全等三角形的性质

合集下载

全等三角形的判定和性质

全等三角形的判定和性质

全等三角形的判定和性质在初中数学的学习中,全等三角形是一个非常重要的概念。

它不仅在几何证明中经常出现,而且对于培养我们的逻辑思维和空间想象力也有着重要的作用。

接下来,让我们一起深入了解全等三角形的判定和性质。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等用符号“≌”表示,读作“全等于”。

比如,三角形 ABC 全等于三角形 DEF,记作“△ABC≌△DEF”。

二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。

2、全等三角形的对应角相等即∠A =∠D,∠B =∠E,∠C =∠F。

3、全等三角形的对应线段(角平分线、中线、高)相等例如,如果两个三角形全等,那么它们对应的角平分线长度相等,对应的中线长度相等,对应的高的长度也相等。

4、全等三角形的周长相等、面积相等因为全等三角形的对应边相等,所以它们的周长必然相等。

而由于对应边和对应高都相等,根据三角形面积公式(面积=底×高÷2),可得它们的面积也相等。

三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

例如,在△ABC 和△DEF 中,AB = DE,BC = EF,AC = DF,那么就可以判定△ABC ≌△DEF。

2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

比如,在△ABC 和△DEF 中,AB = DE,∠B =∠E,BC = EF,那么△ABC ≌△DEF。

3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

假设在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就能够得出△ABC ≌△DEF。

4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

初中数学 全等三角形的性质有哪些

初中数学 全等三角形的性质有哪些

初中数学全等三角形的性质有哪些全等三角形是指具有相等的三个内角和相等的对应边的三角形。

以下是关于全等三角形的性质:1. 对应角相等性质:全等三角形的对应内角是相等的。

也就是说,如果两个三角形的一个内角相等,那么它们的对应内角也相等。

2. 对应边相等性质:全等三角形的对应边的长度是相等的。

也就是说,如果两个三角形的一个边的长度相等,那么它们的对应边的长度也相等。

3. 全等三角形只有一个解:如果两个三角形的三个内角和三条边都相等,那么它们就是全等的。

这意味着全等三角形的相等条件是唯一的,不存在其他满足条件的三角形。

4. 全等三角形的对称性:如果两个三角形是全等的,那么它们的对应边和对应角都是相等的。

也就是说,如果三角形ABC和三角形DEF是全等的,那么AB=DE,AC=DF,BC=EF,∠A=∠D,∠B=∠E,∠C=∠F。

5. 全等三角形的面积相等:如果两个三角形是全等的,那么它们的面积也是相等的。

也就是说,如果三角形ABC和三角形DEF是全等的,那么它们的面积相等,记作∠ABC∠∠DEF。

6. 全等三角形的角平分线相等性质:如果两个三角形是全等的,那么它们的对应角的角平分线也是相等的。

也就是说,如果三角形ABC和三角形DEF是全等的,那么它们的∠A的角平分线等于∠D的角平分线,∠B的角平分线等于∠E的角平分线,∠C的角平分线等于∠F的角平分线。

7. 全等三角形的重心、垂心、外心、内心等特殊点重合性质:如果两个三角形是全等的,那么它们的重心、垂心、外心、内心等特殊点都重合。

也就是说,如果三角形ABC和三角形DEF是全等的,那么它们的重心、垂心、外心、内心等特殊点都重合。

8. 全等三角形的旁边关系:如果两个三角形是全等的,那么它们的对应边的旁边关系也是相等的。

也就是说,如果三角形ABC和三角形DEF是全等的,那么∠A的旁边边BC=∠D的旁边边EF,∠B的旁边边AC=∠E的旁边边DE,∠C的旁边边AB=∠F的旁边边CD。

