第一节 全等三角形的性质和判定-学而思培优

合集下载

学而思八年级数学培优讲义

学而思八年级数学培优讲义

学而思八年级数学培优讲义学而思八年级数学培优讲义旨在帮助学生巩固课堂所学知识,提高数学素养,为初中阶段的学习打下坚实基础。

以下是八年级数学培优讲义的部分内容:一、有理数及其运算1. 有理数的分类:整数、分数、正有理数、负有理数、零。

2. 有理数的加法:同号相加,异号相减;绝对值相加,符号决定和的大小。

3. 有理数的减法:减法转化为加法,被减数、减数与差的的关系。

4. 有理数的乘法:符号规律,绝对值相乘。

5. 有理数的除法:除法转化为乘法,商的变化规律。

6. 有理数的乘方:乘方的意义,乘方运算规则。

二、几何知识1.点、线、面的基本概念:点的坐标,线段的平行、垂直,平面的性质。

2.三角形的基本概念:三角形的分类,三角形的边角关系,三角形的判定。

3. 四边形的基本概念:四边形的分类,四边形的对边、对角线、内角和。

4.平行四边形的性质:对边平行且相等,对角线互相平分,平行四边形的判定。

5.矩形、菱形、正方形的性质:矩形的对角线相等,菱形的对角线垂直,正方形的性质。

三、函数与方程1.函数的基本概念:函数的定义,函数的图像,函数的性质。

2.一次函数:一次函数的解析式,一次函数的图像,一次函数与直线。

3.方程的基本概念:方程的定义,方程的解法,方程的应用。

4. 一元一次方程:一元一次方程的解法,一元一次方程的应用。

5. 一元二次方程:一元二次方程的解法,一元二次方程的应用。

四、三角形和四边形的几何证明1.三角形的证明:全等三角形的判定,相似三角形的判定。

2. 四边形的证明:平行四边形的判定,矩形、菱形、正方形的判定。

3.几何证明的方法:综合法、分析法、反证法。

五、统计与概率1.统计的基本概念:数据的收集、整理、分析。

2.频数与频率:频数分布表,频率分布表,概率的基本概念。

3.事件的概率:等可能事件的概率,条件概率,独立事件的概率。

4.统计的应用:平均数、中位数、众数,概率的应用。

通过学习八年级数学培优讲义,学生可以系统地回顾和巩固课堂所学知识,提高自己的数学能力,为初中阶段的学习打下坚实基础。

全等三角形的判定和性质

全等三角形的判定和性质

全等三角形的判定和性质在初中数学的学习中,全等三角形是一个非常重要的概念。

它不仅在几何证明中经常出现,而且对于培养我们的逻辑思维和空间想象力也有着重要的作用。

接下来,让我们一起深入了解全等三角形的判定和性质。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等用符号“≌”表示,读作“全等于”。

比如,三角形 ABC 全等于三角形 DEF,记作“△ABC≌△DEF”。

二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。

2、全等三角形的对应角相等即∠A =∠D,∠B =∠E,∠C =∠F。

3、全等三角形的对应线段(角平分线、中线、高)相等例如,如果两个三角形全等,那么它们对应的角平分线长度相等,对应的中线长度相等,对应的高的长度也相等。

4、全等三角形的周长相等、面积相等因为全等三角形的对应边相等,所以它们的周长必然相等。

而由于对应边和对应高都相等,根据三角形面积公式(面积=底×高÷2),可得它们的面积也相等。

三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

例如,在△ABC 和△DEF 中,AB = DE,BC = EF,AC = DF,那么就可以判定△ABC ≌△DEF。

2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

比如,在△ABC 和△DEF 中,AB = DE,∠B =∠E,BC = EF,那么△ABC ≌△DEF。

3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

假设在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就能够得出△ABC ≌△DEF。

4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

学而思八年级数学之三角形全等(一)深化三角形全等工具性思想

学而思八年级数学之三角形全等(一)深化三角形全等工具性思想

M
N
A
CB
D
2
缺个边的条件
4.等量差
E
AB
CD F
缺个边的条件
5.角平分线的性质
A
E F
B
DC
【例2】如图, △ABC与△ADE均为等腰直角 三角形, ∠BAC=∠EAD=90°,求 证: △BAE≌△CAD。
【例3】已知:如图,ABCD是正方形。G是BC 上的一点,DE⊥AG于E,BF⊥AG于F。 求证:△ABF≌△DAE 。
3
【例4】已知:如图,△ABC中,AB=AC,D
是AB上一点,E是AC延长线上一点, 且DB=EC ,连结DE,交BC于F点。 求证:DF=EF
【例5】已知:如图所示,Rt△ABC中,AB= AC,∠BAC=90°,O为BC的中点, ⑴写出点O到△ABC的三个顶点A、B、 C 的距离的关系(不要求证明)
【例1】如图,点B、E、C、F在一条直线上, BC=EF,AB∥DE,∠A=∠D。
求证:AC=DF。

