基于lingo的投资组合线性规划策略分析
实验1 利用Lingo求解线性规划

实验一:利用Lingo 软件求解线性规划问题实验一 利用Lingo 软件求解线性规划问题1、 实验目的和任务1.1. 进一步掌握Lingo 编程操作;1.2通过实验进一步掌握运筹学线性规划问题的建模以及求解过程,提高学生分析问题和解决问题能力。
2、 实验仪器、设备及材料计算机、Lingo3、 实验内容料场选址问题P10某公司有6个建筑工地要开工,每个工地的位置(用平面坐标a,b 表示,距离单位:km )及水泥日用量d(单位:t)由下表给出,目前有两个临时料场位于P (5,1),Q (2,7),日储量各有20t.请回答以下问题: 假设从料场到工地之间有直线道路相连,试制定每天的供应计划,即从P,Q 两料场分别向各工地运送多少吨水泥,使总的吨公量数最小。
工地的位置(a,b )及水泥日用量d建模 设工地的位置为(,)i i a b ,水泥日用量为i d ,i=1,2,…,6;料场位置为(,)j j x y ,日储量为j e ,j=1,2; 从料场j 向工地i 的运送量为ij c 。
决策变量:在问题(1)中,决策变量就是料场j 向工地i 的运送量为ij c ;在问题(2)中,决策变量除了料场j 向工地i 的运送量为ij c 外,新建料场位置(,)j j x y 也是决策变量。
目标函数:这个优化问题的目标函数f 是总砘公量数(运量乘以运输距离),所以优化目标可表为2611min j i f c ===∑∑约束条件:各工地的日用量必须满足,所以21,1,2, (6)ij ijc d i ===∑各料场的运送量不能超过日储量,所以61,1,2. ij jic e j =≤=∑求解过程编写模型程序:(介绍集合的定义及应用)model:sets:!确定变量a(1),a(2),a(3),a(4),a(5),a(6);demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!分割数据的空格与逗号或回车的作用是等价的;a=1.25 8.75 0.5 5.75 3 7.25;b=1.25,0.75,4.75,5,6.5,7.75;d=3,5,4,7,6,11;e=20,20;!a=enddatainit:!lingo对数据是按列赋值的,而不是按行;x,y=5,1,2,7;endinit[OBJ] min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));@for(demand(i):[demand_con] @sum(supply(j):c(i,j))=d(i););@for(supply(i):[supply_con] @sum(demand(j):c(j,i))<=e(i););@for(supply(i):@bnd(0.5,x(i),8.75);@bnd(0.75,y(i),7.75););End计算结果:(如果你使用的是试用版软件,则可能不能用全局求解器求解本例,因为问题规模太大了,激活全局最优求解程序的方法,是用“lingo|Options”菜单命令打开选项对话框,在“Global Solver”选项卡上选择“Use Global Solver”)Local optimal solution found.Objective value: 85.26604Total solver iterations: 61Variable Value Reduced CostA( 1) 1.250000 0.000000A( 2) 8.750000 0.000000A( 3) 0.5000000 0.000000A( 4) 5.750000 0.000000A( 5) 3.000000 0.000000A( 6) 7.250000 0.000000B( 1) 1.250000 0.000000B( 2) 0.7500000 0.000000B( 3) 4.750000 0.000000B( 4) 5.000000 0.000000B( 5) 6.500000 0.000000B( 6) 7.750000 0.000000D( 1) 3.000000 0.000000D( 2) 5.000000 0.000000D( 3) 4.000000 0.000000D( 4) 7.000000 0.000000D( 5) 6.000000 0.000000D( 6) 11.00000 0.000000X( 1) 3.254883 0.000000X( 2) 7.250000 0.6335133E-06 Y( 1) 5.652332 0.000000Y( 2) 7.750000 0.5438639E-06 E( 1) 20.00000 0.000000E( 2) 20.00000 0.000000C( 