利用导数求切线方程PPT课件

合集下载

用导数求切线方程(课堂PPT)

用导数求切线方程(课堂PPT)
3
类型二:已知斜率,求曲线的切线方程
例2 与直线 2xy40平行的抛物线 y x 2
的切线方程是( )
4
类型三:已知过曲线上一点,求切线方程
例3 求过曲线 y x3 2x 上的点 (1, 1) 的切线方程
过曲线上一点的切线,该点未必是切点,故应
先设切点,再求切点,即用待定切点法.
5
设 P(x0,y0)为切点,则切线的斜率为 y|xx0 3x02 2
即 xy20 或 5x4y10
7
类型四:已知过曲线外一点,求切线方程
例4 求过点 ( 2 ,0 ) 且与曲线 y 1
x
相切的直线方程
8
设 P(x0,y0 )为切点,则切线的斜率为
y |x x0
1 x02
切线方程为
1 y y0 x02 (xx0)
y 1 x0
x102(xx0)源自又知切线过点 ( 2 ,0 ) ,把它代入上述方程,得
1 x0
1 x02
(2 x0)
9
解得
x0
1,y0
1 x0
1
故所求切线方程为 xy20
10
Thank You
11
用导数求切线方程
主讲人:甄玉星
1
四种常见的类型
类型一:已知切点,求曲线的切线方程 类型二:已知斜率,求曲线的切线方程 类型三:已知过曲线上一点,求切线方程 类型四:已知过曲线外一点,求切线方程
2
类型一:已知切点,求曲线的切线方程 例1 曲线 yx3 3x2 1 在点 (1, 1) 处的 切线方程为
切线方程为 yy0(3x022)(xx0)
y (x 0 3 2 x 0 ) (3 x 0 2 2 )(x x 0 )

1.1.3导数的几何意义课件共35张PPT

1.1.3导数的几何意义课件共35张PPT

(3)设切点为(a,b),则 y′|x=a=a2=1, ∴a=±1, 当 a=1 时,b=53,切点为1,53, 当 a=-1 时,b=1,切点为(-1,1), ∴切线方程为 3x-3y+2=0 或 x-y+2=0. ………………………………………………………………………………12 分
[反思提升] (1)求“在某点处”的切线:该点必在曲线上且是切点,而求“过某 点”的切线该点不一定在曲线上,且该点不一定是切点. (2)求“过某点”的切线方程的步骤 ①设“过某点”的切线 l 与曲线相切的切点坐标为(x0,y0). ②用“在点(x0,y0)处”的切线求法,写出切线 l 的方程. ③利用切线“过某点”,其坐标满足切线方程,求出 x0 与 y0. ④将(x0,y0)代入②中的切线 l 化简即求出“过某点”的切线方程. (3)求“过某点”的曲线的切线方程中,该点在曲线上时,所求点的切线中一定包 括“在该点”处曲线的切线.
∴曲线 y=1x在点(1,1)处的切线方程为 y-1=-(x-1),即 y=-x+2. 曲线 y=x2 在点(1,1)处的切线斜率为
f′(1)=liΔmx→0 1+ΔΔxx2-12=liΔmx→0 2Δx+ΔxΔx2=liΔmx→0 (2+Δx)=2, ∴曲线 y=x2 在点(1,1)处的切线方程为 y-1=2(x-1),即 y= 2x-1. 两条切线方程 y=-x+2 和 y=2x-1 与 x 轴所围成的图形如图 所示, ∴S=12×1×2-12=34,即三角形的面积为34.
导数几何意义应用问题的解题策略: (1)导数几何意义的应用问题往往涉及解析几何的相关知识,如直线斜率与方 程以及直线间的位置关系等,因此要综合应用所学知识解题. (2)解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可 以求切点,切点的坐标是常设的未知量. (3)一定要区分曲线 y=f(x)在点 P(x0,f(x0))处的切线与过点 P(x0,f(x0))的切线 的不同,前者 P 为切点,后者 P 不一定为切点.

