全等三角形的性质及判定
全等三角形的判定和性质

全等三角形的判定和性质在初中数学的学习中,全等三角形是一个非常重要的概念。
它不仅在几何证明中经常出现,而且对于培养我们的逻辑思维和空间想象力也有着重要的作用。
接下来,让我们一起深入了解全等三角形的判定和性质。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
比如,三角形 ABC 全等于三角形 DEF,记作“△ABC≌△DEF”。
二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等即∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的对应线段(角平分线、中线、高)相等例如,如果两个三角形全等,那么它们对应的角平分线长度相等,对应的中线长度相等,对应的高的长度也相等。
4、全等三角形的周长相等、面积相等因为全等三角形的对应边相等,所以它们的周长必然相等。
而由于对应边和对应高都相等,根据三角形面积公式(面积=底×高÷2),可得它们的面积也相等。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如,在△ABC 和△DEF 中,AB = DE,BC = EF,AC = DF,那么就可以判定△ABC ≌△DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如,在△ABC 和△DEF 中,AB = DE,∠B =∠E,BC = EF,那么△ABC ≌△DEF。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
假设在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就能够得出△ABC ≌△DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
全等三角形的概念、性质与判定

1. 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2. 全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等。
3. 全等三角形的判定(1)三边对应相等的两个三角形全等(简记为:“边边边”或“SSS”);(2)两边和它们的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”);(3)两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”);(4)两个角和其中一个角的对边对应相等的两个三角形全等(简记为:“角角边”或“AAS”);(5)斜边和一条直角边对应相等的两个直角三角形全等(简记为:“斜边、直角边”或“HL”)。
4. 常见的一个三角形经过变换得到另一个全等三角形。
(1)平移(2)翻折(3)旋转5. 判定两个三角形全等所需条件:(1)需要三个条件;(2)至少有一个条件为边。
注意:“边边角”不一定成立。
反例:如图,△ABC与△ABC'中,AB=AB,AC=AC',∠ABC=∠ABC',但△ABC与△ABC'不全等。
【解题方法指导】例1. (2005年安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明。
分析:由AB∥DE,可以得到∠A=∠D;由AF=DC,可以得到AC=DF;由AB=DE,由“SAS”可以得到△BAF≌△EDC,及△BAC≌△EDF由此又可以得到BF=EC,BC=EF,FC又是公共边,可证△BFC≌△EFC证明:在△BAF与△EDC中,∵AB∥DE∴∠A=∠D又AB=DE,AF=DC∴△BAF≌△EDC(SAS)评析:判断两个三角形全等,设法找齐三个条件,至少有一个条件是边,因此先找出给出的条件(如AB=DE,AF=DC);然后发展条件,继续得到有关信息(如由AB∥DE⇒∠A=∠D;由AF=DC⇒AC=DF)例2. 如图,B是AC上一点,DA⊥AC,EC⊥AC,DB=BE。
全等三角形(知识点讲解)

全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
全等三角形知识点总结

全等三角形知识点总结全等三角形是初中数学中的重要概念,也是几何学中的基础知识之一。
