义,我们可以得到指数衰减函数的导数:$$f'(x) = -ab \cdot e^{-bx}$$将$x_0$代入到导数中,我们可以得到曲线在点$P$的斜率:$$k = f'(x_0) = -ab \cdot e^{-bx_0}$$接下来,我们使用点斜式来构建切线方程。

切线方程可以表示为:$$y - y_0 = k(x - x_0)$$将点$P$的坐标代入,我们可以得到最终的切线方程:$$y - y_0 = -ab \cdot e^{-bx_0}(x - x_0)$$二、已知切线斜率求切点坐标现在考虑已知切线斜率的情况。

假设我们已知切线的斜率为$k$,我们需要求解切线与指数衰减函数的交点坐标。

使用导数法,我们可以得到指数衰减函数的导数为:$$f'(x) = -ab \cdot e^{-bx}$$我们将切线的斜率$k$代入到导数中,可以得到方程:$$k = -ab \cdot e^{-bx}$$我们可以解方程得到$x$的值,并将其代入指数衰减函数中,求得对应的$y$值。

这样我们就得到了切线与指数衰减函数的交点坐标。

三、已知两点求切线方程最后,考虑已知两点的情况。

假设我们已知曲线上的两个点$P(x_1, y_1)$和$Q(x_2, y_2)$,我们需要求解过这两点的切线方程。

首先,我们可以分别计算点$P$和点$Q$处曲线的斜率。

根据导数的定义,我们可以得到指数衰减函数的导数:$$f'(x) = -ab \cdot e^{-bx}$$将$x_1$代入到导数中,我们可以得到点$P$处曲线的斜率:$$k_1 = f'(x_1) = -ab \cdot e^{-bx_1}$$将$x_2$代入到导数中,我们可以得到点$Q$处曲线的斜率:$$k_2 = f'(x_2) = -ab \cdot e^{-bx_2}$$接下来,我们使用点斜式来构建切线方程。

利用导数的几何意义求切线方程

利用导数的几何意义求切线方程

利用导数的几何意义求切线方程江南中教研组曲线y f x =()在点x 0的导数)( 0x f '就是曲线在该点的切线的斜率,我们通常用导数的这个几何意义来研究一些与曲线的切线有关的问题。

对于利用导数的几何意义求切线方程我们要把握三个等量关系:1. 曲线y f x =()在点x 0的导数)( 0x f '就是曲线在该点的切线的斜率,有)(0x f k '=;2.切点在曲线y f x =()上,有)(00x f y = 3. 切点在切线上,有切线方程)(00x x k y y -=-最基础的题型就是已知切点求斜率、切线方程。

例一:曲线221y x =+在x=1的切线方程为 ; 解析:直接利用等量关系得到切点的坐标、切线的斜率;由题意可知,切点的坐标为(1,5)又∵x y 4=',∴切线的斜率为4,∴切线的方程为y -5 = 4(x -1),即y=4x +1。

利用导数的几何意义求切线方程的关键是要理解导数的几何意义,熟悉等量关系。

另有一种题型是先知道切线的斜率,求切点坐标、切线方程。

例二:曲线2y x =的一条切线的斜率是4-,求切线方程。

解析:先设出切点的坐标,再利用等量关系由待定系数法求出切点坐标,进而求切线方程;设切点的坐标为(200,x x )∵x y 2=',∴切线的斜率为02x ,∴02x = -4,∴20-=x ∴切点的坐标为(-2,4)∴切线的方程为y =-4x -4解这种题型的关键问题就是不能忽视切点在曲线上的这个关系。

再有一种题型求过曲线外一点的切线的方程。

例三:曲线2x y -=的切线过点(0,4)求切线的方程。

解析:同样设切点坐标,充分利用等量关系,由待定系数法求出切点坐标,进而求切线方程;设切点坐标为()00y x P ,,∵x y 2-='则在点P 处的切线方程为:()0002x x x y y --=-∵过点()4,0P ,且200x y -=()002002)(4x x x --=--∴ 20=∴x 或20-=x当20=x 时,切点为)4,2(-,此时切线方程为y=-4x +4,当20-=x 时,切点为()4,2--P ,此时切线方程为y=4x +4,∴过点(0,4)的切线方程为: y=-4x +4, y=4x +4。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型用导数求切线方程是导数的重要应用之一。