1
缺个角的条件 1.公共角 2.对顶角 3.平行线 4.度数相等 5.同角或等角的补角(余角) 6.等角加(减)等角
缺个边的条件 1.公共边
A
D
O
B
C
缺个边的条件 2.中点
C
D
A
M
B
缺个边的条件 3.等量和
B
O
N
A
MC
【例5】已知:如图所示,Rt△ABC中,AB= AC,∠BAC=90°,O为BC的中点, ⑵如果点M、N分别在线段AC、AB上 移动,且在移动中保持AN=CM。试
B 判断△OMN的形状,并证明你的结 论。
O
N

全等三角形的判定与性质

全等三角形的判定与性质

全等三角形的判定与性质在初中数学的学习中,全等三角形是一个非常重要的概念。

它不仅是解决几何问题的基础,也是培养我们逻辑思维和空间想象能力的重要工具。

今天,咱们就来好好聊聊全等三角形的判定与性质。

首先,咱们得明白啥是全等三角形。

简单来说,两个三角形的形状和大小完全相同,就叫做全等三角形。

全等三角形的对应边相等,对应角也相等。

这就好比两个一模一样的积木块,它们的边的长度和角的大小都是完全一样的。

那怎么判定两个三角形全等呢?这就有好几种方法啦。

第一种方法是“边边边”(SSS)。

如果两个三角形的三条边分别对应相等,那么这两个三角形就全等。

比如说,有两个三角形,一个三角形的三条边分别是 3 厘米、4 厘米、5 厘米,另一个三角形的三条边也分别是 3 厘米、4 厘米、5 厘米,那这两个三角形就是全等的。

第二种方法是“边角边”(SAS)。

如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形也全等。

打个比方,一个三角形的两条边分别是 6 厘米和 8 厘米,它们的夹角是 60 度;另一个三角形也有两条边分别是 6 厘米和 8 厘米,夹角同样是 60 度,那这两个三角形就全等。

第三种方法是“角边角”(ASA)。

当两个三角形的两个角及其夹边分别对应相等时,这两个三角形全等。

比如,一个三角形的两个角分别是 45 度和 60 度,它们的夹边是 7 厘米;另一个三角形的两个角也是 45 度和 60 度,夹边也是 7 厘米,那么这两个三角形就全等。

还有一种方法是“角角边”(AAS)。

如果两个三角形的两个角分别对应相等,其中一条对应角的对边也相等,那么这两个三角形全等。

举个例子,一个三角形有两个角分别是 30 度和 50 度,30 度角所对的边是 9 厘米;另一个三角形也有两个角是 30 度和 50 度,30 度角所对的边也是 9 厘米,这两个三角形就全等。

