胶力学性能与测试

胶力学性能与测试
胶力学性能与测试

胶力学性能与测试|橡胶力学与测试|橡胶力学与测试

一、生胶性能

未经加工的原料橡胶俗称生胶,其实生胶也并非100%纯净的,如天然胶中含有的非橡胶烃(约5%)包括树脂酸蛋白质等物质,在SR中同样添加了防老剂及未耗尽的合成助剂,如:分子量控制剂,终止剂及分散剂等。不过大体上讲,生胶与胶料相比更能代表橡胶固有的特性,包括如下:

1、分子量。指橡胶大分子的分子量的平均值,应该把橡胶看成不同分子量聚合物的体系,既有高分子量级份,也混杂一些低分子量级份,这是不可避免的,所以只能以平均分子量的概念来描述。根据不同测试方法又分粘均分子量、散均分子量及重均分子量。比较常用的是粘均分子量,因为比较容易测,采用不同粘度来表征不同分子量,更为直观(分子量越大,粘度越高)。

分子量与生胶性能之间有着直接和密切的关系,一般而言分子量越大,则生胶的强度越高,力学性能越好,但是随着分子量的增大,加工时的流动性变差。

2、分子量分布。橡胶实际上是不同比例的大小分子量不同的分子链的混合物,如果把不同的分子量按出现的频率来排列,则可得到分子量分布曲线。

NR的分子量分布特点:

中等分子量占统治地位,高分子量及低分子量级各占少数,其中高的部分有利于力学性而低的部分则有利于加工,因此兼顾了性能和加工。

SR的分子量分布特点:

分子量分布很窄,局限在很小的范围,因为缺少低分子量部分所以加工性不及NR,但性能均匀性好。原因是合成橡胶的分子量由人为地加以控制,所以模式单纯,难以做到大、中、小兼顾。

3、凝胶含量。一般只发生在SR。当聚合过程中,因结构控制不同,形成太多的支链结构,结果这一部分就出现凝胶,用溶剂无法溶解故称凝胶。炼胶时助剂难以进入,影响性能。

4、侧挂基团。橡胶单体上的不同基团给橡胶带来不同的特性。如:-COOH (羧基):能赋予良好的粘性;-CL:具有极性及电负性;苯基:体积庞大可以阻拦射线,故具抗射线性良好。

5、极性。与基团有密切相关,凡是带有腈基(-CN)羟基(-OH)和羧基(-COOH)等基团的橡胶都有较强的极性,称为极性橡胶。他们与金属有良好的结合性,另外极性接近的橡胶,彼此容易掺和。

二、硫化胶性能

如果说生胶和未硫化胶的性能主要为加工生产服务,那么硫化胶性能主要为客户和实际应用服务。硫化胶性能可以概括分为俩大类即力学性能及抗环境性能,前者都是衡量橡胶在受力情况下的性能,主要有拉伸强度、定伸强度、扯断伸长率、拉伸永久变形(均在拉力机上进行)、硬度、回弹性、压缩永久变形、抗撕裂强度、粘和强度等。后者是测量橡胶在外界环境下的性能变化,包括热老化性能、抗臭氧性能、阻燃性能、抗霉性能等。

先将常用的硫化胶测定项目简述如下–

1、拉伸强度。用拉动机对橡胶试片进行拉伸,测定断裂时的强度以Mpa表示,是衡量橡胶力学性能的最主要最基本项目,其值越大,表明强度越大,一般在10~30Mpa。

2、定伸强度。试样拉伸到一定长度时,单位面积所需的力。可以反映橡胶的交联程度。其值越高,表明橡胶越坚韧,单位MPa

3、扯断伸长率。试样拉断时,伸长部分与原长的百分比,用以表示橡胶在伸长时的应变能力的极限,以%表示。

4、永久变形。试样经一定时间的外力作用后,不能恢复的变形部分的百分比,其值越小,则橡胶的弹性复原性越好。

5、撕裂强度。橡胶抵抗裂口处撕开的性能,以单位长度的撕开力来表示KN/m

6、硬度。将一定直径的钢性球体压入橡胶试样到一定深度所需的负荷与弹性模量之比,用以反映橡胶的弹性模量,也可判断硫化状态。

7、耐磨性。常用阿克隆磨耗机测定,对滚动磨擦件最适宜,其测试方法是将圆盘形试片定位于磨耗实验机上,在一定压力下,与砂轮以一定斜度角(15°)进行相对摩擦测定其在1.61km(1英里)的行程内被磨下的胶粉,在按密度换算成体积,故其取值单位为cm3/1.61km,值越小耐磨性越好。

8、回弹性。又称冲击弹性,指橡胶受冲击后能复原的程度,通常以回弹率表示,有两种测定法:

⑴落球法将一定质量的钢球,从一定高度落下,打在橡胶试样上侧其回弹的高度。

⑵摆锤法用有支点的钢锤撞击橡胶试样,侧其回弹幅度以前后的百分比表示。)

9、耐老化性。常用热气老化箱法,将橡胶试样放入有热空气加热的老化烘箱内,定温定时老化(例70℃×100h)后,测定性能的保持率,以表示老化程度,称老化系数,一般系数越接近1.0的越好。

10、耐寒性。通常以脆性温度表示,脆性温度越低表示橡胶的耐寒性越好。方法如下,用开水放入保温瓶内制冷,到所需温度后,用夹持器将试样垂直送入保持3分钟取出,在0.5秒内用冲击器冲击试样,出现裂口或扯断的最高温度即脆性温度,表示该橡胶耐低温水平。