《切线的判定》课件

《切线的判定》课件

切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。

导数的应用-切线放缩证明不等式

导数的应用-切线放缩证明不等式
点P处的切线。
单切线放缩
例1.求证:当x>0时,1+2x<e2x
例1:
单切线放缩
例2:
注:(1)该方法适用于凹函数与凸函数且它们的凹凸性相反
的问题(拆成两个函数); ----数形结合
(2)两函数有斜率相同的切线,这是切线放缩的基础。引入
一个中间量,分别证明两个不等式成立,然后利用不等式的传
递性即可;
明.
小结
1.切线放缩法实质是以直(切线)代曲(原函数);
2.切线放缩法中常用的两个定理必须先证明后使用;
3.证明流程为:求切线—构造差函数—证明差函数恒正
(负)--原不等式成立.
4.对于较为简单的导数试题,往往只涉及到一次切线放缩,
但是有些压轴试题涉及到两次不同的切线放缩.
----以直代曲
(3)难点在合理拆分函数,寻找它们斜率相等的切线隔板.
单切线放缩
例3:
略,
注:含参函数有时需要根据函数特征将原函数进行适当放缩.
单切线放缩
例4:
注:复杂形式的函数需要将函数适当转化后再进行放缩.
双切线放缩
例5:
a>1
注:含有两个零点的f(x)的解析式(可能含有参数, ),
告知方程f(x)=b有两个实根,要证明两个实根之差小于
(或大于)某个表达式.求解策略是画出f(x)的图象,并
求出f(x)在两个零点处(有时候不一定是零点处)的切线
方程(有时候不是找切线,而是找过曲线上某两点的直
线),然后严格证明曲线f(x)在切线(或所找直线)的上
方或下方,进而对, 作出放大或者缩小,从而实现证
导数的应用
--切线放缩法证明不等式
复习引入:曲线在某一点处的切线的定义

求切线方程

求切线方程
k f (a ) 3a 2 切线方程为:y a 3 3a 2 ( x a ) 将(- 2,8)代入得 a 1或a 2 当a 1时,切线: y 2 0 3x 当a 2时, 切线 : 12x y 16 0
评:“过某点”与“在某点处”的不同.故审题应细.
练习、已知曲线C:y=x3-x+2和点A(1,2), 求在点A处的切线方程?
变式:求过点A的切线方程?
求曲线的切线方程
迟玉弟
导数的几何意义
函数y=f(x)在x=x0处的导数f′(x0)就 是曲线y=f(x)在点(x0,f(x0))处的切 线的斜率,即k=f′(x0).
f ( x) x3 例、已知曲线方程
(1)求曲线在(1,1)处的切线方程; (2)求(1)中切线Байду номын сангаас曲线是否有其他公共点; (3)变式过点(-2,-8)的切线方程。
(1)3x-y-2=0 (2)联立方程解得公共点(1,1)(-2,-8)
说明切线与曲线的公共点除了切点还可以有另外的点
分析:由(2)知(-2,-8)不一定为切点,我们可 以设出切点,求出切点处斜率,利用切点和斜率写出 点斜式方程,将点(-2,-8)代入方程得到切点的值, 再求切线。 解:设切点为(a, a 3)