最后一种特殊的判定方法是“斜边、直角边”(HL)。

这个只适用于直角三角形,如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。

八年级(上)培优班 第01讲 全等三角形

八年级(上)培优班  第01讲 全等三角形

八年级(上)培优班第01讲全等三角形全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形等图形性质的有力工具,是解决与线段、角相关问题的一个出发点,运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.1.判定三角形全等的方法:SAS,ASA,AAS,SSS.2.实际问题中,常将待证的线段相等、角相等、两直线垂直等转化为证明三角形全等,要注意添加适当的辅助线.3.发现或构造全等三角形是利用三角形全等证明问题的关键,一般是从发现两个三角形的对应元素相等入手,逐步发现或推出结论来“凑齐”三角形全等的条件.4.证明一条线段等于两条线段之和,一般有两种基本方法:(1)通过添辅助线“构造”一条线段等于求证中的两条线段之和,再证明所构造的线段与求证的那一条线段相等;(2)通过添辅助线先在求证的长线段上截取与两条线段中的某一条相等的线段,再证明剩下的部分与两条线段中的另一条相等.走进优高【例1】(江西南昌中考)如图,AB=AE,∠ABC=∠AED,BC=ED,F是CD的中点,试说明AF⊥CD.A【例2】(诸暨中学提前招生)如图,点D在边BC上,点E在△ABC外部,DE交AC于F,若AB=AD,∠BAD=∠CAE=∠CDE.求证:BC=DE. CDFAB E瞄准重高【例1】如图,∠E=∠F=90°,∠B=∠C,AC=AB,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正确的结论是 (把你认为所有正确结论的序号填上).(广州市中考题)思路点拨对一个复杂的图形,先找出比较明显的一对全等三角形,并发现有用的条件,进而判断推出其他三角形全等.注两个三角形的全等是指两个图形之间的一种‘对应”关系,“对应’两字,有“相当”、“相应”的含意,对应关系是按一定标准的一对一的关系,“互相重合”是判断其对应部分的标准.实际遇到的图形,两个全等三角形并不重合在一起,但其中一个三角形是由另一个三角形按平行移动、翻拆、旋转等方法得到,这种改变位置,不改变形状大小的图形变动叫三角形的全等变换.【例2】在△ABC中,AC=5,中线AD=4,则边AB的取值范围是( ) (连云港市中考题)A.1<AB<9 B.3<AB<13 C.5<AB<13 D.9<AB<13思路点拨线段AC、AD、AB不是同一个三角形的三条边,通过中线倍长将分散的条件加以集中.【例3】(江苏省竞赛题) 如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=A C,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.思路点拨 (1)证明对应的两个三角形全等;(2)在(1)的基础上,证明∠PAQ=90°善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,需要注的是,通常面临以下情况时,我们才考虑构造全等三角形:(1)给出的图形中没有全等三角形,而证明结论需要全等三角形;(2)从题设条件无法证明图形中的三角形全等,证明需要另行构造全等三角形.学力训练1. 如图,AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC 、B ′C 边上的高,且AB= A ′B ′,AD =A ′D ,若使△ABC ≌△A ′B ′C ′,请你补充条件(只需要填写一个你认为适当的条件) (黑龙江省中考题).2.如图,在△ABD 和△ACE 中,有下列4个论断:①AB=AC ;②AD =AE ;③∠B=∠C ;④BD=CE ,请以其中三个论断作为条件,余下一个论断作为结论,写出一个真命题(用序号○○○→○的形式写出) . (海南省中考题)3.如图,已知在等边△ABC 中,BD =CE ,AD 与BE 相交于P ,则∠APE 的度数是4.如图,DA ⊥AB ,EA ⊥AC ,AB =AD ,AC =AE ,BE 和CD 相交于O ,则∠DOE 的度数是.5.如图,已知OA=OB ,OC=OD ,下列结论中:①∠A=∠B ;②DE =CE ;③连OE ,则OE 平分∠O ,正确的是( ) A .①② B .②③ C .①③ D .①②③6.如图,A 在DE 上,F 在AB 上,且AC=CE ,∠1=∠2=∠3,则DE 的长等于( ) A .DC B . BC C .AB D .AE+AC (武汉市选拔赛试题)7.如图,AB ∥CD ,AC ∥DB ,AD 与BC 交于O ,AE ⊥BC 于E ,DF ⊥BC 于F ,那么图中全等的三角形有( )B对A .5B .6C . 7D .88.如图,把△A BC 绕点C 顺时针旋转35°,得到△A ′B ′C ′,A ′B ′交AC 于点D ,已知∠A ′DC=90°,求∠A 的度数.(贵州省中考题)9.如图,在△ABE 和△ACD 中,给出以下4个论断:①AB=AC ;②AD =AE ;③AM =AN ;④AD ⊥DC ,AE ⊥BE .以其中3个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个真命题,并写出证明过程.(荆州市中考题) 已知: 求证:10.如图,已知∠1=∠2,EF ⊥AD 于P ,交B C 延长线于M , 求证:∠M=(∠ACB -∠B ). (天津市竞赛题)11.在△ABC 中,高AD 和BE 交于H 点,且BH =AC ,则∠ABC =.12.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =36°,那么∠BED .(河南省竞赛题) 13.如图,D 是△ABC 的边AB 上一点,DF 交A C 于点F ,给出3个论断:①DE=FE ;②AE =CE ;③FC ∥AB ,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是.(武汉市选拔赛试题)14.如图,AD ∥BC ,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB=.2115.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上异于A 的任意一点,设PB =m ,PC =n ,AB=c ,AC=b ,则(m+n )与(b+c)大小关系是( )A .m+n> b+cB . m+n<b+cC .m+n= b+cD .不能确定16.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB>AD ,下列结论中正确的是( ) (江苏省竞赛题) A .A B -AD>CB -CD B .AB -AD =CB —CDC .AB —AD<CB —CD D .AB -AD 与CB —CD 的大小关系不确定. 17.考查下列命题( )(1) 全等三角形的对应边上的中线、高、角平分线对应相等;(2) 两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等; (3) 两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等; (4)两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等. 其中正确命题的个数有( )A .4个B .3个C . 2个D .1个18.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=(AB+AD),求∠ABC+∠ADC 的度数.(上海市竞赛题)19.如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关系,并证明你的结论. 20.如图,已知AB=CD=AE =BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDC 的面积.(江苏省竞赛题)2121.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.(武汉市选拔赛试题)参考答案走进优高例1 如右图例2 (1)(2)(3)(4)都不正确.例3 证明△ABC≌△ADE.瞄准重高。

全等三角形的判定与性质

全等三角形的判定与性质

全等三角形的判定与性质全等三角形是指具有相同形状和大小的两个三角形。

在几何学中,全等三角形是非常重要的概念,对于研究和解决三角形相关问题具有重要的作用。

本文将对全等三角形的判定方法和性质进行探讨。

一、全等三角形的判定方法1. SSS 判定法SSS (side-side-side) 判定法是指当两个三角形的三边分别相等时,可以判定它们是全等三角形。

例如,若三角形 ABC 的边长分别为 AB = 3 cm,BC = 4 cm,AC = 5 cm,而三角形 XYZ 的边长也分别为 XY = 3 cm,YZ = 4 cm,XZ = 5 cm,则可以判定三角形 ABC 全等于三角形XYZ。