三、未硫化胶的性能

生胶与助剂相混,但未经硫化的橡胶称未硫化胶,也称胶料。可以理解为半成品,它们跟加工过程有密切关系:

1、流动性。和可塑性相关,可塑性越大,则流动性越好,吃粉容易;在压延挤出过程中,十分顺利;硫化时受热过程中很快能充满模腔,反之流动性不好则容易出现缺胶。

2、喷霜。配方中如果某项助剂添加过量,超过其在橡胶中的溶解度,则会逐渐喷出胶料表面形成霜层,故称喷霜。油类、石蜡、防老剂、硫磺、促进剂等添加过量均会出现喷出,影响外观,并影响界面结合。

3、焦烧。胶料在加工或停放过程中提前硫化现象称焦烧。这种现象在高温季节容易发生,对策是添加防焦剂,严格控制加工温度。

4、收缩膨胀变形。胶料出口型后出现尺寸收缩膨胀,对成型带来不便,可塑度不够或合成胶使用比过高是主要原因,添加软化剂用量有利于减少收缩变形。

橡胶力学性能与测试

一、生胶性能

未经加工的原料橡胶俗称生胶,其实生胶也并非100%纯净的,如天然胶中含有的非橡胶烃(约5%)包括树脂酸蛋白质等物质,在SR中同样添加了防老剂及未耗尽的合成助剂,如:分子量控制剂,终止剂及分散剂等。不过大体上讲,生胶与胶料相比更能代表橡胶固有的特性,包括如下:

1、分子量。指橡胶大分子的分子量的平均值,应该把橡胶看成不同分子量聚合物的体系,既有高分子量级份,也混杂一些低分子量级份,这是不可避免的,所以只能以平均分子量的概念来描述。根据不同测试方法又分粘均分子量、散均分子量及重均分子量。比较常用的是粘均分子量,因为比较容易测,采用不同粘度来表征不同分子量,更为直观(分子量越大,粘度越高)。

分子量与生胶性能之间有着直接和密切的关系,一般而言分子量越大,则生胶的强度越高,力学性能越好,但是随着分子量的增大,加工时的流动性变差。

2、分子量分布。橡胶实际上是不同比例的大小分子量不同的分子链的混合物,如果把不同的分子量按出现的频率来排列,则可得到分子量分布曲线。

NR的分子量分布特点:

中等分子量占统治地位,高分子量及低分子量级各占少数,其中高的部分有利于力学性而低的部分则有利于加工,因此兼顾了性能和加工。

SR的分子量分布特点:

分子量分布很窄,局限在很小的范围,因为缺少低分子量部分所以加工性不及NR,但性能均匀性好。原因是合成橡胶的分子量由人为地加以控制,所以模式单纯,难以做到大、中、小兼顾。

3、凝胶含量。一般只发生在SR。当聚合过程中,因结构控制不同,形成太多的支链结构,结果这一部分就出现凝胶,用溶剂无法溶解故称凝胶。炼胶时助剂难以进入,影响性能。

4、侧挂基团。橡胶单体上的不同基团给橡胶带来不同的特性。如:-COOH (羧基):能赋予良好的粘性;-CL:具有极性及电负性;苯基:体积庞大可以阻拦射线,故具抗射线性良好。

5、极性。与基团有密切相关,凡是带有腈基(-CN)羟基(-OH)和羧基(-COOH)等基团的橡胶都有较强的极性,称为极性橡胶。他们与金属有良好的结合性,另外极性接近的橡胶,彼此容易掺和。

二、硫化胶性能

如果说生胶和未硫化胶的性能主要为加工生产服务,那么硫化胶性能主要为客户和实际应用服务。硫化胶性能可以概括分为俩大类即力学性能及抗环境性能,前者都是衡量橡胶在受力情况下的性能,主要有拉伸强度、定伸强度、扯断伸长率、拉伸永久变形(均在拉力机上进行)、硬度、回弹性、压缩永久变形、抗撕裂强度、粘和强度等。后者是测量橡胶在外界环境下的性能变化,包括热老化性能、抗臭氧性能、阻燃性能、抗霉性能等。

先将常用的硫化胶测定项目简述如下–

1、拉伸强度。用拉动机对橡胶试片进行拉伸,测定断裂时的强度以Mpa表示,是衡量橡胶力学性能的最主要最基本项目,其值越大,表明强度越大,一般在10~30Mpa。

2、定伸强度。试样拉伸到一定长度时,单位面积所需的力。可以反映橡胶的交联程度。其值越高,表明橡胶越坚韧,单位MPa

3、扯断伸长率。试样拉断时,伸长部分与原长的百分比,用以表示橡胶在伸长时的应变能力的极限,以%表示。

4、永久变形。试样经一定时间的外力作用后,不能恢复的变形部分的百分比,其值越小,则橡胶的弹性复原性越好。

5、撕裂强度。橡胶抵抗裂口处撕开的性能,以单位长度的撕开力来表示KN/m

6、硬度。将一定直径的钢性球体压入橡胶试样到一定深度所需的负荷与弹性模量之比,用以反映橡胶的弹性模量,也可判断硫化状态。

7、耐磨性。常用阿克隆磨耗机测定,对滚动磨擦件最适宜,其测试方法是将圆盘形试片定位于磨耗实验机上,在一定压力下,与砂轮以一定斜度角(15°)进行相对摩擦测定其在1.61km(1英里)的行程内被磨下的胶粉,在按密度换算成体积,故其取值单位为cm3/1.61km,值越小耐磨性越好。