全等三角形指的是具有相同形状和大小的三角形,它们的对应边和对应角分别相等。
全等三角形的性质和判定方法对于解题和证明都有很大的帮助。
下面我们来总结一下全等三角形的知识点。
1. 全等三角形的性质。
全等三角形的性质包括以下几点:(1)对应边相等,如果两个三角形全等,则它们的对应边相等。
(2)对应角相等,如果两个三角形全等,则它们的对应角相等。
(3)全等三角形的面积相等,如果两个三角形全等,则它们的面积相等。
2. 全等三角形的判定方法。
判定两个三角形是否全等有以下几种方法:(1)SSS判定法,如果两个三角形的三条边分别相等,则这两个三角形全等。
(2)SAS判定法,如果两个三角形的一条边和夹角分别相等,则这两个三角形全等。
(3)ASA判定法,如果两个三角形的一对角和夹边分别相等,则这两个三角形全等。
(4)AAS判定法,如果两个三角形的两对角和一条边分别相等,则这两个三角形全等。
3. 全等三角形的应用。
全等三角形的性质和判定方法在解题和证明中有着广泛的应用,特别是在几何证明中常常会用到全等三角形的知识。
例如,通过证明两个三角形全等,可以推导出它们的其他性质,进而解决一些几何问题。
此外,在实际生活中,全等三角形的知识也有着一定的应用。
例如在建筑、工程等领域,利用全等三角形的性质可以进行测量、设计和施工等工作。
总之,全等三角形是几何学中的重要概念,掌握全等三角形的性质和判定方法对于学习和应用几何知识都具有重要意义。
希望通过本文的总结,能够帮助大家更好地理解和运用全等三角形的知识。
全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。
三角形的全等性质

三角形的全等性质三角形是几何学中的基本形状之一,它有许多重要的性质和定理。
其中,全等性质是三角形的重要性质之一,指的是具有相等边长和相等内角的两个三角形是全等的。
本文将介绍三角形全等性质的定义、判定方法,以及全等性质的应用。
一、全等性质的定义对于两个三角形ABC和DEF,如果它们的对应边长相等,即AB=DE,BC=EF,AC=DF,并且对应角度也相等,即∠A=∠D,∠B=∠E,∠C=∠F,那么我们可以说三角形ABC与三角形DEF是全等的。
全等性质可以用符号≌表示,即ABC≌DEF。
二、全等性质的判定为了判断两个三角形是否全等,我们可以利用下列常用的判定方法:1. SSS判定法(边-边-边)如果两个三角形的三条边分别相等,那么它们是全等的。
2. SAS判定法(边-角-边)如果两个三角形的一条边和与其相邻的两个角分别相等,那么它们是全等的。
3. ASA判定法(角-边-角)如果两个三角形的两个角和它们的夹边分别相等,那么它们是全等的。
4. RHS判定法(斜边-直角边-斜边)如果两个直角三角形的斜边和一个直角边分别相等,那么它们是全等的。
通过以上四种判定方法,我们可以准确地判断两个三角形是否全等。
三、全等性质的应用全等性质在解决几何问题中有广泛的应用,以下是一些常见的应用场景:1. 三角形的构造利用全等性质,我们可以根据已知条件构造全等的三角形。
例如,已知两条边和夹角大小,我们可以通过SAS判定法构造出全等的三角形。
2. 证明几何定理在证明几何定理时,我们常常利用全等性质来推导结论。
通过证明两个全等三角形的对应边和对应角相等,可以得到一些重要的几何定理。
3. 求解三角形的未知量当我们已知一些三角形的边长和角度大小时,利用全等性质可以求解出三角形其他未知量,如另外两个角度的大小、三角形的面积等。
4. 判定图形的全等除了三角形,全等性质在判定其他图形的全等时也是十分有用的。
我们可以利用全等性质来判断两个四边形、两个多边形甚至其他更复杂的图形是否全等。
全等三角形的判定与性质

全等三角形的判定与性质全等三角形是指具有相同形状和大小的两个三角形。
在几何学中,全等三角形是非常重要的概念,对于研究和解决三角形相关问题具有重要的作用。
本文将对全等三角形的判定方法和性质进行探讨。
一、全等三角形的判定方法1. SSS 判定法SSS (side-side-side) 判定法是指当两个三角形的三边分别相等时,可以判定它们是全等三角形。
例如,若三角形 ABC 的边长分别为 AB = 3 cm,BC = 4 cm,AC = 5 cm,而三角形 XYZ 的边长也分别为 XY = 3 cm,YZ = 4 cm,XZ = 5 cm,则可以判定三角形 ABC 全等于三角形XYZ。
2. SAS 判定法SAS (side-angle-side) 判定法是指当两个三角形的两边和夹角分别相等时,可以判定它们是全等三角形。