1, 1) 3.000000 0.000000C( 1, 2) 0.000000 4.008540C( 2, 1) 0.000000 0.2051358C( 2, 2) 5.000000 0.000000C( 3, 1) 4.000000 0.000000C( 3, 2) 0.000000 4.487750C( 4, 1) 7.000000 0.000000C( 4, 2) 0.000000 0.5535090C( 5, 1) 6.000000 0.000000C( 5, 2) 0.000000 3.544853C( 6, 1) 0.000000 4.512336C( 6, 2) 11.00000 0.000000Row Slack or Surplus Dual PriceOBJ 85.26604 -1.000000DEMAND_CON( 1) 0.000000 -4.837363DEMAND_CON( 2) 0.000000 -7.158911DEMAND_CON( 3) 0.000000 -2.898893DEMAND_CON( 4) 0.000000 -2.578982DEMAND_CON( 5) 0.000000 -0.8851584DEMAND_CON( 6) 0.000000 0.000000SUPPLY_CON( 1) 0.000000 0.000000SUPPLY_CON( 2) 4.000000 0.000000如果把料厂P,Q的位置看成是已知并且固定的,这时是LP模型,只需把上面的程序中初始段的语句移到数据段就可以了。
线性规划问题的Lingo求解

Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。
用lingo解线性规划问题

2. 所用原料钢管总根数最少
决策变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7)
目标1(总余量) Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , x2 0
线性 规划 模型 (LP)
模型求解
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
Max= 72x1+64x2
2)x1+x2<50 3)12x1+8x2<480
解:直接在LINGO的模型窗口中输 入程序
LINDO/LINGO软件的求解过程
1. 确定常数
2. 识别类型
LINDO/LINGO预处理程序
LP QP NLP IP 全局优化(选) 分枝定界管理程序
ILP
线性优化求解程序 1. 单纯形算法 2. 内点算法(选)
IQP
INLP
非线性优化求解程序
LINDO和LINGO软件能求解的优化模型
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
6米钢管根数 0 1 0 2 1 3 0
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小
运用Lingo进行线性规划求解(实例)

LINGO
支持多种线性规划算法,包括单纯形法、网络算法等。
要点二
Gurobi
主要采用高级优化算法,如分支定界法、动态规划等。
LINGO与Gurobi的比较
LINGO
支持各种类型的约束条件,包括整数约束、非线性约束 等。
Gurobi
特别擅长处理大规模、非线性问题,但对线性问题的处 理能力稍弱。
LINGO
界面简洁,建模语言直观,易于学习和掌握。
Excel
需要结合多个函数和工具进行建模,对于复杂问题操作相对繁琐。
LINGO与Excel的比较
LINGO
针对优化问题进行了优化,求解速度 较快,精度较高。
Excel
求解速度较慢,对于大规模问题可能 无法得到满意的结果。
LINGO与Gurobi的比较
LINGO软件特点
高效求解
LINGO采用先进的求解算法,能够快速求解大规 模线性规划问题。
灵活建模
LINGO支持多种建模语言,用户可以根据需要选 择合适的语言进行建模。
图形界面
LINGO提供直观的图形界面,方便用户进行模型 设计和结果查看。
LINGO软件应用领域
生产计划
LINGO可用于制定生产计划,优化资源配置, 提高生产效率。
金融投资
LINGO可以用于金融投资组合优化,帮助投 资者实现风险和收益的平衡。
物流优化
LINGO可以帮助企业优化物流配送路线,降 低运输成本。
资源分配
LINGO可用于资源分配问题,如人员、设备、 资金的分配,以达到最优效果。
2023
PART 02
线性规划基本概念
REPORTING
线性规划定义
线性规划是数学优化技术的一种,它通过将问 题抽象为数学模型,利用数学方法来寻找最优 解。
讲义:用LINGO解线性规划和整数规划