求曲线的切线方程的关键在于求出切点P(x,y)及斜率。

设P(x,y)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-y=f'(x)(x-x)。

若曲线y=f(x)在点P(x,f(x))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x。

下面例析四种常见的类型及解法。

类型一:已知切点,求曲线的切线方程这类题较为简单,只需求出曲线的导数f'(x),并代入点斜式方程即可。

例如,曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为y-(-1)=-3(x-1),即y=-3x+2.类型二:已知斜率,求曲线的切线方程这类题可利用斜率求出切点,再用点斜式方程加以解决。

例如,与直线2x-y+4=0平行的抛物线y=x^2的切线方程为2x-y-1=0.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法。

例如,求过曲线y=x^3-2x上的点(1,-1)的切线方程。

设想P(x,y)为切点,则切线的斜率为y'|(x=x)=3x^2-2.故所求切线方程为y-(1-2)=(3-2)(x-1),或5x+4y-1=0.类型四:已知两曲线的交点,求切线方程这类题一般需先求出两曲线在交点处的导数,再代入点斜式方程加以解决。

例如,已知曲线y=x^3-x和y=2x-x^2的交点为(1,0),求它们在该点的切线方程。

两曲线在交点处的导数分别为1和-1.故所求切线方程为y-(0)=1(x-1),或y-(0)=-1(x-1),即y=x-1或y=-x+1.类型四:已知过曲线外一点,求切线方程对于这类问题,我们可以先设定切点,再求解切点,使用待定切点法来解决。

例4:求过点(2,0)且与曲线$y=x/(1+x^2)$相切的直线方程。

解:设P(x,y)为切点,则切线的斜率为$y'=\frac{1-x^2}{(1+x^2)^2}$。

利用导数求切线的方程

利用导数求切线的方程

利用导数求切线的方程求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A .34y x =-B .32y x =-+C .43y x =-+D .45y x =-类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A .230x y -+=B .230x y --=C .210x y -+=D .210x y --=类型三:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例3 求过点(20),且与曲线1y x=相切的直线方程.例4 求过点(00),且与曲线ln y x =相切的直线方程.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.类型四:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例6 求过曲线321y x x x =--+上的点(1),0的切线方程.例7 求过曲线32y x x =-上的点(11)-,的切线方程.。