例如,若三角形 ABC 的边长分别为 AB = 3 cm,BC = 4 cm,而三角形 XYZ 的边长分别为 XY = 3 cm,XZ = 4 cm,且它们的夹角∠BAC 和∠YXZ 分别相等,则可以判定三角形 ABC 全等于三角形 XYZ。
3. ASA 判定法ASA (angle-side-angle) 判定法是指当两个三角形的两角和一边分别相等时,可以判定它们是全等三角形。
例如,若三角形 ABC 的边长分别为 AB = 3 cm,AC = 4 cm,而三角形 XYZ 的边长分别为 XY = 3 cm,YZ = 4 cm,且它们的角∠BAC 和∠YXZ 分别相等,则可以判定三角形 ABC 全等于三角形 XYZ。
二、全等三角形的性质1. 边对边性质对于全等三角形 ABC 和 XYZ,它们的对应边是相等的,即 AB = XY,BC = YZ,AC = XZ。
并且,全等三角形的对应边之间的长度关系是一一对应的。
2. 角对角性质对于全等三角形 ABC 和 XYZ,它们的对应角度是相等的,即∠BAC = ∠YXZ,∠ABC = ∠YZX,∠ACB = ∠XZY。
全等三角形的性质

全等三角形的性质全等三角形是指具有完全相等的形状和大小的三角形。
在几何学中,全等三角形具有一些独特的性质和特征。
本文将探讨全等三角形的性质,包括定义、判定条件以及相关的定理和应用。
一、定义全等三角形定义为具有完全相等的形状和大小的三角形。
换句话说,如果两个三角形的三条边分别相等,则这两个三角形就是全等三角形。
全等三角形可以通过一系列变换操作来叠加在一起,如平移、旋转和翻转。
二、判定条件为了判断两个三角形是否全等,需要满足以下条件之一:1. SSS判定法:两个三角形的三条边相互对应相等。
2. SAS判定法:两个三角形的两条边和夹角相对应相等。
3. ASA判定法:两个三角形的一边和两个夹角相互对应相等。
4. RHS判定法:两个直角三角形的斜边和一个直角边相互对应相等。
三、全等三角形的性质全等三角形具有以下性质:1. 三个内角完全相等:两个全等三角形的对应内角相等,即三个内角相互对应相等。
2. 三个内角和相等:两个全等三角形的内角和分别相等。
3. 对应的边相等:两个全等三角形的对应边分别相等。
4. 周长相等:两个全等三角形的周长相等。
5. 面积相等:两个全等三角形的面积相等。
四、全等三角形的相关定理全等三角形的性质使得它们具有一些重要的应用和相关定理,如下所示:1. 位于全等三角形相等边上的等角一定相等。
2. 位于全等三角形等角上的边上的角平分线相等。
3. 全等三角形的重心、外心和内心重合。
4. 如果两个三角形的某一边与两个相对角分别相等,则这两个三角形全等。
5. 全等三角形之间的比较定理,包括大小关系和边长比例关系。
五、应用全等三角形在几何学和实际生活中具有广泛的应用,例如:1. 测量和导航:通过观测两个全等三角形的边长和角度,可以计算出距离和方向。
2. 建筑和工程:使用全等三角形的定理来设计、计算和建造各种结构和设备。
3. 图像处理:利用全等三角形的性质来进行图像变换和形状匹配。
4. 运动轨迹:通过观察全等三角形的形状和大小变化,可以描述物体的运动轨迹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我的课件,讲义,多媒体教程
17
教材分析 目标分析 重、难点 学情分析 教学方法 教学过程 教学评价
教学评价
本节课以习题讲解为载体,以展示 思维分析为主线,从学生原有的认知基 础出发,重视过程教学,从而锻炼学生分析 问题、解决问题的能力,培养他们运用知 识以及运用数学语言进行交流的能力.
我的课件,讲义,多媒体教程
提高学生的思维能力.
布置作业
E
分层落实
我的课件,讲义,多媒体教程
PC D
QF
20
巧用填空 复习旧知
根据经验 总结规律
活用旧知 综合解题
归纳小结 反思提高
布置作业 分层落实
1.如图,∆ABC≌∆EFG,AD和EH分别是∆ABC和 ∆EFG的高,试说明AD=EH的道理,并用一句 话说出你的发现。
A
E
B
A
D B
C
归纳小结 反思提高
布置作业 分层落实
E F
本题知识点:
1.全等三角形的性质和判定的综合运用;
2."等量加等量差相等"
我的课件,讲义,多媒体教程
14
巧用填空 复习旧知
根据经验 总结规律
7.如图,点A、B、C、D在同一直线上,AB=CD,
AE BF,AE=BF。
1)CE和DF相等吗?为什么?