用LINGO 解线性规划和整数规划在工程技术、经济管理、科学研究和日常生活等许多领域中,人们经常遇到的一类决策问题是:在一系列客观或主观限制条件下,寻求使关注的某个或多个指标达到最大(或最小)的决策。
例如:★ 结构设计要在满足强度要求条件下选择材料的尺寸,使其总重量最轻; ★ 资源分配要在有限资源约束下制定各用户的分配数量,使资源产生的总效益最大;★ 运输方案要在满足物资需求和装载条件下安排从各供应点到各需求点的运量和路线,使运输总费用最低;★ 生产计划要按照产品工艺流程和顾客需求,制定原料、零件、部件等订购、投产的日程和数量,尽量降低成本使利润最高。
上述这种决策问题通常称为优化问题。
人们解决这些优化问题的手段大致有以下几种:1.依赖过去的经验判断面临的问题。
这似乎切实可行,并且没有太大的风险,但是其处理过程会融入决策者太多的主观因素,难以客观地加以描述,从而无法确认结果的最优性。
2.做大量的试验反复比较。
这固然比较真实可靠,但是常要花费太多的资金和人力,而且得到的最优结果基本上离不开开始设计的试验范围。
3.用数学建模的方法建立数学规划模型求解最优决策。
虽然由于建模时要作适当的简化,可能使得结果不一定完全可行或达到实际上的最优,但是它基于客观规律和数据,又不需要多大的费用,具有前两种手段无可比拟的优点。
如果在此基础上再辅之以适当的经验和试验,就可以期望得到实际问题的一个比较圆满的回答,是解决这种问题最有效、最常用的方法之一。
1.1.1 数学规划模型数学规划模型一般有三个要素:一是决策变量,通常是该问题要求解的那些未知量,不妨用n 维向量12n x (x ,x ,,x )'= 表示;二是目标函数,通常是该问题要优化(最小或最大)的那个目标的数学表达式,它是决策变量x的函数,这里抽象地记作f(x);三是约束条件,由该问题对决策变量的限制条件给出,即x允许取值的范围x∈Ω,Ω称可行域,常用一组关于x的不等式(也可是等式)g i(x)≤0(I=1,2,…,m)来界定。
LinGo:投资问题——线性规划

LinGo:投资问题——线性规划⼀.根据题⽬所给数据,建⽴⼀张表格⽅便查看项⽬A项⽬B项⽬C项⽬D可投资年1,2,3,4321,2,3,4,5收回本利年次年年末第5年第5年当年年末本利 1.06 1.15 1.20 1.02最⼤投资⾦额(万)-4030-⼆.设第i年投资第j个项⽬ X ij第j个项⽬的本利为r三.约束条件1.第⼀年投资的⾦额=100万x(1,1) + x(1,4) = 100;2.往后每年的投资⾦额要=今年年初回收的本利和x(2,1) + x(2,3) + x(2,4) = x(1,4) * r(4);x(3,1) + x(3,2) + x(3,4) = x(1,1) * r(1) + x(2,4) * r(4);x(4,1) + x(4,4) = x(2,1) * r(1) + x(3,4) * r(4);x(5,4) = x(3,1) * r(1) + x(4,4) * r(4);3.第2个项⽬的单次投资⾦额要<=40万x(3,2) <= 40;4.第3个项⽬的单次投资⾦额要<=30万x(2,3) <= 30;四.⽬标函数 : 第五年末的本利和max = r(1) * x(4,1) + r(2) * x(3,2) + r(3) * x(2,3) + r(4) * x(5,4);五.LINGO代码sets:row/1..5/;col/1..4/ : r;link(row,col) : x;endsetsdata:r = 1.06, 1.15, 1.20, 1.02;enddata!@for(link(i,j) : x(i,j) = 0);!1;x(1,1) + x(1,4) = 100;!2;x(2,1) + x(2,3) + x(2,4) = x(1,4) * r(4);!3;x(3,1) + x(3,2) + x(3,4) = x(1,1) * r(1) + x(2,4) * r(4);!4;x(4,1) + x(4,4) = x(2,1) * r(1) + x(3,4) * r(4);!5;x(5,4) = x(3,1) * r(1) + x(4,4) * r(4);x(3,2) <= 40;x(2,3) <= 30;[OBJ]max = r(1) * x(4,1) + r(2) * x(3,2) + r(3) * x(2,3) + r(4) * x(5,4);六.LINGO运算结果Global optimal solution found.Objective value: 119.6512Infeasibilities: 0.000000Total solver iterations: 1Variable Value Reduced CostR( 1) 1.060000 0.000000R( 2) 