8、回弹性。又称冲击弹性,指橡胶受冲击后能复原的程度,通常以回弹率表示,有两种测定法:

⑴落球法将一定质量的钢球,从一定高度落下,打在橡胶试样上侧其回弹的高度。

⑵摆锤法用有支点的钢锤撞击橡胶试样,侧其回弹幅度以前后的百分比表示。)

9、耐老化性。常用热气老化箱法,将橡胶试样放入有热空气加热的老化烘箱内,定温定时老化(例70℃×100h)后,测定性能的保持率,以表示老化程度,称老化系数,一般系数越接近1.0的越好。

10、耐寒性。通常以脆性温度表示,脆性温度越低表示橡胶的耐寒性越好。方法如下,用开水放入保温瓶内制冷,到所需温度后,用夹持器将试样垂直送入保持3分钟取出,在0.5秒内用冲击器冲击试样,出现裂口或扯断的最高温度即脆性温度,表示该橡胶耐低温水平。

三、未硫化胶的性能

生胶与助剂相混,但未经硫化的橡胶称未硫化胶,也称胶料。可以理解为半成品,它们跟加工过程有密切关系:

1、流动性。和可塑性相关,可塑性越大,则流动性越好,吃粉容易;在压延挤出过程中,十分顺利;硫化时受热过程中很快能充满模腔,反之流动性不好则容易出现缺胶。

2、喷霜。配方中如果某项助剂添加过量,超过其在橡胶中的溶解度,则会逐渐喷出胶料表面形成霜层,故称喷霜。油类、石蜡、防老剂、硫磺、促进剂等添加过量均会出现喷出,影响外观,并影响界面结合。

3、焦烧。胶料在加工或停放过程中提前硫化现象称焦烧。这种现象在高温季节容易发生,对策是添加防焦剂,严格控制加工温度。

4、收缩膨胀变形。胶料出口型后出现尺寸收缩膨胀,对成型带来不便,可塑度不够或合成胶使用比过高是主要原因,添加软化剂用量有利于减少收缩变形。

台欣仪器专业提供:橡胶拉力试验机,橡胶耐冲击试验机(悬臂梁冲击试验机),NBS耐磨耗试验机,DIN耐磨试验机,熔融指数测定仪

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

胶粘剂的基础知识

胶粘剂的定义和历史 定义:胶粘剂又称粘合剂,简称胶(bonding agent, adhesive),是使物体与另一物体紧密连接为一体的非金属媒介材料。在两个被粘物面之间胶粘剂只占很薄的一层体积,但使用胶粘剂完成胶接施工之后,所得胶接件在机械性能和物理化学性能方面,能满足实际需要的各项要求。能有效的将物料粘结在一起。 历史:考古学证据显示粘合剂的应用历史已经超过6000多年,我们可以看到在博物馆里展出的许多物体在经 过3000多年后依然由粘合剂固定在一起。进入20世纪,人类发明了应用高分子化学和石油化学制造的“合成粘结剂”,其种类繁多,粘结力强。产量也有了飞跃发展。 胶粘剂的应用和分类 应用:电子,汽车,工业,化工,建筑业等各个领域都有用到胶粘剂。 分类:胶粘剂种类繁多,组分各异,有不同的分类方法。 1 按化学类型分类 无机胶粘剂(sauereisen的高温水泥) 有机胶粘剂:分为天然胶粘剂和合成胶粘剂 合成胶粘剂按化学成分主要分为:Epoxy, PU, Silicone, Acrylic, etc. 2 按物理形态分类 水基型:基料分散于水中形成水溶液或乳液,水挥发而固化。 溶液型:基料在可挥发溶剂中配成一定黏度的溶液,靠溶剂挥发而固化。 膏状和糊状:基料在可挥发溶剂中配成高黏度的胶粘剂,用于密封和嵌缝。 固体型:把热塑性合成树脂制成粒状或块状,加热熔融,冷却时固化。 膜状:将胶粘剂涂于基材上,呈薄膜状胶带 3 按固化方式分类 热固化:通过加热的方式使粘合剂发生聚合反应而固化,温度和时间根据不同的产品有很大区别。 湿气固化:与空气中的水汽发生聚合反应达到固化。 UV固化:光引发剂紫外光照射下,形成自由基或阳离子从而引发粘合剂的聚合反应而固化。厌氧固化:在隔绝空气的条件下,发生自由基聚合反应,空气存在会阻碍聚合反应。 催化固化:在催化剂作用下使粘合剂发生聚合反应达到固化。 4 按工艺分类 粘合剂(Adhesive):特殊有导电胶,导热胶,芯片的粘结。 密封剂(Sealant) 灌封胶(Potting & Encapsulation) 敷形涂敷(Conformal Coating) 底部填充胶(Underfill) 顶部包封(Glob Top) 5 按受力情况 (1)结构胶(2)非结构胶 常见胶粘剂的固化机理 1 环氧树脂(Epoxy) 固化机理:固化剂分两类:胺类及其衍生物,和酸酐类。 其中胺类固化剂是与高分子链中的环氧基发生开还聚合反应,酸酐类固化剂是与高分子链上的羟基发生酯化反应,最终都是形成三维网状结构。 常见的环氧树脂是:双酚A型最典型,线型甲酚型,酚醛环氧树脂等。