2. SAS 判定法SAS (side-angle-side) 判定法是指当两个三角形的两边和夹角分别相等时,可以判定它们是全等三角形。

例如,若三角形 ABC 的边长分别为 AB = 3 cm,BC = 4 cm,而三角形 XYZ 的边长分别为 XY = 3 cm,XZ = 4 cm,且它们的夹角∠BAC 和∠YXZ 分别相等,则可以判定三角形 ABC 全等于三角形 XYZ。

3. ASA 判定法ASA (angle-side-angle) 判定法是指当两个三角形的两角和一边分别相等时,可以判定它们是全等三角形。

例如,若三角形 ABC 的边长分别为 AB = 3 cm,AC = 4 cm,而三角形 XYZ 的边长分别为 XY = 3 cm,YZ = 4 cm,且它们的角∠BAC 和∠YXZ 分别相等,则可以判定三角形 ABC 全等于三角形 XYZ。

二、全等三角形的性质1. 边对边性质对于全等三角形 ABC 和 XYZ,它们的对应边是相等的,即 AB = XY,BC = YZ,AC = XZ。

并且,全等三角形的对应边之间的长度关系是一一对应的。

2. 角对角性质对于全等三角形 ABC 和 XYZ,它们的对应角度是相等的,即∠BAC = ∠YXZ,∠ABC = ∠YZX,∠ACB = ∠XZY。

学而思全等三角形培优

学而思全等三角形培优

第一讲全等三角形的性质及判定【例1】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.【补充】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.【例2】 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.【补充】已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.【补充】如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.FEDCBA【例3】 如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥.OF E DCBAFEDCBADCB A F E O DC B A OD C BA【补充】已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.F E CBA【例4】 如图,90DCE CD CE AD AC BE AC ∠=︒=⊥⊥,,,,垂足分别为A B ,,试说明AD AB BE +=EDCBA【例10】 如图所示, 已知AB DC =,AE DF =,CE BF =,证明:AF DE =.【例11】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.PFEDCBA【补充】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.GA BC DEFF DC BA【例12】 在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.【补充】如图所示:AF CD =,BC EF =,AB DE =,A D ∠=∠.求证:BC EF ∥.A BCD EF【例13】 (1)如图,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?GFEDCB A【例14】 如图,ABC ∆中,AB BC =,90ABC ∠=︒,D 是AC 上一点,且CD CB AB ==,DE AC ⊥交AB于E 点.求证:AD DE EB ==.CB DEAM EDC B A【例15】 ABC ∆中,90B ∠=︒,M 为AB 上一点,使得AM BC =,N 为BC 上一点,使得CN BM =,连AN 、CM 交于P 点.试求APM ∠的度数,并写出你的推理证明的过程.图3P DM N B C A【例16】 如图,I 是ABC △的内心,且CA AI BC +=.若80BAC ∠=︒,求ABC ∠和AIB ∠的大小.AB CI【例17】 已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.PDQCBEA【例18】 ⑴ 如左下图,在矩形ABCD 中,E 为CB 延长线上一点且AC CE =,F 为AE 的中点.求证:BF FD ⊥.⑵ 如右下图,在ABC ∆中,BE 、CF 分别为边AC 、AB 的高,D 为BC 的中点,DM EF ⊥于M .求证:FM EM =.F EDCBA MFED CB A18.补充:如图,已知60ABD ACD ∠=∠=︒,且1902ADB BDC ∠=︒-∠.求证:ABC ∆是等腰三角形.【例19】 如图,ABC ∆为边长是1的等边三角形,BDC ∆为顶角()BDC ∠是120︒的等腰三角形,以D 为顶点作一个60︒角,角的两边分别交AB 于M ,AC 于N ,连接MN ,形成一个AMN ∆.求AMN ∆的周长.【习题1】 已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.FEDC B A【习题2】 已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.家庭作业B AAMNB CD【习题3】如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩形周长为16,且CE EF =,求AE 的长.EDCBF A【习题4】在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E .求证:当BE 是B ∠的角平分线时,有AD BC AB +=.【备选1】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.【备选2】 如图所示,在ABC △中,AD BC ⊥于点D ,2B C ∠=∠.求证:AB BD CD +=.【备选3】 如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF . (1)求证:BG =CF .(2)请你判断BE +CF 与EF 的大小关系,并说明理由.月测备选ABCDEOC D B AFE DCBAG第二讲 全等三角形与中点问题版块一 倍长中线【例1】 在△ABC 中,9,5==AC AB ,则BC 边上的中线AD 的长的取值范围是什么?【补充】已知:ABC ∆中,AD 是中线.求证:1()2AD AB AC <+.【例2】 已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.DFECBA【例3】 如图,在ABC ∆中,D 是BC 边的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥.求证:BDE CDF ∆∆≌.BB C F ED C B A【例4】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.【例5】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.【例6】 如图所示,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.【例7】 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.【例8】 已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.BCF ED CB ABFGE DC B AFE A B D C【例9】 在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?