全等三角形及其性质

全等三角形及其性质

【要点分析】一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB =∠________=________°.4、如图,把△ABC 绕C 点顺时针旋转35°,得到△A B C '',A B ''交AC 于点D ,则AB D '∠= °.【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若A C AB ''⊥,则BAC ∠的度数是____________.5、如图,已知△ABE ≌△ACD,AB=AC ,BE=CD, ∠B=50°,∠AEC=120°,则∠DAC=( )A 120°B 60°C 50°D 70°6、 △''OA B 是由△OAB 绕点O 逆时针旋转60°得到的,那么△''OA B 与△OAB 是什么关系?若∠AOB=40°,∠B=30°,则∠'A 与'AOB 是多少度?【巩固提升】1.如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.EDCBA A 'B 'BAO2.如图:△ABF≌△DCE,写出相等的线段.3.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.4.如图,△ABC≌△DEF,BF=3,EF=2.求FC的长5.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC= .6.如图,△ABC≌△ADE中,BA⊥AE,∠BAC=30°,AD=5,求BD的长.7.如图,△ABC≌△DEF,△ABC的周长是40cm,AB=10cm,BC=16cm,求△DEF中,边DF的长度.8.如图,在△ABC中,BE,CF分别是AC,AB边上的高线,BE,CF相交于O,连接AO交BC 于D,且△BCF≌△CBE,∠ABC=70°,求∠1和∠2的度数.9.如图,已知△ABC≌△EFC,且CF=5,AC=12,∠EFC=50°,求∠E的度数和AB的长9.10.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?11.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.12.已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,则∠P= 度,DE= cm.13.如图,A、E、F、C在一条直线上,△AED≌△CFB,你能得出哪些结论?(答出5个即可,不需证明)14.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.15.如图△ABC≌△DBC,∠A=110°,则∠D= .16..如图,△AOC≌△BOD,试证明AC∥BD.17.如图,已知△ABD≌△ACE.求证:BE=CD.18.如图,Rt△ABC≌Rt△FDE,AB=8cm,BC=6cm,将△ABC沿射线DE的方向以2cm/秒的速度平移,在平移过程中,是否存在某个时刻t,使△AEF成为等腰三角形,若存在,请求出t值;若不存在,请说明理由.一、选择题1. 如图,△ABC≌△ECD,AB和EC是对应边,C和D是对应顶点,则下列结论中错误的是()A. AB=CEB. ∠A=∠EC. AC=DED. ∠B=∠D2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上C——都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. 如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7. 如图,在△ABC中,AC>BC>AB,且△ABC≌△DEF,则在△DEF中,______<______<_______(填边).FE DCBA8. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14.已知:如图,△ABC ≌△DEF ,且B ,E ,C ,F 四点在一条直线上,∠A =85°,∠B =60°,AB =8,EH =2. (1)求∠F 的度数与DH 的长; (2)求证:AB ∥DE.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.() (2分钟)一. 选择题1. 下列说法正确的是( )A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的三角形C. 全等三角形的周长和面积都相等T ——回顾小结D. 所有的等边三角形都全等2. 如图所示,若△ABC ≌△DEF ,则∠E 等于( )AB C D EF30°50°第2题A. 30°B. 50°C. 60°D. 100°3. (2006年黑龙江)如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°4. 已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( ) A. 5 B. 6 C. 7 D. 85. 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( )12ABCD第5题A. ∠1=∠2B. AC =CAC. ∠B =∠DD. AC =BC6. 如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( )ABCD C'第6题A. △ADCB. △BDC ´C. △ADC ´D. 不存在7. 下图中,全等的图形有( )第7题A BCD E 第3题A. 2组B. 3组C. 4组D. 5组 8. △ABC 与△DFE 是全等三角形,A 与D 对应,B 与F 对应,则按标有字母的线段计算,图中相等的线段有( )第8题A BCDE FA. 1组B. 2组C. 3组D. 4组二. 填空题9. 已知△ABC ≌△DEF ,AB =DE ,BC =EF ,则AC 的对应边是__________,∠ACB 的对应角是__________.10. 如图所示,把△ABC 沿直线BC 翻折180°到△DBC ,那么△ABC 和△DBC______全等图形(填“是”或“不是”);若△ABC 的面积为2,那么△BDC 的面积为__________.A BCD第10题 11. 如图所示,△ABE ≌△ACD ,∠B =70°,∠AEB =75°,则∠CAE =__________°.ABC DE 第11题 12. 如图所示,△AOB ≌△COD ,∠AOB =∠COD ,∠A =∠C ,则∠D的对应角是__________,图中相等的线段有__________.AB CDO第12题13. 如图所示,△APB 与△CPD 全等.A B C D P 第13题(1)相等的边是:AB =CD ,__________,__________; (2)相等的角是:∠A =∠C ,__________,__________; (3)△APB 如何变换得到△CPD ?________________________________________. 14. 下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.A BCD EF三. 解答题15. 如图所示,已知△ABD ≌△ACE ,∠B =∠C ,试指出这两个三角形的对应边和对应角.ABCDEO16. 如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?AB CD EF17. 如图所示,△ABC ≌△AEC ,B 和E 是对应顶点,∠B =30°,∠ACB =85°,求△AEC 各内角的度数.ABCE18. (实际应用题)如图所示,用同样粗细,同种材料的金属构制两个全等三角形,△ABC和△DEF,已知∠B=∠E,∠C=∠F,AC的质量为25克,EF的质量为30克,求金属丝AB的质量的取值范围.AB CDE F19. (探究题)如图所示,△ABC绕顶点A顺时针旋转,若∠B=40°,∠C=30°.(1)顺时针旋转多少度时,旋转后的△AB'C'的顶点C'与原三角形的顶点B 和A在同一直线上?(原△ABC是指开始位置)(2)再继续旋转多少度时,点C、A、C'在同一直线上?A BC B'C'20. (阅读与探究)如图(1)所示,把△ABC沿直线BC移动线段BC那样长的距离可以变到△ECD的位置;如图(2)所示,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图(3)所示,以点A为中心,把△ABC旋转180°,可以变到△AED的位置,像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换.问题:如图(4),△ABC≌△DEF,B和E、C和F是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.ABC DE(1)AB CD(2)AB CD E(3)AB C(4)DE F。