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

胶粘剂粘接强度的分类

胶粘剂粘接强度的分类及测定评价粘接质量最常用的方法就是测定粘接强度。表征胶粘剂性能往往都要给出强度数据,粘接强度是胶粘技术当中一项重要指标,对于选用胶粘剂、研制新胶种、进行接头设计、改进粘接工艺、正确应用胶粘结构很有指导意义。 1.粘接强度定义 粘接强度是指在外力作用下,使胶粘件中的胶粘剂与被粘物界面或其邻近处发生破坏所需要的应力,粘接强度又称为胶接强度。 粘接强度是胶粘体系破坏时所需要的应力,其大小不仅取决于粘合力、胶粘剂的力学性能、被粘物的性质、粘接工艺,而且还与接头形式、受力情况(种类、大小、方向、频率)、环境因素(温度、湿度、压力、介质)和测试条件、实验技术等有关。由此可见,粘合力只是决定粘接强度的重要因素之一,所以粘接强度和粘合力是两个意义完全不同的概念,绝不能混为一谈。 2.粘接接头的受力形式 粘接接头在外力作用下胶层所受到的力,可以归纳为剪切、拉伸、不均匀扯离和剥离4种形式。

(1)剪切。外力大小相等、方向相反,基本与粘接面平行,并均匀分布在整个粘接面上。 (2)拉伸。亦称均匀扯离,受到方向相反拉力的作用,垂直于粘接面,并均匀分布在整个粘接面上。 (3)不均匀扯离。也叫劈裂,外力作用的方向虽然也垂直于粘接面,但是分布不均匀。 (4)剥离。外力作用的方向与粘接面成一定角度,基本分布在粘接面的一条直线上上述4种力,在同一胶粘体系中很有可能有几种力同时存在,只是何者为主的问题。 3.粘接强度的分类 根据粘接接头受力情况不同,粘接强度具体可以分为剪切强度、拉伸强度、不均匀扯离强度、剥离强度、压缩强度、冲击强度、弯曲强度、扭转强度、疲劳强度、抗蠕变强度等。

胶黏剂的剥离强度试验方法.

关于胶黏剂的剥离强度试验方法 一.概述 在航空产品的实际使用中,胶接接头不仅受到拉伸应力与剪切应力作用,有时还会受到线应力作用。因此对胶黏剂来讲它应有好的抗线应力的能力,另一方面在胶接接头设计上则应尽可能地避免接头承受线应力作用。测定胶接接头的抗线应力的能力大小,主要采用剥离试验来测定它的剥离强度,其强度用每单位宽度的胶接面上所能承受最大破坏载荷来表示,单位是KN/m。 剥离是一种胶接接头常见的破坏形式之一。其特点是胶接接头在受外力作用时,力不是作用在整个胶接面上,而只是集中在接头端部的一个非常狭窄的区域,这个区域似乎是一条线,胶黏剂所受到的这种应力,就是我们在前面所讲的线应力。当作用在这一条线上的外力大于胶黏剂的胶接强度时,接头受剥离力作用便沿着胶接面而发生破坏。剥离试验用的试件其中一个是柔性材料(如薄的金属蒙皮,织物,橡胶,皮革等),而另一个试件可以是一刚性材料(如厚的金属梁等)或者也同为一柔性材料,由于至少有一个试件为柔性材料,当接头承受剥离力作用时,被粘物的柔性部分首先发生塑性变形,然后,胶接接头慢慢地被撕开了。如织物与织物的胶接属蒙皮与珩条的胶接等。根据试样的结构和剥离结构的不同,它又分为: T剥离强度单位为KN/m; 90°剥离强度单位为KN/m; 180°剥离强度单位为KN/m; Bell剥离(浮滚剥离)强度单位为KN/m; 爬鼓剥离强度单位KN.m/m; 测定剥离强度的方法虽然各有差异,但它的基本操作与影响因素大致相同。 二.T剥离强度试验(金属-金属) 1.原理 用T剥离方法从未胶接端开始施加剥离力,使金属对金属胶接件沿胶接线生产特定的破裂速率所需的剥离力。 2.仪器设备 拉力试验机并附有能自动记录剥离负荷的绘图装置以及有一能夹紧试样的夹持器。 3.试验步骤 (1)试样制备组成T剥离试样的被胶接材料必须是挠性材料,并被弯曲成90°也不会出现破裂。通常是由两块厚度相同的同一种金属加工而成的薄板胶接在一起制成。这金属材质与薄板厚度在胶黏剂标准中都有规定。厚度应均匀,以不超过0.3mm或0.5mm的LY12CZ铝合金薄板居多。 按有关胶接工艺技术文件,选定薄板的材质与厚度,以及胶黏剂层厚度。当没有明确规定时,则选胶层平均厚度在0.2mm以下,厚0.3mm的LY12CZ铝合金薄板。除非另有规定,试样尺寸,长200mm,宽25mm±0.5mm。施加胶接压力不应少于1MPa。若在压机上加压,则试样上方应覆盖一张邵氏硬度(A)约45,厚10mm 的橡胶板,压力控制在0.7MPa(或按供需双方规定)。每块试片整个宽度涂胶,涂胶长度为150mm。