【例10】 已知△ABC ,∠B =∠C ,D ,E 分别是AB 及AC 延长线上的一点,且BD =CE ,连接DE 交底BC 于G ,求证GD =GE .【例11】 如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果2222BM CN DM DN +=+,求证()22214AD AB AC =+.(勾股定理的内容,选做)GEDCBAF EDCBAN MD C B A【例10】 在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.【习题1】 如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =. 求证:EDB FDC ∠=∠.【习题2】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?【习题3】 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.家庭作业图 6G E F D B C A F ED CB AD FE C B AA【备选1】如图,已知AB=DC,AD=BC,O是BD中点,过O点的直线分别交DA、BC的延长线于E,F.求证:∠E=∠F【备选2】如图,ABC∆中,AB AC=,90BAC∠=︒,D是BC中点,ED FD⊥,ED与AB交于E,FD 与AC交于F.求证:BE AF=,AE CF=.第三讲全等三角形与角平分线问题【例1】在ABC∆中,D为BC边上的点,已知BAD CAD∠=∠,BD CD=,求证:AB AC=.D CBA【例2】已知ABC∆中,AB AC=,BE、CD分别是ABC∠及ACB∠平分线.求证:CD BE=.EDCBA【例3】如图,在ABC∆中,60B∠=︒,AD、CE分别平分BAC∠、BCA∠,且AD与CE的交点为F.求证:FE FD=.AB CDEFFBEDCA【例4】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【补充】如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.【例5】 已知ABC ∆中,60A ∠=o ,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.OED CBA【例6】 如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.E DC B A4321【例7】 如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.ADOCBA B CD E OPDBOCA【例8】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥ABFA CD E B【例10】 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?EDCBA【补充】长方形ABCD 中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED 交AB 于F ,则EF =__________.FEDCBA【补充】在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-. CD B PA【例11】 如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.DC B A【例12】 如图,ABC ∆中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.AB CD【巩固】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【例13】 如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.MD CBA【例14】 如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE⊥CB于E .求证:AD AE =.HG D AB C E【例15】 如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.EDCB A【习题2】如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.DC B A【习题3】AD 是ABC ∆的角平分线,BE AD ⊥交AD 的延长线于E ,EF AC ∥交AB 于F .求证:AF FB =.家庭作业DECFBA【习题4】如图所示,AD平行于BC,DAE=EAB∠∠,ABE=EBC∠∠,AD=4,BC=2,那么AB=________.【习题5】ABC∆中,D为BC中点,DE BC⊥交BAC∠的平分线于点E,EF AB⊥于F EG AC⊥于G.求证:BF CG=.EGFDCBA【备选1】在ABC∆中,AD平分BAC∠,AB BD AC+=.求:B C∠∠的值.CDBA月测备选【备选2】如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA【备选3】如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B∠的平分线时,有AD BC AB +=.EBCDA第四讲 全等三角形与旋转问题【例1】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.(1)求证:AN BM =.(2)求证:CD=CEA CACB(3) 求证:CF 平分∠MCN(4) 求证:DE ∥AB【例2】 如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG .G FEDCBAACBA CB【例3】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.DECBA【例4】 如图,D 是等边ABC ∆内的一点,且BD AD =,BP AB =,DBP DBC ∠=∠,问BPD ∠的度数是否一定,若一定,求它的度数;若不一定,说明理由.PDC BA【例5】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF+为定值.OB ECF A【补充】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.54321OHBE DKG CF A【例6】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.FED CBA【补充】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD的面积是16,求DP 的长.PDCBA【例7】 E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.【巩固】如图,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分BAF ∠交BC 边于点E .⑴求证:AF DF BE =+.⑵设DF x =(01x ≤≤),ADF ∆与ABE ∆的面积和S 是否存在最大值?若存在,求出此时x 的值及S .若不存在,请说明理由.FEDC BAC HFE D B A【补充】(1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =90︒,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD .求证:EF =BE +FD ; FED CBA(2) 如图,在四边形ABCD 中,AB =AD ,∠B+∠D =180︒,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD , (1)中的结论是否仍然成立?不用证明. FEDCB A【习题1】 如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD+相等的理由.家庭作业EDCBA【习题2】 (湖北省黄冈市2008年初中毕业生升学考试)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FEDCBA【习题3】 在梯形ABCD 中,AB CD ∥,90A ∠=︒,2AB =,3BC =,1CD =,E 是AD 中点,试判断EC与EB 的位置关系,并写出推理过程.【习题4】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.HG NM CBA【备选1】 在等腰直角ABC ∆中,90ACB ∠=o ,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.月测备选A B C D E【备选2】 如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.FEDCBA【备选3】 等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBA第五讲 轴对称和等腰三角形【例1】 在ABC ∆中,AB AC =,BC BD ED EA ===.求A ∠.APMCQB【补充】在ABC ∆中,AB AC =,BC BD =,AD ED EB ==.求A ∠.【例2】 ABC ∆的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,若150BAC DAE ∠+∠=︒,求BAC ∠.【例3】 如图,点O 是等边AO AD =内一点,110AOB ∠=o ,BOC α∠=.将BOC △绕点C 按顺时针方向旋转19060αα-=-∴°°得ADC △,连接OD ,则COD △是等边三角形;当α为多少度时,AOD △是等腰三角形?【例4】 如图,在ABC ∆中,B C ∠=∠,D 在BC 上,50BAD ∠=o ,在AC 上取一点E ,使得ADE AED ∠=∠,求EDC ∠的度数.E D C B A E D C B AO DC B AA BCD E【例5】 如图,ABC ∆为等边三角形,延长BC 到D ,又延长BA 到E ,使AE BD =,连接,CE DE ,求证:CDE ∆为等腰三角形.【例6】 如图,在ABC ∆中,B ∠,C ∠为锐角,,,M ND 分别为边AB 、AC 、BC 上的点,满足AM AN =,BD DC =,且BDM CDN ∠=∠.求证:AB AC =.板块三、轴对称在几何最值问题中的应用【例7】 已知点A 在直线l 外,点P 为直线l 上的一个动点,探究是否存在一个定点B ,当点P 在直线l 上运动时,点P 与A 、B 两点的距离总相等,如果存在,请作出定点B ;若不存在,请说明理由.【例8】 如图,在公路a 的同旁有两个仓库A 、B ,现需要建一货物中转站,要求到A 、B 两仓库的距离和最短,这个中转站M 应建在公路旁的哪个位置比较合理?aBAE D C BAA BCDMNPl【例9】 如图,45AOB ∠=︒,角内有点P ,在角的两边有两点Q 、R (均不同于O 点),求作Q 、R ,使得PQR ∆的周长的最小.【补充】如图,M 、N 为ABC ∆的边AC 、BC 上的两个定点,在AB 上求一点P ,使PMN ∆的周长最短.【例10】 已知如图,点M 在锐角AOB ∠的内部,在OB 边上求作一点P ,使点P 到点M 的距离与点P 到OA 的边的距离和最小.【补充】已知:A 、B 两点在直线l 的同侧, 在l 上求作一点M ,使得||AM BM -最小.【补充】已知:A 、B 两点在直线l 的同侧,在l 上求作一点M ,使得||BM AM -最大.PBANMCBAMBOAlBA【例11】如图,正方形ABCD中,8AB=,M是DC上的一点,且2DM=,N是AC上的一动点,求DN MN+的最小值与最大值.【补充】例题中的条件不变,求DN MN-的最小值与最大值.【补充】如图,已知正方形ABCD的边长为8,M在DC上,且2DM=,N是AC上的一个动点,则DN MN+的最小值是MDCBA【习题1】(2007双柏中考)等腰三角形的两边长分别为4和9,则第三边长为.【习题2】等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形的底边的长为( )A.17cm B.5cm C.17cm或5cm D.无法确定【习题3】已知等腰三角形的周长为20,腰长为x,求x的取值范围.【习题4】(2004天津)在下列图形中,既是轴对称图形,又是中心对称图形的是( )【习题5】判断下列图形(图)是否为轴对称图形?如果是,说出它有几条对称轴.⑴⑵⑶⑷⑸⑹⑺⑻⑼家庭作业NMDCBA【备选1】 ABC ∆的一个内角的大小是040,且A B ∠=∠,那么C ∠的外角的大小是( )A .140︒B .80︒或100︒C . 100︒或140︒D . 80︒或140︒【备选2】 已知等腰三角形一腰上的中线将它们的周长分为12和15两部分,求腰长和底长. 【备选3】 (四川省竞赛题)如图,在等腰Rt ABC ∆中,3CA CB ==,E 的BC 上一点,满足2BE =,在斜边AB 上求作一点P 使得PC PE +长度之和最小.PECBA【备选4】 在正方形ABCD 中,E 在BC 上,2BE =,1CE =,P 在BD 上,求PE 和PC 的长度之和的最小值.E PDCB AE‘E PDCB A月测备选第六讲 全等三角形中的截长补短板块一、截长补短【例1】 已知ABC ∆中,60A ∠=o ,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【例3】 AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB 的长为 ( )A . aB . kC .2k h+ D . h MDCBA【例4】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .DOECB A NE BMADFEDCBA【例5】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.FABCDEOOEDCBA【例6】 (北京市数学竞赛试题,天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例7】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDENMDCBA板块二、全等与角度【例10】 如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例11】 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【习题1】点M ,N 在等边三角形ABC 的AB 边上运动,BD =DC ,∠BDC =120°,∠MDN =60°,求证MN =MB +NC .21EABCDMNNM DCBA家庭作业CEDB AD CB A DECBA【备选1】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM 且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?NC D E B M A。

