高中数学公式及知识点速记

合集下载

高中数学各知识点公式定理记忆的口诀

高中数学各知识点公式定理记忆的口诀

高中数学各知识点公式定理记忆的口诀一、三角函数口诀1. 正弦函数(sin)•角分离原则,短边对斜边;•万有离心率,正弦值相等。

2. 余弦函数(cos)•角分离原则,长边对斜边;•单位圆上右边集,余弦值相等。

3. 正切函数(tan)•角相并原则,短边对长边;•弧度制好好记,切线值很特殊。

4. 余切函数(cot)•角相并原则,长边对短边;•弧度制不可忽,余切值最驰名。

二、平面几何口诀1. 直角三角形•勾股定理,斜边平方等于两腰平方和;•斜边夸腰秀,腰夸斜边薄。

2. 三角形中位线•三位一体,合力使须知;•三位相等时,心中纳须满。

3. 三角形中心•重心离散,重集于一点;•垂心成直角,位于最尖处;•内心心独特,切离连接点;•外接圆集中,交于三点。

4. 计算面积•一斜两底求三角,半底乘上高;•相乘除以二,恰是三角面。

三、函数口诀1. 一次函数•斜率线与图一般,k为常数表示;•横截距表示线性,x为零点定值。

2. 二次函数•抛物线开口,大声呈现;•正负开口说,a为定义数;•零点表情,一二定理。

3. 指数函数•底小指大,结果更大;•底大指小,结果更小;•零次幂表达,答案为一。

4. 对数函数•底数不等于一,结果纳负数;•底数大于一,结果增大;•底数在零一之间,结果减小。

四、概率与统计口诀1. 排列•排列之秘,A(n, k);•n个不同数,取k个全排列。

2. 组合•组合之密,C(n, k);•n个不同数,取k个无序排列。

3. 随机事件•如实,把事实说清楚;•可和,求并把分情况。

4. 条件概率•乘法做,定义是元素;•全概率,分类找相同。

5. 期望•期待其,乘以概率求;•如此则,累加其结果。

五、导数与积分口诀1. 基本函数的导数•幂函数求导,幂降一,系数要乘;•对数函数求导,除原函数乘导。

2. 基本函数的积分•幂函数积分,幂升一,系数要乘;•对数函数积分,原函数除导。

3. 牛顿-莱布尼茨公式•定积分谁握,不论上界下界;•上去下回,为积分加上负号。

高中数学必修1、2、3、4、5公式及知识点总结大全

高中数学必修1、2、3、4、5公式及知识点总结大全

1 2)(x 是偶函数; )(x f 是奇函数。

3).(0,1,0)a a N >≠>. 1a ≠,0m >,且1m ≠, 0N >).).).二、三角函数、三角变换、解三角形、平面向量4、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 5、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.6、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.7、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2xk k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴函 数性 质9、辅助角公式(化一公式))sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 10.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=11.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.13、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 14、a 与b 的数量积(或内积)θcos ||||b a b a ⋅=⋅15、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +. (3)设a =),(y x ,则22y x a +=16、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则121cos ||||x a ba b x θ⋅==⋅+a =11(,)x y ,b =22(,)x y ).17、向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.*平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212x x y y +.三、数列18、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).19、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;20、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 21、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 22、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.四、不等式23、xy y x ≥+2。

高中数学公式及知识点总结大全(精华版).

高中数学公式及知识点总结大全(精华版).