材料力学性能检测实训报告

浙江工贸职业技术学院材料工程系实训室 材料力学性能检测实 训报告 院系:材料工程系 专业:机电一体化 班级:1304班 姓名: XXX 学号: 年月日

一、力学拉伸性能检测实训 试验条件:GB/T228 – 2002国家标准金属拉伸试验试样GB 6397-86 试验数据及结果:如表1所示。 表1 低碳钢拉伸试验表 试验数据及结果:如表1-1所示。 表1-1 低碳钢拉伸试验表 试 样材料 试验前断裂后屈服强 度σs (Mpa) 抗拉强 度σb (Mpa) 延伸率 δ 断面收 缩率ΨL0 (mm) D0 (mm) S0 (mm2) L1 (mm) D1 (mm) S1 (mm2) 铸 铁 99.38 9.93 77.40 100.26 9.94 77.36 210.5 184.5 0.9% 0.1% 低碳钢100.16 9.99 78.34 130.30 5.91 27.41 455.1 190.8 30% 65.9% 试样材料 试验前断裂后屈服强 度σs (Mpa) 抗拉强 度σb (Mpa) 延伸 率δ 断面 收缩 率ΨL0 (mm) D0 (mm) S0 (mm2) L1 (mm) D1 (mm) S1 (mm2) 铝合 金 60.49 12.22 117.22 59.9 12.10 114.93 207.1 179.2 1% 2%

低碳钢拉伸试验图 铸铁拉伸试验图 低碳钢、铸铁拉伸试验对比图

二、硬度性能检测实训 (一)维氏硬度 试验条件:GB/T4340 – 1999 (试验力1.98N 加载时间10S ) 试验数据及结果:如表2所示。 表2 维氏硬度值记录 (注:第一次拉伸试验用的铝合金,为下面固溶时效用) (二)布氏硬度 试验条件:(GB/T 231 – 1984)压头直径为5mm 加载时间为15s 62.5kg 试验力 试验数据及结果:如表2-1所示。 表2-1 压痕直径与布氏硬度值记录 试验 材料 试验 次数 硬度值 HV 硬度范围 HV 铝 合 金 1 142.7 139.5 - 143.4 2 143.4 3 139.5 试验 材料 试验 次数 压痕直径 (mm ) 硬度值 HB 硬度范围 HB 镁 合 金 1 2.70 40. 2 39.2 - 40.2 2 2.72 39.6 3 2.73 39.2 试验 材料 试验 次数 压痕直径 (mm ) 硬度值 HB 硬度范围 HB

塑料橡胶常规力学性能测试实验

第二章塑料橡胶常规力学性能测试实验材料在外力作用下所表现的力学行为称为材料的力学性能。材料力学实验的目的在于通过测定材料的强度和刚度等基本性能,得到生产质量的控制和质量验收的依据,同时实验结果还可作为材料应用中使用性能指标和工程设计的基本数据。高分子材料的使用总是要求具有必要的力学性能,而且对大部分应用来说,力学性能比其它物理性能显得更为重要。 高分子材料具有所有已知材料中可变范围最宽的力学性能,这种性能上的多样性为高分子材料在不同领域的应用提供了广泛的选择余地。然而,与其它材料相比,高分子材料结构的多分散性、粘弹行为以及松弛特性,使得高聚物对机械应力的反映性相差较大。实验表明影响高分子材料力学性能测试结果的因素很多,内在因素有:材料本身化学组分,分子量及其分布,结构的规整性,取向及结晶程度,增塑和填充以及内部存在各种缺陷的多少等。外部因素如:测试温度、湿度、外力施加的频率以及试样的形状尺寸和加工质量等。塑料橡胶常规力学性能包括塑料拉伸、压缩、弯曲、冲击、剪切性能,橡胶的拉伸、撕裂性能等,为了使测试结果真实反应性能本质,且测试数据具有较好的重复可比性,要求测试方法的技术条件和操作步骤统一化、标准化、仪器设备定型化。因此,这些性能的测试都有相应的国家或部颁标准。此外,国家标准还对塑料橡胶力学性能测试的方法制定了总则,提出了塑料橡胶力学性能实验中对试样、测试环境的要求。其内容如下: 1、试样制备 ⑴ 薄膜试样:用锋利的刀片裁切或者用所需形状的冲切刀冲切。 ⑵ 软板、片试样:用锋利的切样刀在衬垫物上冲切。衬垫物的硬度为70~95(邵氏A)。 ⑶ 模塑试样:按有关标准或协议模塑。 ⑷ 硬质板材试样:用机械加工法加工。加工时不应使试样受到过分的冲击、挤压和受热。加工面应光洁。 ⑸ 各向异性的材料应沿纵横方向分别取样。 2、试样外观检查 试样表面应平整、无气泡、裂纹、分层、明显杂质和加工缺陷。 3、实验环境 温度:热塑性塑料为25 ± 2 C; 热固性塑料为25 ± 5 C。 湿度:相对湿度为65± 5%