全等三角形的性质及判定

全等三角形的性质及判定

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS)(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA)(3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS)(4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS)专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是()A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形例题2:如图1,折叠长方形,使顶点与边上的点重合,如果AD=7,DM=5,∠DAM=39°,则=____,=____,= .【仿练1】如图2,已知,,,那么与相等的角是.【仿练2】如图3,,则AB=,∠E=_.若∠BAE=120°,∠BAD=40°,则∠BAC=.、图4EDCBA图2 图3MDN BC图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF∵CM 是△的中线∴_____________()∴____________________ ∴__________() 或 ∵AC=EF∴____________________ ∴__________() AB=AB ()FECACMBA在△ABC和△DEFxx∵∴△ABC≌△DEF()例1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?例2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠CB.AB=ADC.AD∥BCD.AB∥CD2、如图所示,在△ABCxx,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSSB.SASC.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

全等三角形的性质

全等三角形的性质

一、全等三角形的性质1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.全等三角形的对应边上的高对应相等。

4.全等三角形的对应角的角平分线相等。

5.全等三角形的对应边上的中线相等。

6.全等三角形面积相等。

7.全等三角形周长相等。

8.全等三角形的对应角的三角函数值相等。

二、全等图形:能够完全重合的图形叫做全等图形;全等三角形:能够完全重合的两个三角形叫做全等三角形。

对应顶点、对应边、对应角:两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

1、定义:全等图形:能够完全重合的图形叫做全等图形;全等三角形:能够完全重合的两个三角形叫做全等三角形。

对应顶点、对应边、对应角:两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、全等三角形的表示:全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