导数求切线方程的步骤

导数求切线方程的步骤

导数求切线方程的步骤求切线方程的步骤如下:第一步:求导数首先,我们需要求出给定函数的导数。

导数表示了函数在给定点上的斜率,也就是该点函数曲线的切线斜率。

求导数的过程根据函数的不同而有所差异,下面将以几种不同类型的函数为例进行解释。

1.1.常数函数:常数函数的导数为零,因为它的斜率在任何点都是零。

例如,函数f(x)=3的导数为f'(x)=0。

1.2.幂函数:幂函数的导数可以使用幂函数规则求导得到。

幂函数的一般形式是f(x)=x^n,其中n是一个实数。

根据幂函数的规则,导数f'(x)=n*x^(n-1)。

例如,对于函数f(x)=x^2,它的导数为f'(x)=2*x^(2-1)=2x。

1.3.指数函数:指数函数的导数可以使用指数函数规则求导得到。

指数函数的一般形式是f(x) = a^x,其中a是一个正实数且a≠1、根据指数函数的规则,导数f'(x) = ln(a)*a^x。

例如,对于函数f(x) = e^x,它的导数为f'(x) = ln(e)*e^x = e^x。

1.4.对数函数:对数函数的导数可以使用对数函数规则求导得到。

对数函数的一般形式是f(x) = loga(x),其中a是一个正实数且a≠1、根据对数函数的规则,导数f'(x) = 1/(x*ln(a))。

例如,对于函数f(x) = log3(x),它的导数为f'(x) = 1/(x*ln(3))。

第二步:确定切点切线是曲线上其中一点上的切线,因此我们需要确定曲线上的切点。

根据题目给出的条件,我们可以确定切点的横纵坐标。

第三步:计算斜率在给定点上,切线的斜率等于该点的导数值。

所以我们将给定点的横坐标代入到导数函数中,得到该点的导数值。

第四步:确定切线方程切线方程的一般形式是y = mx + b,其中m为切线的斜率,b为切线在横轴上的截距。

在给定点上,我们已经确定了斜率m,并且通过给定点的坐标,可以将x和y代入切线方程。

高数中求曲线的切线方程

高数中求曲线的切线方程

高数中求曲线的切线方程
在高等数学中,我们经常需要求曲线的切线方程。

给定一个曲线和一个点,我们要找出这个点处的切线方程。

假设曲线方程为 y = f(x),给定的点为 (x0, y0)。

切线的斜率就是函数在该点的导数。

所以,首先我们需要求出函数 f(x) 在 x0 处的导数。

然后,使用点斜式方程 y - y0 = m(x - x0) 来求切线方程,其中 m 是斜率。

用数学公式表示,我们有:
1.导数 f'(x0) = lim (x->x0) [f(x) - f(x0)] / (x - x0)
2.切线方程为 y - y0 = f'(x0) * (x - x0)
现在我们要来解这个问题,给定一个具体的曲线和点,求出切线方程。

计算结果为:切线斜率 m = 0
所以,给定点 (x0, y0) 处的切线方程为:y0。

已知切点 如何用导数求函数的切线方程

已知切点 如何用导数求函数的切线方程

已知切点如何用导数求函数的切线方程
1、函数的切线方程的概念
切线是指某个函数f(x)在x0处的切点处,通过这个点的切线方程。

它是与该点的切线,即一般式为 ax+by+c=0的直线方程,它的斜率可通过x0的的某一处的切点来确定。

切线的斜率,即该直线的斜率,可用导数的定义来确定。

2、使用导数求函数切线方程的方法
(1)在给定的函数f(x)中,确定f(x)在x0处有切点;
(2)计算f'(xo),即在x0处函数的导数,则获得切线斜率k=f'(x0);
(3)由已知点(x0,f(x0)),通过斜率k求出函数的切线方程:y-
f(x0)=f'(x0)(x-x0),或y=f'(x0)x-f'(x0)x0+f(x0)。

3、函数的切线方程求解步骤
(1)确定切点处的函数坐标x0和f(x0);
(2)计算函数f(x)在x0处的导数f'(x0);
(3)用求得的斜率求出函数的切线方程,即y-f(x0)=f'(x0)*(x-x0);
(4)可以将此切线方程展开求出其系数,即y=kx+c,其中k=f'(x0),c=-f'(x0)x0+f(x0)。

4、导数确定切线斜率的原理
如果某一函数f(x)在某点x0处的切点,那么从这个点向外延伸的切
线的斜率即为f'(x0),其中f'(x)表示函数f(x)的导数。

因为函数的导数代表了函数f(x)在某点处的斜率。

当给定某一点的函数坐标时,可以利用函数的导数求出该点外延伸的切线的斜率。

导数求切线方程 - (有答案) - 12

导数求切线方程 - (有答案) - 12

用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-. 故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=. 评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用导数求切线方程的四种类型
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.
下面例析四种常见的类型及解法.
类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数,并代入点斜式方程即可.例1 曲线在点处的切线方程为( )
A.B.
C.D.
解:由则在点处斜率,故所求的切线方程为,即,因而选B.
类型二:已知斜率,求曲线的切线方程
此类题可利用斜率求出切点,再用点斜式方程加以解决.
例2 与直线的平行的抛物线的切线方程是( )
A.B.
C.D.
解:设为切点,则切点的斜率为.

由此得到切点.故切线方程为,即,故选D.
评注:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为,代入,得,又因为,得,故选D.
类型三:已知过曲线上一点,求切线方程
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.
例3 求过曲线上的点的切线方程.
解:设想为切点,则切线的斜率为.
切线方程为.

又知切线过点,把它代入上述方程,得.
解得,或.
故所求切线方程为,或,即,或.
评注:可以发现直线并不以为切点,实际上是经过了点且以为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.
类型四:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解.
例4 求过点且与曲线相切的直线方程.
解:设为切点,则切线的斜率为.
切线方程为,即.
又已知切线过点,把它代入上述方程,得.
解得,即.
评注:点实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.
例5 已知函数,过点作曲线的切线,求此切线方程.
解:曲线方程为,点不在曲线上.
设切点为,
则点的坐标满足.
因,
故切线的方程为.
点在切线上,则有.
化简得,解得.
所以,切点为,切线方程为.
评注:此类题的解题思路是,先判断点A是否在曲线上,若点A在曲线上,化为类型一或类型三;若点A不在曲线上,应先设出切点并求出切点.。

相关文档
最新文档