1.150000 0.000000R( 3) 1.200000 0.000000R( 4) 1.020000 0.000000X( 1, 1) 70.58824 0.000000X( 1, 2) 0.000000 0.000000X( 1, 3) 0.000000 0.000000X( 1, 4) 29.41176 0.000000X( 2, 1) 0.000000 0.000000X( 2, 2) 0.000000 0.000000X( 2, 3) 30.00000 0.000000X( 2, 4) 0.000000 0.2077600E-01X( 3, 1) 0.000000 0.000000X( 3, 2) 40.00000 0.000000X( 3, 3) 0.000000 0.000000X( 3, 4) 34.82353 0.000000X( 4, 1) 35.52000 0.000000X( 4, 2) 0.000000 0.000000X( 4, 3) 0.000000 0.000000X( 4, 4) 0.000000 0.1960000E-01X( 5, 1) 0.000000 0.000000X( 5, 2) 0.000000 0.000000X( 5, 3) 0.000000 0.000000X( 5, 4) 0.000000 0.000000Row Slack or Surplus Dual Price1 0.000000 1.1460722 0.000000 1.1236003 0.000000 1.0812004 0.000000 1.0600005 0.000000 1.0200006 0.000000 0.6880000E-017 0.000000 0.7640000E-01OBJ 119.6512 1.000000结论:第⼀年:A:70.58824 D:29.41176第⼆年:C:30第三年:B:40 D:34.82353第四年:A:35.52第五年:不投资。
LINGO软件在线性规划中的运用

Southwestuniversityofscienceandtechnology实验报告LINGO软件在线性规划中的运用学院名称环境与资源学院专业名称采矿工程学生姓名学号指导教师二〇一五年十一月实验LINGO软件在线性规划中的运用1.实验目的掌握LINGO软件求解线性规划问题的基本步骤,了解LINGO软件解决线性规划问题的基本原理,熟悉常用的线性规划计算代码,理解线性规划问题的迭代关系。
2.实验仪器、设备或软件电脑,LINGO软件3.实验内容(1)LINGO软件求解线性规划问题的基本原理;(2)编写并调试LINGO软件求解线性规划问题的计算代码;4.实验步骤(1)使用LINGO计算并求解线性规划问题;(2)写出实验报告,并浅谈学习心得体会(线性规划的基本求解思路与方法及求解过程中出现的问题及解决方法)。
5.题目有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如表1所示。
现有三种货物待运,已知有关数据列于表2中。
又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
具体要求前、后舱分别与中舱之间载重量比例上偏差不超过15%,前、后舱之间不超过10%。
问该货轮应装载A、B、C各多少件,运费收入为最大?要求写出建模分析,数学模型建立,并分别用lingo和matlab编写程序代码,并计算出结果和分析结果。
前舱中舱后舱最大允许载重量(t) 2000 3000 1500容积(m3) 4000 5400 1500商品数量(件) 每件体积(m3/件) 每件重量(t/件) 运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 6006.实验过程!设前舱运A为x11,运B:x12,运C:x13;!设中舱运A为x21,运B:x22,运C:x23;!设后舱运A为x31,运B:x32,运C:x33;!单位:件;!目标函数;max=1000*(x11+x21+x31)+700*(x12+x22+x32)+600*(x13+x23+x33);!数量约束;x11+x21+x31<=600;x12+x22+x32<=1000;x13+x23+x33<=800;!容量约束;x11*10+x12*5+x13*7<=4000;x21*10+x22*5+x23*7<=5400;x31*10+x32*5+x33*7<=1500;!重量约束;x11*8+x12*6+x13*5<=2000;x21*8+x22*6+x23*5<=3000;x31*8+x32*6+x33*5<=1500;!