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1设 2121],, [x x b a x x <∈、那么], [ (0 ( (21b a x f x f x f 在⇔<-上是增函数; ], [ (0 ( (21b a x f x f x f 在⇔>-上是减函数 .(2设函数 (x f y =在某个区间内可导,若 0 (>'x f ,则 (x f 为增函数;若 0 (<'x f ,则 (x f 为减函数 .2、函数的奇偶性对于定义域内任意的 x ,都有 ( (x f x f =-,则 (x f 是偶函数; 对于定义域内任意的 x ,都有 ( (x f x f -=-,则 (x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称。

3、函数 (x f y =在点 0x 处的导数的几何意义函数 (x f y =在点 0x 处的导数是曲线 (x f y =在 (, (00x f x P 处的切线的斜率 (0x f ',相应的切线方程是 ((000x x x f y y -'=-.*二次函数: (1顶点坐标为 24(, 24b ac b a a --; (2焦点的坐标为 241(, 24b ac b a a-+- 4、几种常见函数的导数① 'C 0=;② 1' (-=n n nx x ; ③ x x cos (sin' =;④ x x sin (cos' -=;⑤ a a a x x ln (' =;⑥ xx e e =' (; ⑦ a x x a ln 1 (log'=;⑧ xx 1 (ln'= 5、导数的运算法则(1 '''( u v u v ±=±. (2 '''( uv u v uv =+. (3 ' '' 2( (0 u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数 (y f x =的极值的方法是:解方程 (0f x '=.当 (00f x '=时: (1 如果在 0x 附近的左侧 (0f x '>,右侧 (0f x '<,那么 (0f x 是极大值; (2 如果在 0x 附近的左侧 (0f x '<,右侧 (0f x '>,那么 (0f x 是极小值. 指数函数、对数函数分数指数幂(1m na =0, , a m n N *>∈,且 1n > .(21m nm naa-==0, , a m n N *>∈,且 1n > .根式的性质(1当 na =; 当 n, 0||, 0a a a a a ≥⎧==⎨-<⎩. 有理指数幂的运算性质10页(1 r sa a ⋅=(2 ( r s rsa a=(3( r rab a b=注:若 a >0,指数幂都适用 .. (0, 1, 0a a N>≠>.. 1a ≠, 0m >, 且 1m ≠, 0N >.对数恒等式:.推论 log m nab .常见的函数图象822sin cosθθ+9απ±k α看成锐角时该函数的符号;αππ±+2k α看成锐角时该函数的符号。

高中数学知识点顺口溜速记口诀

高中数学知识点顺口溜速记口诀

高中数学知识点顺口溜速记口诀高中数学知识点顺口溜速记口诀高中数学是大家感到比较难的,因为它需要掌握的内容非常多,而且内容也比较深奥。

然而,在面对这些知识点时,我们可以使用一些口诀来帮助我们掌握这些知识点,从而更好地应对数学考试。

接下来,我将为大家分享一些高中数学知识点顺口溜,让大家轻松记忆。

一、函数篇1、差商公式:差商的结果求值,上下都是相邻f(x)减f(x-1),下标依次减f(x-1)减f(x-2),再取一遍差2、函数图像形状:一次线性就是直线走,二次平方就是开口形,幂函数基数大于1,往上凸,幂函数基数小于1,往下略。