D
C
F
HG
2.如图,∠B=∠E,AB=FE,BD=EC,那么△ABC 与 △FED全等吗?为什么?AC∥FD吗?为什么?
F
C
B
DE
A
我的课件,讲义,多媒体教程
21
2)CE与DF平行吗?为什么?
E
F
活用旧知 综合解题
归纳小结 反思提高
布置作业 分层落实
A
BC
D
本题建立在上一题的基础上,能让学生锻炼完成较
清晰的说理过程.知识点:
1.全等三角形的性质和判定的综合运用;
2."等量加等量差相等";
3.平行线的性质及判定.
我的课件,讲义,多媒体教程
15
巧用填空 小结:
安排本节课可以对已学内容加以巩固, 同时,又为学习后续内容打下基础。
我的课件,讲义,多媒体教程
2
教材分析 目标分析 重、难点 学情分析 教学方法 教学过程 教学评价
知识 通过对本节课的教学,复习全等图形的 目标 定义及性质,全等三角形的性质及判定。
培养学生分析问题、解决问题的能力以 能力 及对概念理解的完整性和深刻性,帮助 目标 学生掌握初步的研究问题的方法,并且能
6
教材分析 目标分析 重、难点 学情分析 教学方法 教学过程 教学评价
巧用填空 复习旧知
教学过程
根据经验 总结规律
活用旧知 综合解题
归纳小结 反思提高
布置作业 分层落实
我的课件,讲义,多媒体教程
7
巧用填空 复习旧知
根据经验 总结规律
活用旧知 综合解题
归纳小结 反思提高
布置作业 分层落实
填空:
1. ;
复习旧知 一.这节课我们主要复习了什么内容?
根据经验 1.全等三角形的性质和判定
总结规律 2.在解题时,要注意如何寻找对应边和对应
角.
活用旧知 综合解题
二.在解关于全等三角形的题时我们该如何
思考呢?
归纳小结 反思提高
布置作业 分层落实
在证明两条边或两个角是否相等时,一般 是通过证明三角形全等,然后根据全等三 角形的对应边相等对应角相等来得到结 论.
形的性质及判定,展开学生的思维,教会学生如何进
行思考。
学法:学生在学习过程中可能难于掌握全等三角形的对
应顶点、对应边、对应角,在综合运用全等三角形的
性质和判定时往往会概念不清,所以要做到教法与指
导学习的学法有机统一。采用引导探究学习法和演练
法利用幻灯片演示,学生通过习题的练习,最终完成
学习过程,达我到的教课件学,讲目义,标多。媒体教程
2.全等图形的
的图形是全等图形 都相同;
3.全等三角形的性质是:
全等三角形的
相等,
相
等;
4.三角形全等的判定方法有 种 ,分别是 :
;
5.直角三角形全等的判定方法有 种 ,分
别是:
。
我的课件,讲义,多媒体教程
8
巧用填空 寻找对应元素的规律
复习旧知 (1)有公共边的,公共边是对应边;
根据经验 (2)有公共角的,公共角是对应角;
等吗?为什么?
D
解: ∆ABC≌∆ABD理由是: ∵∠C=∠D
2 A 1B
∠1=∠2 AB=AB
布置作业 分层落实
∴∆ABC≌∆ABD (AAS)
C
这两题均运用三角形全等的判定,并且全等三角形均有公 共边,主要是让学生进一步了解如何确定对应顶点.
我的课件,讲义,多媒体教程
12
巧用填空 5.如图,AB⊥BD,ED⊥BD,BC=DE,∠A=∠ECD,AC=5cm,
课型:说课
全等三角形的性质及判定 (复习)
三亚五中李欣
我的课件,讲义,多媒体教程
1
教材分析 目标分析 重、难点 学情分析 教学方法 教学过程 教学评价
教材的地位和作用
"全等三角形的性质和判定"是北师大 版数学教材七年级下册第五章的教学内 容中较为重要的两大部分,在这一章占 有重要的地位,学好全等三角形的性质 和判定可以丰富和加深学生对已学图形 的认识,同时为学习其它图形知识打好 基础。
突破点:
为了巩固学生对所学知识的掌握、培养综合运用能力并 且开阔眼界,所以除了准备较典型的习题巩固全等三角 形的性质及判定外还利用第7道习题加入了平行线的有 关内容.