平衡约束;x11*8+x12*6+x13*5<=1.15*(x21*8+x22*6+x23*5);x21*8+x22*6+x23*5<=1.15*(x11*8+x12*6+x13*5);x31*8+x32*6+x33*5<=1.15*(x21*8+x22*6+x23*5);x21*8+x22*6+x23*5<=1.15*(x31*8+x32*6+x33*5);x11*8+x12*6+x13*5<=1.1*(x21*8+x22*6+x23*5);x21*8+x22*6+x23*5<=1.1*(x11*8+x12*6+x13*5);!整数约束;@gin(x11);@gin(x12);@gin(x13);@gin(x21);@gin(x22);@gin(x23);@gin(x31);@gin(x32);@gin(x33);7.心得体会运筹学是近几十年发展起来的一门新兴学科。
利用LINGO进行线性规划问题敏感性分析的报告解读

2 1 4 0 0 0 )
根 据 影 子 价 格 的含 义 , 我 们 马 上 可 以得 出这 样 的结 论 : 用 3 5 元 可 以买 到 l 桶牛奶 , 低 于4 8 元1 桶 的影 子 价 格 , 当然 应 该 做 这项投资 。 进 一 步 追 问 :根 据 “ R A N G E S I N WHI C H T H E B A S I S I S U N C H A N G E D : ” 中“ a l l o w a b l e i n c r e a s e ” 的描述 , 当“ MI L K 原 料 最 多增加 1 0 桶” 时, 是不 是 仍 可 保 证 目标 函 数 是 最 优 值 ?答 案 是 不确定 。 二、 目标 函 数 多 因 素 条 件 改 变 下 的百 分 百 法 则 门窗生产计划 : 某 工厂要生产 两种新产 品 : 门和窗 , 经 测 算 .每 生 产 一 扇 门需 要 在 车 间 1 加T . 1 4 , 时 、在 车 间3 加工3 4 , 时: 每生产一扇窗需要在车间2 和车 间3 各 加 工2 小时 。 而 车间l 每 周 可 用 于 生 产 这 两 种 新 产 品 的时 间为 4 4 , 时 、车 间 2 为1 2 d , 时、 车 间3 为1 8 d , 时 。 已知 每 扇 门 的利 润 为3 0 0 元, 每 扇 窗 的 利 润 为5 0 0 元。 而 且根 据经 市场 调 查 得 到 的这 两 种 新 产 品 的 市 场 需 求 状 况 可 以 确 定 .按 当前 的定 价 可确 保 所 有 的新 产 品 都 能 销 售 出去 。 如 果 门和 窗 的单 位 利 润 都 发 生 变化 , 最 优 解 会 不 会 发 生 变 化 ? 对 总 利 润 又 会 产 生 怎样 的影 响? 当 目标 函数 的两 个 系 数 同 时改 变 的 时候 。要 判 断 是 否 会 改 变 最 优 解 和 目标 函数 值 。 应通过百分之百法则确定 , 即 如 果 目标 函 数 系 数 同 时 变 动 。计 算 出每 一 系 数 变 动量 占该 系 数 允 许变动量 ( 允许 的增量或允许 的减量 ) 的百分 比, 然 后 将 各 个 系 数 的 变 动 百 分 比相 加 , 如果 所 得 的 和 不 超 过 1 0 0 %, 则 最 优 解不变 ; 如果超过 1 0 0 %, 则不能确定最优解是否 改变 , 只 能 通 过重新规划求解判断。 在 这 里 如 果 我 们 假 定 每 扇 门 的利 润 增 加 到4 5 0 元, 而 每 扇 窗 的利 润 降 到4 o 0 元, 那 么 利用 百 分 之 百 法 则 。 会有: 每 扇 门的 利 润 变 化 : 3 0 0 - * 4 5 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 . 5
( 1 )如果 基 础 资 本 是 一千 万 ,该制 定什 么样 的投 资策 略使 得 收益最 大化 ? ( 2 )若银 行 可 以提 供贷 款 ,但 是贷 款 数 目不得 超 系数 ,需求系 数和收 益系数 , 在 具体 的线性 规划 问题 中具有不 同的经 过一 百万 ,同时利 率为 2 . 7 5 % ,又 该制 定什 么样 的投 资 济学 意义 ,一般都 是 已知 实数 。 策略 使得 收益 最大 化 ? 证 券投 资者 ,不 论是 个人 还是 机 构 ,其 目的 主要 在 ( 3 )在 问题 一 的条件 下 ,如 果市 政 证 券 A 的 到 期 于 获得 最 大 预 期 收益 。 为 此 ,他 们 可 以把 全 部 资 金 投 税前 收益 增加 0 . 2 % ,该 制 定什 么 样 的投 资策 略 使 得 收 在 一种 或少 数几 种 收益最 高 的证 券上 , 以争 取 获得 最 大 益最 大化 ? 如 果证 券 的到期税 前收 益减 少 0 . 2 % ,又该 限度 的收 益 。 