三角函数多角形,都是周期图像形,正弦函数在零度,最低处,余弦函数在零度,最高出。

二、三角篇1、正弦、余弦变换:正弦相量纵轴界,余弦相量横轴解。

2、三角函数图像:正弦函数开口向上,余弦函数开口向下,正交坐标轴描点,周期二洞三抬半。

3、最值判断:正弦最大为1,余弦最小为-1,正切不存在,余切不存在。

三、导数篇1、求导方法:幂函数,古不变,指数函数,右上挂负号,对数函数,左下挂倒数,三角函数,横纵貌相同,反三角,倒数相应关。

2、高中数学一些特别记:自然对数微分,下来还是他自己,绝对值微分,根据正负分两步。

四、行列式篇1、二阶行列式求值:对角线相乘,反对角线相减。

2、三阶行列式求值:按行或按列,每行或每列视为二阶式。

三阶行列式一个箭头去,四阶行列式两箭头正,五阶行列式三箭头,六阶行列式四足占。

五、概率篇1、全概率公式:设A1,A2…,An构成一个样本空间S的一个划分,则对S中任一事件B,有公式:2、贝叶斯定理:样本空间S和一组事件B1,…,Bn,设p(Bi)≠0,对i=1,...,n,且B1,…,Bn构成S的一个划分, 若A是任意一个事件,且p(A)≠0,则有公式:P(Bi|A) = P(A|Bi) P(Bi) / [Σj P(A|Bj)P(Bj)]6、期望的性质(1)恒等性质:E(c)=c;(2)线性性质:E(cX+dY)=cE(X)+dE(Y) ;(3)可加性质(离散):若X和Y是离散型随机变量,则E(X+Y)=E(X)+E(Y) ;以上只是其中的几个口诀,高中数学涉及的知识面非常广泛,如果想要掌握更多的知识点,就要不断地复习和总结。

高中数学公式及知识点速记

高中数学公式及知识点速记

高中数学公式及知识点速记1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.9.闭区间上的二次函数的最值 二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得.10.一元二次方程的实根分布 依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据 (1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩. 12.真值表p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假假13.常见结论的否定形式原结论 反设词 原结论 反设词是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于至少有n 个 至多有(1n -)个 小于 不小于 至多有n 个 至少有(1n +)个 对所有x , 成立 存在某x , 不成立p 或qp ⌝且q ⌝ 对任何x , 不成立存在某x , 成立p 且qp ⌝或q ⌝14.四种命题的相互关系原命题 互逆 逆命题 若p则q 若q则p 互 互互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若qp ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性 (1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()nn n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x→==.29.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,30.分数指数幂 (1)1m nnmaa =(0,,a m n N *>∈,且1n>).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)()n na a =.(2)当n 为奇数时,nn a a =;当n 为偶数时,,0||,0n na a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质(1) (0,,)rs r s aa a a r s Q +⋅=>∈. (2) ()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠,0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a>,0b >,0x >,1x a≠,则函数log ()ax y bx = (1)当ab >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n ++<.(2)2log log log 2a a a m n m n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为 1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos 2x x <+≤.(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式 奇变偶不变,符号看象限 47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=22sin()a b αϕ++( tan b aϕ=). 48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b cR A B C===.52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c Sah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)221(||||)()2OAB S OA OB OA OB ∆=⋅-⋅ . 54.三角形内角和定理 在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a;(2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b= a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a=11(,)x y ,b=22(,)x y ,且b ≠0,则a ∙b(b ≠0)12210x y x y ⇔-=.53. a 与b 的数量积(或内积) a ·b=|a ||b|cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 62.平面向量的坐标运算(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a=(,),x y R λ∈,则λa=(,)x y λλ.(5)设a=11(,)x y ,b=22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式121222221122cos x x y y x y x yθ+=+⋅+(a =11(,)x y ,b=22(,)x y ).64.平面两点间的距离公式,A B d =||AB AB AB=⋅222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a=11(,)x y ,b=22(,)x y ,且b ≠0,则 A||b ⇔b=λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++. (2) 函数()y f x =的图象C按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m=(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m=(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b ab +≥(当且仅当a =b 时取“=”号). (3)b a b a b a +≤+≤-.72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1)()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (3)2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a>时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+①121212||,ll k k b b ⇔=≠;②12121l l k k ⊥⇔=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C ll A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离0022||Ax By C d A B++=+(点00(,)P x y ,直线l :0Ax By C ++=).86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程 (1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB的方程,λ是待定的系数.(2)过直线l:Ax By C ++=与圆C:220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0xy D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若2200()()da xb y =-+-,则d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222xy r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为21y kx r k =±+.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=..98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. 100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 104. 抛物线的切线方程 (1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k +=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式221212()()AB x x y y =-+-或2222211212(1)()||1tan ||1t AB k x x x x y y co αα=+-=-+=-+(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB的倾斜角,k 为直线的斜率). 107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程 对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 117.共线向量定理对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 146.球的半径是R ,则其体积343VR π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径为612a ,外接球的半径为64a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).162.等可能性事件的概率()m P A n=. 163.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).164.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 165.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).166.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 167.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-178.回归直线方程y a bx =+,其中()()()1122211n ni i i i i i n ni i i i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑. 179.相关系数()()12211()()niii n niii i x x y y r x x y y ===--=--∑∑∑ ()()1222211()()niii n ni i i i x x y y x nx y ny ===--=--∑∑∑.|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小. 187.)(x f 在0x 处的导数(或变化率或微商)000000()()()lim lim x x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆.188.瞬时速度00()()()limlim t t s s t t s t s t t tυ∆→∆→∆+∆-'===∆∆.189.瞬时加速度00()()()limlim t t v v t t v t a v t t t∆→∆→∆+∆-'===∆∆.190.)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim lim x x y f x x f x x x∆→∆→∆+∆-==∆∆.191. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.192.几种常见函数的导数 (1) 0='C (C 为常数). (2) '1()()n n x nx n Q -=∈. (3) x x cos )(sin ='. (4) x x sin )(cos -='.(5) x x 1)(ln =';e a xxa log 1)(log ='.(6) x xe e=')(; a a a x x ln )(='.193.导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 194.复合函数的求导法则 设函数()ux ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x处有导数,且'''x u xy y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.196.判别)(0x f 是极大(小)值的方法 当函数)(x f 在点0x 处连续时,(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.197.复数的相等,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈) 198.复数z a bi =+的模(或绝对值) ||z =||a bi +=22a b +.199.复数的四则运算法则(1)()()()()a bi c di a c b d i +++=+++; (2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222()()(0)ac bd bc ada bi c di i c di c d c d+-+÷+=++≠++.。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1. 代数1.1 代数运算1.1.1 加法运算•加法运算法则:如果a、b是实数,则a + b = b + a1.1.2 减法运算•减法运算法则:如果a、b是实数,则a - b ≠ b - a1.1.3 乘法运算•乘法运算法则:如果a、b是实数,则a * b = b * a1.1.4 除法运算•除法运算法则:如果a、b是实数且b≠0,则a / b ≠ b / a1.2 一元二次方程1.2.1 一元二次方程的定义•一元二次方程的标准形式为:ax^2 + bx + c = 0,其中a、b、c是已知实数,且a≠0。