导数的应用切线与法线

导数的应用切线与法线

导数的应用切线与法线导数的应用:切线与法线导数是微积分中非常重要的概念之一。

通过计算导数,我们可以得到函数在某一点的切线斜率,从而揭示函数在该点的变化趋势。

在实际问题中,我们经常需要使用导数的应用来解决与切线和法线相关的问题。

本文将探讨导数在切线和法线问题中的应用。

一、切线的求解切线是曲线在某一点处与曲线相切且仅与曲线有一个公共点的直线。

切线的斜率正是曲线在该点处的导数。

考虑一个函数f(x),我们希望求解函数f(x)在点x=a处的切线方程。

首先,我们需要计算函数f(x)在该点处的导数,即f'(a)。

然后,我们可以使用切线的斜率公式来确定切线的斜率:m = f'(a)。

接下来,我们需要找到过点(x=a, f(a))的直线,且斜率为m。

假设切线方程为y = mx + c,其中c为常数。

由于切线过点(x=a, f(a)),我们可以将这一点的坐标代入切线方程得到f(a) = ma + c,进一步,我们可以得到c = f(a) - ma。

因此,函数f(x)在点x=a处的切线方程为y = f'(a)x + (f(a) - af'(a))。

二、法线的求解法线是曲线在某一点处与切线垂直的直线。

法线的斜率是切线斜率的负倒数。

与切线问题类似,我们考虑函数f(x)在点x=b处的法线方程。

首先,我们计算函数f(x)在该点处的导数,即f'(b)。

然后,我们可以使用切线斜率的负倒数来确定法线的斜率:m' = -1/f'(b)。

我们需要找到过点(x=b, f(b))的直线,且斜率为m'。

假设法线方程为y = m'x + d,其中d为常数。

由于法线过点(x=b, f(b)),我们可以将这一点的坐标代入法线方程得到f(b) = m'b + d。

进一步,我们可以得到d = f(b) - m'b。

因此,函数f(x)在点x=b处的法线方程为y = -1/f'(b)x + (f(b) -b/f'(b))。

考点49 利用导数求切线方程(讲解)(解析版)

考点49 利用导数求切线方程(讲解)(解析版)

考点49:利用导数求切线方程【思维导图】【常见考法】考点一:求切线的斜率或倾斜角1.曲线1x y xe -=在点(1,1)处切线的斜率等于 . 【答案】2【解析】由1x y xe -=,得,故,故切线的斜率为.2.点P在曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围为 . 【答案】2,3ππ⎡⎫⎪⎢⎣⎭【解析】根据题意可知:''1xy e ==+⎝⎭ 则()()()221111'111x xxx e y e e e ⎫+-⎪=-=-⎪+++⎝⎭令()1,0,11x t t e =∈+所以)()2',0,1y t t t =-∈可知)'y ⎡∈⎣ 曲线在点P 处的切线的斜率范围为)⎡⎣,所以)tan α⎡∈⎣故2,3παπ⎡⎫∈⎪⎢⎣⎭3.已知函数()()21,.f x g x xx==若直线l 与曲线()f x ,()g x 都相切,则直线l的斜率为 . 【答案】4-【解析】设直线l 的斜率为k ,则()21'k f x x ==-,解得x =,切点为⎛⎝;且()'2kg x x ==,解得2kx =,切点为2,24k k ⎛⎫⎪⎝⎭; 因为l 与曲线()f x ,()g x 都相切,所以2k k +=,解得4k =-.考法二:在某点处求切线方程1.设曲线3ln(1)y x x =-+ 在点(0,0)处的切线方程_________________. 【答案】20x y -=【解析】由题意,函数3ln(1)y x x =-+的导数为131y x '=-+, 可得曲线3ln(1)y x x =-+在点(0,0)处的切线斜率为312-=,即切线的斜率为2, 则曲线在点(0,0)处的切线方程为02(0)y x -=-,即为2y x =,即20x y -=. 故答案为:20x y -=.2.函数3()2ln 2f x x x =-+的图象在1x =处的切线方程为______________________. 【答案】20x y -+=【解析】由题3(1)12ln123f =-+=,又22'()3f x x x=-,故3()2ln 2f x x x =-+在(1,3)处的斜率为2'(1)311f =-=,故在(1,3)处的切线方程为31(1)20y x x y -=⨯-⇒-+= 故答案为:20x y -+= 3.已知函数()2()1xf x x x e =++,则()f x 在(0, (0))f 处的切线方程为 .【答案】210x y -+=【解析】因为()2()32x f x e x x '=++,所以(0)2f '=,又因为(0)1f =,所以切点为(0)1,, 所以曲线()f x 在(0, (0))f 处的切线方程为210x y -+=.4.已知()()221f x x xf '=+,则曲线()y f x =在点()()00f ,处的切线方程为 .