钢筋力学性能检测报告

00000000000R 有效期限至:2016-04-05 xxx建设工程质量安全监督站 钢筋力学性能检验报告 工程名称:/ 报告编号:BRZ11500092 (第2页共2页) 委托单位/ 委托编号15000697-2 委托日期2015-04-27 施工单位/ 钢材种类热轧带肋钢筋检测日期2015-04-28 结构部位/ 牌号HRB400 报告日期2015-04-29 见证单位/ 见证人/ 证书编号/ 检验性质委托检验 样品编号 公称 直径 (mm) 技术指标要求 序 号 屈服 强度 Re(MPa) 极限 强度Rm (MPa) 伸长 率 A(%) 最大力 下总伸 长率(%) 冷弯实测强度比值 重量 偏差 (%) 生产 厂别 炉号 出产合 格证编 号 代表 数量 (t) 弯心直 径d (mm) 弯曲 角度 a() 结果Rm/Re Re/Re K 屈服 强度 (MPa) 极限 强度 (MPa) 伸 长 率 (%) 最大力 下总伸 长率(%) 重量 偏差 (%) BZ11500392 18 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 475 600 27.0 / 72.0 180 合格 1.26 1.19 -4 三钢/ / 60 2 470 595 27.0 / 72.0 180 合格 1.27 1.18 BZ11500393 20 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 470 600 26.5 / 80.0 180 合格 1.29 1.18 -4 三钢/ / 60 2 475 605 26.0 / 80.0 180 合格 1.27 1.19 BZ11500394 16 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 460 595 27.0 / 64.0 180 合格 1.29 1.15 -4 三钢/ / 60 2 465 590 27.5 / 64.0 180 合格 1.27 1.16 检验依据GB1499.2-2007《钢筋混凝土用热轧带肋钢筋》GB/T228.1-2010《金属材料室温拉伸试验方法》 主要仪 器设备仪器名称:油压万能材料试验机管理编号:YQ-03 规格型号: WI-100 有效期至:2016-01-14 结论样品编号:BZ11500392 样品编号:BZ11500393 样品编号:BZ11500394 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求备注 声明1、报告未盖检测单位“检测报告专用章”无效。 2、复制报告未重新加盖检测单位“检测报告专用章”无效。 3、对报告若有异议,应及时向检测单位提出。 地址 地址:xxxxxxxxxxxxxxxxx(xxx建设工程质量安全监督 站) 邮编:000000 电话:0000-00000000 传真:0000-00000000 批准:审核:校核:检验:

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

材料力学性能实验报告

大连理工大学实验报告 学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___ 指导教师签字:成绩: 实验一金属拉伸实验 Metal Tensile Test 一、实验目的Experiment Objective 1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率 φ的测定方法。 2、掌握金属材料屈服强度σ0.2的测定方法。 3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。 4、简单了解万能实验拉伸机的构造及使用方法。 二、实验概述Experiment Summary 金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。 三、实验用设备The Equipment of Experiment 拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力

实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。液压式万能实验机是最常用的一种实验机。它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。 (一)加载部分The Part of Applied load 这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。其加载方式是液压式的。在机座上装有两根立柱,其上端有大横梁和工作油缸。油缸中的工作活塞支持着小横梁。小横梁和拉杆、工作台组成工作框架,随工作活塞生降。工作台上方装有承压板和弯曲支架,其下方为钳口座,内装夹持拉伸试样用的上夹头。下夹头安装在下钳口座中,下钳口座固定在升降丝杆上。 当电动机带动油泵工作时,通过送油阀手轮打开送油阀,油液便从油箱经油管和进入工作油缸,从而推动活塞连同工作框架一起上升。于是在工作台与大横梁之间就可进行压缩、弯曲等实验,在工作台与下夹头之间就进行拉伸实验。实验完毕后,关闭送油阀、旋转手轮打开回油阀,则工作油缸中的油液便经油管泄回油箱,工作台下降到原始位置。 (二)测力部分The Part of Measuring Force 加载时,油缸中的油液推动工作活塞的力与试样所承受的力随时处于平衡状态。如果用油管和将工作油缸和测力油缸连同,此油压便推动测力活塞,通过连杆框架使摆锤绕支点转动而抬起。同时,摆锤上方的推板便推动水平齿杆,使齿轮带动指针旋转。指针旋转的角度与油压亦即与试样所承受的载荷成正比,因此在测力度盘上便可读出试样受力的量值。 四、试样Sample 拉伸试样,通常加工成圆型或矩形截面试样,其平行长度L0等于5d或10d (前者为长试样,后者为短试样),本实验用短试样,即L0=5d。本实验所用的试样形状尺寸如图1—1所示。 图1-1圆柱形拉伸试样及尺寸

橡胶件的技术规范

橡胶件的技术规范 1 范围本标准规定了本公司各类产品中使用的橡胶件的技术要求、试验方法、检验规则、包装及贮存。本标准适用于橡胶件成品件的进货检验、型式检验、包装、贮存管理。 2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 533 硫化橡胶密度的测定 GB/T 1690 硫化橡胶耐液体试验方法 GB/T 3452.2 液压气动用O 型橡胶密封圈外观质量检验标准 GB/T3452.1 液压气动用O 型橡胶密封圈第1 部分:尺寸系列及公差 GB/T 3512 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验 GB/T 5723 硫化橡胶或热塑性橡胶试验用试样和制品尺寸的测量 GB/T 20739 橡胶制品贮存指南 GB/T 5721 橡胶密封制品标志、包装、运输、贮存的一般规定 GB/T 528 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 BS EN549 燃气器具、设备密封件和膜片用橡胶材料规范 NSF 61 饮用水系统部件健康影响 BS EN331 建筑物燃气供应设备用手动球阀和密封底部锥体旋塞阀ASME B16.33 压力在125PSI 以下燃气系统用手动金属制燃气阀门ASME B16.44 家用管道系统中使用的手工操作的金属气体阀门 CJ 50 瓶装液化石油气调压器 CJ/T 180 家用手动燃气阀门 HG/T 2807 城镇燃气调压器用橡胶膜片 Q/NZFJ30 液化石油气瓶阀 3 技术要求 3.1 通用技术要求 3.1.1 气味:无刺鼻气味; 3.1.2 外观:表面无气泡、无杂质、无飞边、无缺胶、无脱层、色泽一致、无局部缺陷; 3.1.3 尺寸:符合图纸要求;3.1.4 应采用耐工作介质的材料且材料应采用正料。