3、特征:全等图形的形状相同、大小相等。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

三、全等三角形的表示:全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

四、全等三角形特征:全等图形的形状相同、大小相等。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

全等三角形:两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。

全等三角形是几何中全等的一种。

根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。

当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。

正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。

全等三角形的性质

全等三角形的性质

全等三角形的性质全等三角形是指具有完全相等的形状和大小的三角形。

在几何学中,全等三角形具有一些独特的性质和特征。

本文将探讨全等三角形的性质,包括定义、判定条件以及相关的定理和应用。

一、定义全等三角形定义为具有完全相等的形状和大小的三角形。

换句话说,如果两个三角形的三条边分别相等,则这两个三角形就是全等三角形。

全等三角形可以通过一系列变换操作来叠加在一起,如平移、旋转和翻转。

二、判定条件为了判断两个三角形是否全等,需要满足以下条件之一:1. SSS判定法:两个三角形的三条边相互对应相等。

2. SAS判定法:两个三角形的两条边和夹角相对应相等。

3. ASA判定法:两个三角形的一边和两个夹角相互对应相等。

4. RHS判定法:两个直角三角形的斜边和一个直角边相互对应相等。

三、全等三角形的性质全等三角形具有以下性质:1. 三个内角完全相等:两个全等三角形的对应内角相等,即三个内角相互对应相等。

2. 三个内角和相等:两个全等三角形的内角和分别相等。

3. 对应的边相等:两个全等三角形的对应边分别相等。

4. 周长相等:两个全等三角形的周长相等。

5. 面积相等:两个全等三角形的面积相等。

四、全等三角形的相关定理全等三角形的性质使得它们具有一些重要的应用和相关定理,如下所示:1. 位于全等三角形相等边上的等角一定相等。

2. 位于全等三角形等角上的边上的角平分线相等。

3. 全等三角形的重心、外心和内心重合。

4. 如果两个三角形的某一边与两个相对角分别相等,则这两个三角形全等。

5. 全等三角形之间的比较定理,包括大小关系和边长比例关系。

五、应用全等三角形在几何学和实际生活中具有广泛的应用,例如:1. 测量和导航:通过观测两个全等三角形的边长和角度,可以计算出距离和方向。

2. 建筑和工程:使用全等三角形的定理来设计、计算和建造各种结构和设备。

3. 图像处理:利用全等三角形的性质来进行图像变换和形状匹配。

4. 运动轨迹:通过观察全等三角形的形状和大小变化,可以描述物体的运动轨迹。

全等三角形的定义和性质

全等三角形的定义和性质
定义
两个三角形的三个内角分别对应相等 ,且三边对应成比例,则这两个三角 形相似。
性质
相似三角形的对应角相等,对应边成 比例,对应高、中线、角平分线也成 比例,周长之比等于相似比,面积之 比等于相似比的平方。
相似三角形与全等三角形联系与区别
联系
全等三角形是相似三角形的特例,当相似比为1时,相似三角 形即为全等三角形。因此,全等三角形具有相似三角形的所 有性质。
的两个基本条件。
在解决与角度有关的问题时, 可以利用全等三角形的对应角
相等这一性质来求解。
性质应用举例
1
利用全等三角形的性质可以证明线段相等、角相 等以及求解一些与三角形有关的问题。
2
例如,在证明两个三角形全等后,可以利用对应 边相等或对应角相等的性质来证明其他线段或角 的相等关系。
3
又如,在求解一些与三角形有关的问题时,可以 通过构造全等三角形来利用全等三角形的性质求 解。
根据题目给出的条件,我们可以 按照ASA判定方法来证明两个三 角形全等。首先,由已知条件可 得AB = DE,∠B = ∠E,BC = EF。因此,根据ASA判定方法, 我们可以得出△ABC ≌ △DEF。
03 2. 题目
已知△ABC中,∠C = 90°,AD平 分∠BAC交BC于点D,DE⊥AB于 点E。求证:△ACD ≌ △AED。
THANKS FOR WATCHING
感谢您的观看
解析
该命题不正确。根据相似三角形的判定定理,若两个三角形有两边对应成比例,且夹角相等, 则这两个三角形相似。但此命题中说的是“有一个角相等”,并未指明是夹角,因此不能判 定两个三角形相似。
06 总结回顾与课堂练习
关键知识点总结
• 全等三角形的定义:两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的性质
编写时间:年月日执行时间:年月日总序第个教案【教学目标】:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。

【教学重点】:全等三角形的性质。

【教学难点】:找全等三角形的对应边、对应角
【教学准备】:直尺、
【教学方法】观察、比较、合作、交流、探索.
【教学过程】:
1、全等形及全等三角形概念的引入
(1)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:
问题:对应边、对应角有何关系?
由学生观察发现,两个三角形的三组对应边相等、
三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用
(1)题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。

至于D,因为AD和BC是对应边,因此AD=BC。

C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对
的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为
此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。


析:AB不是全等三角形的对
应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业
7、课后反思:
感谢您的阅读,祝您生活愉快。

相关文档
最新文档