【答案】40x y +=【解析】由题:()()221f x x xf =+',所以()()'221f x x f +'=,()()'1221f f =+',所以()'12f =-,所以()24f x x x =-,()24f x x '=-,()00f =,()04f '=-所以切线方程为40x y +=.5.设a 为实数,函数()()322f x x ax a x =++-的导函数是fx ,且fx 是偶函数,则曲线()y f x =在原点处的切线方程为 . 【答案】2y x =-【解析】由()()322f x x ax a x =++-所以()()2'322f x x ax a =++-,又()f x '是偶函数,所以20a =,即0a =所以()2'32f x x =-则()'02f =-,所以曲线()y f x =在原点处的切线方程为2y x =-考法三:过某点求切线方程1.曲线ln y x =过点(0,1)-的切线方程为_________. 【答案】10x y --= 【解析】由题, 1'y x=,设切点为()00,ln x x ,则在切点处的切线斜率为01x ,又切线过点(0,1)-,故0000ln (1)11x x x x --=⇒=.故切点为()1,0. 故切线方程为()101101x y y x -=---=⇒.故答案为:10x y --= 2.求函数()32f x x x x =-+的图象经过原点的切线方程为 . 【答案】0x y -=【解析】由函数()32f x x x x =-+,则()2321f x x x '=-+,所以()01f '=,所以函数()32f x x x x =-+的图象经过原点的切线方程为()010y x -=-,即0x y -=.3.若过原点的直线l 与曲线2ln y x =+相切,则切点的横坐标为 . 【答案】1e【解析】设切点坐标为()00,2ln x x +,由1y x'=,切线方程为00012ln ()y x x x x --=-, 原点坐标代入切线方程,得02ln 1x +=,解得01ex =.4.已知函数()3f x x x =-,则曲线()y f x =过点()1,0的切线条数为 .【答案】2【解析】设切点坐标 3000(,)P x x x -,由()3f x x x =-,得2()31x f x '=-,∴切线斜率2031k x =-,所以过3000(,)P x x x -的切线方程为320000(31)()y x x x x x -+=--,即2300(31)2y x x x =--,切线过点()1,0,故32002310x x -+=,令()32000231h x x x =-+,则()200066h x x x '=-,由()00h x '=,解得00x =或01x =,当0(,0),(2,)x ∈-∞+∞时,()00h x '>,当0(0,2)x ∈时,()00h x '<,所以()0h x 的极大值极小值分别为 h (0)10=>,(1)0h =, 故其图像与x 轴交点2个,也就是切线条数为2.考法四:已知切线求参数1.已知函数()()e xf x x a =+的图象在1x =和1x =-处的切线相互垂直,则a = .【答案】-1 【解析】因为'()(1)xf x x a e =++ ,所以1'(1)(2)'(1)af a e f aee,-=+-==,由题意有(1)'(1)1f f -=- ,所以1a =-.2.已知在曲线()21ax f x x =+在点()()1,1f 处切线的斜率为1,则实数a 的值为 .【答案】43【解析】当0x >时,()()2221ax axf x x +'=+,()11f '=,即314a=,得43a =.. 3.已知函数()ln f x x x ax =+,过点()1,1P 可作两条直线与()f x 的图象相切,则a 的取值范围是 。

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①判断已知点是否在曲线上, 若不在曲线上则设切点为(x0,y0); ②利用导数的定义式求切线斜率 ③根据点斜式写出切线方程
.
8
巩固练习
已知曲线
y
1 xБайду номын сангаас
(1) 求曲线在点 ( 1 , 1 ) 处的
切线方程
(2)求曲线过点 (1 , 0 ) 的
切线方程
.
9
探究
求曲线 y x 2上的
点到直线 2xy30 的最大距离
利用导数求切线方程
y=f(x) y
B
△y
A △x o
M x
.
1
.
2
.
3
.
4
利用导数求切线方程
y=f(x) y
B
△y
A △x o
M x
.
5
例一:
求曲线 y x 2
在点 ( 1 , 1 ) 处的 切线方程
.
6
例二:
求曲线 y x 2
过点 ( 3 , 5 ) 的 切线方程
.
7
归纳小结
利用导数的几何意义求曲线的 切线方程的方法步骤:
.
10
.
11
.
12
.
13
.
14
.
15
.
16
.
17
.
18
.
19
下图表示人体血管中药物浓度c=f(t) (t的单位: h, c 的单位: mg/mL)随时 间t变化的函数图象
.
20
相关文档
最新文档