第一节 全等三角形的性质与判定(含答案)...八年级数学 学而思

第一节  全等三角形的性质与判定(含答案)...八年级数学 学而思

第一节 全等三角形的性质与判定1. 基本概念(1)全等图形:能够重合的两个图形叫全等图形. 注:平移、对称、旋转前后的图形全等.(2)全等三角形:能够重合的两个三角形叫做全等三角形.(3)对应顶点、对应边、对应角:两个全等三角形重合时,能互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角. 2. 表示符号“全等”可用符号“≌”来表示,如图2-1-1所示,中△ABC 和ABC ∆全等,记做.ABC ABC ∆≅∆112--注:书写全等三角形时要求对应顶点必须写在对应位置. 3. 寻找全等三角形的对应角、对应边的一般规律(1)把其中一个图形通过平移、翻折或旋转,能与另一个图形完全重合,则重合的边就是对应边,重合的角就是对应角.(2) 一般情况有公共边时,则公共边为对应边;有公共角时,则公共角为对应角(对顶角为对应角).最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角. 4、 全等三角形的性质(1)全等三角形的对应边相等,对应角相等,周长相等,面积相等.(2)全等三角形的对应边上中线,对应边上高线,对应角的角平分线相等.(此结论在证明中不能直接使用) 5、 全等三角形的判定(1)一般三角形全等的判定方法①三条边分别对应相等的两个三角形全等(简记为“边边边”或“SSS”).②两边及这两边的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”). ③两角及这两角的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”). ④两角及其中一角对边对应相等的两个三角形全等(简记为“角角边”或“AAS”).注:①两个三角形的“三个角对应相等”不能判定这两个三角形全等.②两个三角形的“两边及其中一边的对角对应相等”(一般称为“边边角”或“SSA”)不能判定这两个三角形全等.(2)直角三角形全等的判定方法①特殊方法:斜边及一条直角边对应相等的两个直角三角形全等(简记为“斜边、直角边”或“HL”).②一般方法:SAS ,ASA, AAS.注:①使用HI 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 全等三角形的性质和判定
一、课标导航
二、核心纲要
1.基本概念
(1)全等形:能够完全重合的两个图形叫全等形.
(2)全等三角形:能够完全重合的两个三角形叫做全等三角形.
(3)对应顶点、对应边、对应角:把两个全等三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.如下图所示:A 与B A ,/与C B ,/与/
C 是对应顶点;AB 与AC B A ,//与BC C A ,//与//C B 是对应边;A ∠与B A ∠∠,/与C B ∠∠,/与/C ∠是对应角.
2.表示符号
“≌”;如右图所示,.ABC ABC ∆≅∆
注:书写全等三角形时要求对应顶点写在对应位置上.
3.要想正确地表示两个三角形全等,找对应边和对应角是关键,常用的方法有
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.
(3)有公共边的,公共边是对应边.
(4)有公共角的,公共角是对应角.
(5)有对顶角的,对顶角是对应角.
(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小;角 是对应边(或对应角).
4.全等量角形的性质
(1)全等三角形对应边相等.
(2)全等三角形对应角相等.
(3)全等三角形的周长、面积相等.
(4)全等三角形对应边上的中线相等,对应边上的高相等,对应角的角平分线相等.(此结论在证明中不能直接用)
5.全等三角形的判定
(1) -般三角形全等判定方法
①三边对应相等的两个三角形全等(简写成“边边边”或“SSS”);
②两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”);.
③两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”);
④两角和其中一角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”).
(2)直角三角形全等判定方法
①特殊方法:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”);
②一般方法:SAS ,ASA ,AAS.
注:切记“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等;判定两个三角形全等必不可少的条件至少有一条边对应相等.
6.判定三角形全等的基本思路(“题目中找,图形中看”)
7.全等三角形的图形有以下几种典型形式
(1)平移全等型
(2)对称全等型
(3)旋转全等型
本节重点讲解:一个概念,一个思路,三类图形,四个性质,五个判定,
三、全能突破
基 础 演 练
1.如图12-1-1所示,将△AOB 绕点0按逆时针方向旋转 45后得到,//OB A ∆若,15 =∠AOB 则AOB ∠
的度数是( ). o A 20. 30.B 35.C 40.D
2.如图12 -1-2所示,给出下列四组条件:
;,,DF AC EF BC DE AB ===①
;,,EF BC E B E
D AB =∠=∠= ② ;,,F C EF BC