我的课件,讲义,多媒体教程
4
教材分析 目标分析 重、难点 学情分析 教学方法 教学过程 教学评价
学情分析
初中学生具有很强的好奇心,对新 鲜事物或内容比较感兴趣,但对复习旧 知的热情较低,而且数学思维的细密性, 灵活性也较欠缺,积极思考,独立解题 的自主学习能力较差,所以需要在课堂 上进一步的加强和引导。
复习旧知 则CE的长为
.
E
根据经验
总结规律
A
活用旧知 综合解题
B
C
D
归纳小结 反思提高
布置作业 分层落实
本题是全等三角形的性质和判定的综合运用.
我的课件,讲义,多媒体教程
13
巧用填空 6.如图,AC=DF,BC=EF,AD=BE,则∠C 复习旧知 与∠F的大小关系怎样?为什么?
根据经验 总结规律
活用旧知 综合解题
18
敬请各位老师 批评指正!
我的课件,讲义,多媒体教程
19
巧用填空 复习旧知
根据经验 总结规律
8.已知:如图,在△ABC和△DEF中,AP、
DQ分别是高,并且
A
AB=DE,AP=DQ,∠BAC=∠EDF.
求证:△ABC≌△DEF
活用旧知
B
综合解题 本题有一定的难度,所以
归纳小结 给出了较为细致的推理 反思提高 方法来引导学生,进一步
,
复习旧知 就可以根据"ASA"判定△DBC≌△ECB;
根据经验 总结规律
如果已知∠3=∠4,要使△ABE≌△ACD, 根据"ASA"只需再添加一个条件:
即可. A
活用旧知
综合解题
归纳小结
D
E
反思提高
3
B
1
4 2
C
布置作业 本题运用三角形的判定:ASA并且让学生熟 分层落实 悉这种常见题型
我的课件,讲义,多媒体教程
总结规律
(3)有对顶角的,对顶角是对应角;
活用旧知 综合解题
(4)两个全等三角形最大的边是对应边, 最小的边是对应边;
归纳小结 (5)两个全等三角形最大的角是对应角, 反思提高 最小的角是对应角.
布置作业 分层落实
我的课件,讲义,多媒体教程
9
1.如图△ABC≌△ADE,∠B=40O,∠C=60O,
完成较清晰准确的说理过程。
情感 通过典型例题,培养学生积极思考的精
目标 神,使学生学会学习并从中体验成功的
快乐,激发学习兴趣。
我的课件,讲义,多媒体教程
3
教学重点、难点和突破点
教材分析 目标分析 重、难点 学情分析 教学方法 教学过程 教学评价
重点:
理解全等三角形的性质,判定及其应用。
难点:
全等三角形的性质及判定的综合应用。
11
3.如图,AB=CD,BC=DA,你能用"SSS"的条件来判断
巧用填空 ∆ABC与∆CDA是否全等吗?
复习旧知
A
解:∵AB=CD
D
BC=DA
根据经验
AC=CA ∴∆ABC≌∆CDA (SSS)
总结规律 B
C
活用旧知 综合解题
归纳小结 反思提高
4.如图,若∠1=∠2,∠C=∠D,那么∆ABC与∆ABD全
巧用填空 复习旧知
则∠DAE=
度.
根据经验
总结规律
A
活用旧知 综合解题
B
归纳小结 反思提高 本题运用知识点:
D
1.三角形内角和180O;
布置作业 2.全等三角形对应边相等.
分层落实
我的课件,讲义,多媒体教程
E C
10
2.如图,点D,E分别在AB,AC上,已知∠1=∠2,
巧用填空 只需再添加一个条件:
我的课件,讲义,多媒体教程
16
巧用填空 复习旧知
根据经验 总结规律
7.如图,点A、B、C、D在同一直线上,AB=CD, AE BF,AE=BF。 1)CE和DF相等吗?为什么? 2)CE与DF平行吗?为什么?