橡胶力学性能测试标准

序号标准号 :发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定 CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型)

金属材料的力学性能及其测试方法

目录 摘要1 1引言2 2金属材料的力学性能简介2 2.1 强度3 2.2 塑性3 2.3 硬度3 2.4 冲击韧性4 2.5 疲劳强度4 3金属材料力学性能测试方法4 3.1拉伸试验5 3.2压缩试验8 3.3扭转试验11 3.4硬度试验15 3.5冲击韧度试验22 3.6疲劳试验27 4常用的仪器设备简介29 4.1万能试验机29 4.2扭转试验机34 4.3摆锤式冲击试验机40 5金属材料力学性能测试方法的发展趋势42 参考文献42

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, mon experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

塑料橡胶常规力学性能测试

第二章塑料橡胶常规力学性能测试实验 材料在外力作用下所表现的力学行为称为材料的力学性能。材料力学实验的目的在于通过测定材料的强度和刚度等基本性能,得到生产质量的控制和质量验收的依据,同时实验结果还可作为材料应用中使用性能指标和工程设计的基本数据。高分子材料的使用总是要求具有必要的力学性能,而且对大部分应用来说,力学性能比其它物理性能显得更为重要。 高分子材料具有所有已知材料中可变范围最宽的力学性能,这种性能上的多样性为高分子材料在不同领域的应用提供了广泛的选择余地。然而,与其它材料相比,高分子材料结构的多分散性、粘弹行为以及松弛特性,使得高聚物对机械应力的反映性相差较大。实验表明影响高分子材料力学性能测试结果的因素很多,内在因素有:材料本身化学组分,分子量及其分布,结构的规整性,取向及结晶程度,增塑和填充以及内部存在各种缺陷的多少等。外部因素如:测试温度、湿度、外力施加的频率以及试样的形状尺寸和加工质量等。塑料橡胶常规力学性能包括塑料拉伸、压缩、弯曲、冲击、剪切性能,橡胶的拉伸、撕裂性能等,为了使测试结果真实反应性能本质,且测试数据具有较好的重复可比性,要求测试方法的技术条件和操作步骤统一化、标准化、仪器设备定型化。因此,这些性能的测试都有相应的国家或部颁标准。此外,国家标准还对塑料橡胶力学性能测试的方法制定了总则,提出了塑料橡胶力学性能实验中对试样、测试环境的要求。其内容如下: 1、试样制备 ⑴ 薄膜试样:用锋利的刀片裁切或者用所需形状的冲切刀冲切。 ⑵ 软板、片试样:用锋利的切样刀在衬垫物上冲切。衬垫物的硬度为70~95(邵 氏A)。 ⑶ 模塑试样:按有关标准或协议模塑。 ⑷ 硬质板材试样:用机械加工法加工。加工时不应使试样受到过分的冲击、挤压和受热。加工面应光洁。 ⑸ 各向异性的材料应沿纵横方向分别取样。 2、试样外观检查 试样表面应平整、无气泡、裂纹、分层、明显杂质和加工缺陷。 3、实验环境 温度:热塑性塑料为25± 2℃; 热固性塑料为25± 5℃。 32

简述胶粘剂剥离强度试验

简述胶粘剂剥离强度试验 一、概述 在航空产品的实际使用中,胶接接头不仅受到拉伸应力与剪切应力作用,有时还会受到线应力作用。因此对胶黏剂来讲它应有好的抗线应力的能力,另一方面在胶接接头设计上则应尽可能地避免接头承受线应力作用。测定胶接接头的抗线应力的能力大小,主要采用剥离试验来测定它的剥离强度,其强度用每单位宽度的胶接面上所能承受最大破坏载荷来表示,单位是KN/m。 剥离是一种胶接接头常见的破坏形式之一。其特点是胶接接头在受外力作用时,力不是作用在整个胶接面上,而只是集中在接头端部的一个非常狭窄的区域,这个区域似乎是一条线,胶黏剂所受到的这种应力,就是我们在前面所讲的线应力。当作用在这一条线上的外力大于胶黏剂的胶接强度时,接头受剥离力作用便沿着胶接面而发生破坏。剥离试验用的试件其中一个是柔性材料(如薄的金属蒙皮,织物,橡胶,皮革等),而另一个试件可以是一刚性材料(如厚的金属梁等)或者也同为一柔性材料,由于至少有一个试件为柔性材料,当接头承受剥离力作用时,被粘物的柔性部分首先发生塑性变形,然后,胶接接头慢慢地被撕开了。如织物与织物的胶接属蒙皮与珩条的胶接等。根据试样的结构和剥离结构的不同,它又分为: T剥离强度单位为KN/m; 90度剥离强度单位为KN/m; 180度剥离强度单位为KN/m; Bell剥离(浮滚剥离)强度单位为KN/m; 爬鼓剥离强度单位KN.m/m; 测定剥离强度的方法虽然各有差异,但它的基本操作与影响因素大致相同。 二、T剥离强度试验(金属-金属) 1、原理: 用T剥离方法从未胶接端开始施加剥离力,使金属对金属胶接件沿胶接线生产特定的破裂速率所需的剥离力。 2、仪器设备 拉力试验机并附有能自动记录剥离负荷的绘图装置以及有一能夹紧试样的夹持器。 3、试验步骤