E B ∠=∠=∠=∠③
.,,E B DF AC DE AB ∠=∠==④
其中,能使△A BCcn△DEF 的条件共有( ).
A.1组 B .2组 C .3组 D .4组
3.如图12 -1-3所示,BD AC CB AD CD AB 、,,==相交于点0,图中有( )对全等三角形.
2.A
3.B
4.C
5.D
4.如图12 -1-4所示,△ABC 绕点A 旋转o
180得到△AED ,
(1)则DE 与BC 的位置关系是 ,数量关系是
(2)若,24=∆ABC s 则=∆ADE s
(3)若ADE BC AC ∆==,4,2的周长为偶数,则AE 的长为
5.如图12 -1-5所示,OP OD OB OC OA CD AB ,,,===是BOD ∠的平分线,求证:.COP AOP ∠=∠
6.如图12 -1-6所示,点A 、C 、B 、D 在同一条直线上,.,,//FD AB F A DF BE =∠=∠求证:.FC AE =
7.如图12 -1-7所示,,//ED AB 点F 、点C 在AD 上,,,//DE AB EF BC =求证:.DC AF =
8.如图12 -1-8所示,.,,,AC ED BA AE AB BC AB AE ==⊥⊥求证:.AC ED ⊥
9.如图12 -1-9所示,给出五个等量关系:,BC AD =① ,BD AC =② ,DE CE =③ ,C D ∠=∠④
=∠DAB ⑤.CBA ∠请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
已知:
求证:
证明:
能 力 提 升
10.如图12 -1-10所示,将Rt△ABC(其中
90,34=∠=∠C B )绕A 点按顺时针方向旋转到11C AB ∆的
位置,使得点1B A C 、、在同一条直线上,那么旋转角最小等于( ) 56.A o B 68. 124.C o D 180.
11.如果△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为,23,3-x ,12-x 若这两个三角形全等,
则x 等于( ).
37.A 3.B 3
73.或C 4.D
12.如图12 -1-11所示,△ABC 是不等边三角形,DE=BC ,以D 、E 为两个顶点画位置不同的三角形,使 所画的三角形与△ABC 全等,这样的三角形最多可画出( )个.
2.A 4.B 6.C 8.D
13.如图12 -1-12所示,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折形成的,若,138 =∠BAC 则∠EFC 的度数为
14.如图12 -1-13所示,点A 在DE 上,点F 在AB 上,且,321,3,∠=∠=∠==AB CE AC 则DE 的长 为
15.如图12 -1-14所示,已知AC 与BD 相交于点,,,,1,DEC ADC BE AD DC AE AB AE E ∠=∠==-= 则CE 的长为
16.如图12 -1-15所示,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且.,CD FD AC BF ==求证:;AC BF ⊥
17.如图12 -1-16所示,已知,,,,AC AF AB AE AC AF AB AE ==⊥⊥
求证:.)2(;)1(BF EC BF FC ⊥=
18.在△ABC 中,,,90BC AC ACB ==∠ 直线L 经过顶点C ,过A 、B 两点分别作Z 的垂线AE 、BF ,垂
足分别为E 、F .
(1)如图12-1-17(a)所示,当直线L 不与底边AB 相交时,求证:.BF AE EF +=
(2)当直线L 绕点C 旋转到图12-1-17(b)的位置时,猜想EF 、AE 、BF 之间的关系,并证明.
(3)当直线L 绕点C 旋转到图12-1-17(c)的位置时,猜想EF 、AE 、BF 之间的关系,直接写出结论.
19.(1)如图12 -1-18所示,BD 、CE 是△ABC 的高,点P 在BD 的延长线上,,BP CA =点Q 在CE 上,QC
,AB =探究PA 与AQ 之间的关系;
(2)若把(1)中的△ABC 改为钝角三角形,A AB AC ∠>,是钝角,其他条件不变,上述结论是否成立? 画出图形并证明你的结论,
中 考 链 接
20.(2012.北京)如图12 -1-19所示,点E 、A 、C 在同一条直线上,.,,//CD AC CE AB CD AB ==
求证:.ED BC =
21.(2012.湖南衡阳)如图12 -1- 20所示,,//,EF BC DC AF =请只补充一个条件,使得△ABC ≌△DEF,
并说明理由.
22.(2011.四川内江)如图12 -1- 21所示,在Rt△ABC 中,AC BAC ,90 =∠,2AB =点D 是AC 的中
点,将一块锐角为o
45的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连接BE 、EC.试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.
巅 峰 突 破
23.如图12 -1- 22所示,在△ABC 中,E 、D 分别是边AB 、AC 上的点,BD 、CE 交于点F ,AF 的延长线交BC 于点H ,若,,21AD AF =∠=∠则图中全等三角形共有( )对.
4.A
5.B
6.C
7.D
24.若两个三角形的两边和其中一边上的高对应相等,则这两个三角形第三边所对的角的关系是
25.在△ABC 中,高AD 和BE 所在直线相交于点F ,且,AC BF =则∠ABC 的度数为。

相关文档
最新文档