但 是 ,投 资 的收 益 与 风 险是 形 影 相 伴 、 制定 什么 样 的投资 策略 使得 收益最 大化 ? 相 辅相 成 的 ,高 收益 必然 包含 高 风 险 ,低 风 险 必然 包 含 三 、模型 建立 低 收益 。 所 以,精 明 的投 资 人 为 避 免 过 高 风 险和 过 低 ( 一 )模 型假 设 收 益这 两种 极 端情 况 的 出现 。 往 往 选 择 若 干 证 券 进 行 ( 1 )假 定 证券 获 利 与 否只 与 客 观 现 实 有 关 ,排 除 搭 配 。 而 非集 中于某 种证 券 上 。 本 文考 虑 到 不 同证 券 人 的主 观 因素 及 忽 略 资 金 量 的 影 响 。 证 券 本 身 的 性 的信用 等 级 、到 期年 限 、到期 税 前 收益 、税 率 差 异 性 , 质 ,如信 用等 级 ,收益是 与不 随 时 间改 变 的,也 不考 虑 适 当设 置约 束条 件 ,建立 一个 合理 的证券 投 资模 型 ,使 回收 证券 。 用l i n g o进 行 多 元 线 性 规 划 从 而 确 定 投 资 的 最 优 化 ( 2 )证 券 的投 资额 可 以不 为 整 数 ,可 以在 实 数 范 策略。 围 内任 意 分配投 资额 。 二 、 问题描 述 ( 二 ) 问题 分析 商 人想 对有 价证 券进 行一 次 大规 模 的投 资 ,但 不 知 问题 的 目的是针 对 多元化 投 资给 出一 个 收益最 大化 道 怎么 可 以提高 的收 益率 ,现 可购 买 的有 价 证券 以及 其 的建 议 ,针 对 这 个 目标 ,必 须 考 虑 目标 函 数 、约 束 条 信 用等 级 、到期 年 限、收益 如 下表 所 示 ,按 照 国家 税 率 件 ,在 满足 约束 条件 的情况 下 , ( 下 转第 1 4 0页 )
◆ ◆ ◆ ◆
基于l i n g o 的投资组合线性规划策略分析
◆ 柳 清源 ( 忻州市第一中学校)
【 摘要l 在运筹学中,线性规 划是一 门发展迅速 , 应用范围广泛, 较为成熟的一个重要分支,它是辅助人们进行科学 管理 的 一种数 学 方法 。 在线 性条件 约束 下 ,如何 使 目标 函数 取 得 极值 是 线 性 规 划 的研 究 目的。 综合 各 种证 券 的 信 用等 级 、到 期年 限 、到 期税 前 收益 、税 率 等 因素 ,确 定 投 资 组合 方 案 。 建 模 首先 做 出一 个合 理 的假 设 ,并对 其 做 出相应 的分析 ,明确 问题 的决 策 变量 、目标 函数 和 约束 条件 ,从 而得 出 问题 的基 本模 型 。 然后 根据 实 际条件 , 在基 本模 型 上做 更 改,运 用 l i n g o进行 投 资组合 线 性规 划策 略分析 。 【 关键词】 投 资方案 目标 函数 约束条 件
引 言 的规 定 ,市政 证券 的收益 不 需要 缴纳 个 人所 得税 ,而其 线 性规 划是 运筹 学 中研 究 较 早 、发 展较 快 、应 用 广 他证券 收 益需缴 纳 5 0 % 的个 人所 得税 , 同时 ,为 了保证 泛 、方法 较 成熟 的一个 重 要分 支 ,它 是辅 助 人们 进 行 科 风 险最小 ,商 人还 定有下 列规 定 : 学 管理 的 一种 数 学 方 法 。 研究线性约束条件下线性 目 ( 1 )政府 及 事 业 单 位 的 证 券 总 共 至 少 要购 进 4 0 0 标 函数 的极 值 问题 的 数 学 理论 和 方 法 。 它 是 运 筹 学 的 万 元 ; 个重 要分 支 ,广泛应 用 于军 事 作 战 、经济 分 析 、经 营 ( 2 )购 买 的所 有 证 券 的加 权 信 用 等 级 不 超 过 1 . 4 管 理和 工 程 技术 等 方 面 。 为合理地利用有限的人力、 ( 信 用等 级数 字越 小 ,信 用程 度越 高 ): 物 力 、财 力 等资 源做 出 的最 优 决策 ,提 供科 学 的 依 据 。 ( 3 )所 购证 券 的平均 到期 年 限不超过 5年 。 使 用线 性规 划建 立数 学模 型主 要有 以下 3个 步骤 : 到期税前收益 1 . 列 出约束 条件 及 目标 函数 证 券名称 证券种类 信用等 级 剑期年 限 ( %) 2 . 画 出约束 条件 所表 示 的可行 域 3 . 在可 行域 内求 目标 函数 的最优 解及 最 优值 ^ 市政 2 9 4 . 3 般线 性规 划 问题 的数学 模型 可表 示 为:
一
、
ห้องสมุดไป่ตู้
一
一
m a x (  ̄v a i n ) z = ∑c , x j
“
B
事业单位
2
1 5
5 。 4
C
政府
政府
l
1
4
3
5 . O
4 . 4
{
I
或 - 4 I
0
, … ,
D
( / = 1 , …,
E
市政
5
2