复合材料力学性能实验复习题new要点

复合材料力学性能实验复习题 1.力学实验方法的内涵? 是以近代力学理论为基础,以先进的科学方法为手段,测量应变、应力等力学量,从而正确真实地评价材料、零部件、结构等的技术手段与方法; 是用来解决“物尽其用”问题的科学方法; 2.力学实验的主要任务,结合纤维增强复合材料加以阐述。 面向生产,为生产服务;面对新技术新方法的引入,研究新的测试手段;面向力学,为力学的理论建设服务。 3.对于单向层合板而言,需要几组实验来确定其弹性模量和泊松比?如何确定实验方案? 共需五组实验,拉伸0/90两组,压缩0/90两组,剪切试验一组。 4.单向拉伸实验中如何布置应变片? 5.单向压缩实验中如何布置应变片? 6.三点弯曲实验中如何布置应变片? 7.剪切实验中如何布置应变片? 8.若应变片的粘贴方向与实样应变方向不一致,该如何处理? 9.若加载方向与材料方向不一致,该如何处理?(这个老师给了) 10.纤维体积含量的测试方法? 密度法、溶解法 11.评价膜基结合强度的实验方法? 划痕法、压痕法、刮剥法、拉伸法、黏结剂法、涂层直接加载法、激光剥离法、弯曲法。 12.简述试样机械加工的规范? 试样的取位区(距板材边缘30mm以上,最小不得小于20mm) 试样的质量(气泡、分层、树脂富集、皱褶、翘曲、错误铺层) 试样的切割(保证纤维方向和铺层方向与试验要求相符) 试样的加工(采用硬质合金刀具或砂轮片加工,防止试样产生分层、刻痕和局部挤压等机械损伤) 试样的冷却(采用水冷,禁止油冷) 13.纤维增强复合材料在拉伸试验中的几种可能破坏模式及其原因? 所有纤维在同一位置破坏,材料吸收断裂能量很小,材料断裂韧性差; 纤维在基体中拔出,吸收断裂能量很大,材料韧性增加并伴随界面开裂; 介于以上两者之间。 14.加强片的要求? 材料硬度低,便于夹具的咬合;材料的强度高,保证载荷能传递到试样上,且在试样发生破坏前本身不发生破坏。

改性环氧树脂胶粘剂标准

备案号:173826S-2016 有效期至:2020年12月31日 Q/WHKS 武汉开思新材料有限公司企业标准 Q/WHKS015T-2016 改性环氧树脂胶粘剂标准 武汉开思新材料有限公司发布

前言 改性环氧树脂胶粘剂是近年来薄层铺装路面与透水路面等工程中采用的新型建筑材料,为严格控制胶粘剂产品质量,确保薄层铺装路面与透水路面等工程的工程安全,特制定本标准。 本标准确立的试验项目和试验方法主要参照我国胶粘剂、树脂等材料的国家标准和行业标准,同时考虑到改性环氧树脂胶粘剂与钢桥面、混凝土路面、沥青路面的粘接性能。根据相关标准,结合验证试验结果对胶粘剂的物理力学性能指标给与具体规定。 本标准负责起草单位:武汉开思新材料有限公司 本标准主要起草人:许奇王少波贾军 1

1、范围 本标准规定了改性环氧树脂胶粘剂的分类、技术要求、试验方法、检验规则及标志、保证、运输和贮存。 本标准适用于改性环氧树脂薄层铺装工程、透水胶粘石、环氧砂浆、改性环氧防水涂料用双组分改性环氧胶粘剂。 2、引用标准 JC 887-2001 干挂石材幕墙用环氧胶粘剂 GB/T 1630-1989 环氧树脂命名 GB/T 13657-2011 双酚A型环氧树脂 GB/T 4612-1984 环氧化合物环氧当量的测定 GB/T 2570-1995 树脂浇铸体弯曲性能试验方法 GB/T 2571-1995 树脂浇铸体冲击试验方法 GB 7124-2008 胶粘剂拉伸剪切强度的测(刚性材料对刚性材料) GB/T9966.1-2001 天然饰面石材试验方法第1部分:干燥、水饱和、冻融循环后压缩强度试验方法 GB/T 12954.1-2008 建筑胶粘剂试验方法第1部分陶瓷砖胶粘剂试验方法 JC/T 547-2005 陶瓷墙地砖胶粘剂 JC 830.2-2005 干挂饰面石材及其金属挂件第二部分 3、分类 3.1 品种 改性环氧树脂胶粘剂为双组分环氧型,按使用地点不同分为非机动车道薄层铺装型(KS-HY1)、机动车道薄层铺装型(KS-HY2)、透水铺装型(KS-HY3)、环氧砂浆型(KS-HY4)、防水涂料型(KS-HY5)。 3.2 产品标记 胶粘剂按下列顺序标记:名称、品种、分类号。 标记示例: 名称品种分类号 2

相关文档
最新文档