1.2.2 一元二次方程求解公式•一元二次方程的求解公式为:x = (-b ± √(b^2 - 4ac)) / 2a1.3 等差数列1.3.1 等差数列的定义•等差数列是指一个数列中,从第二项起,每一项与它的前一项的差都相等。

1.3.2 等差数列的通项公式•等差数列的通项公式为:an = a1 + (n - 1)d,其中a1是首项,d是公差,n是项数。

1.4 等比数列1.4.1 等比数列的定义•等比数列是指一个数列中,从第二项起,每一项与它的前一项的比都相等。

1.4.2 等比数列的通项公式•等比数列的通项公式为:an = a1 * r^(n - 1),其中a1是首项,r是公比,n是项数。

2. 几何2.1 平面几何2.1.1 直线与平面的位置关系•平面与直线的位置关系有三种情况:平面与直线相交、平面与直线平行、平面与直线重合。

2.1.2 平行线的性质•平行线的性质包括:平行线不相交、平行线上的任意两点到另一平行线的距离相等、平行线的斜率相等。

2.2 空间几何2.2.1 点、直线、平面的位置关系•点、直线、平面的位置关系有三种情况:点在直线上、点在平面上、直线与平面的位置关系。

2.2.2 空间几何中的立体图形•空间几何中的立体图形包括:球体、立方体、圆锥、圆柱、棱柱等。

高中数学重点知识点总结与常用公式整理

高中数学重点知识点总结与常用公式整理

高中数学重点知识点总结与常用公式整理数学作为一门基础科学,对于高中学生来说,是一门重要的学科。

在学习数学的过程中,我们需要掌握一些重点知识点和常用公式。

本文将对高中数学的一些重点知识点进行总结,并整理常用的公式。

一、代数与函数1. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22. 二次根式化简:√(ab) = √a × √b√(a^2 + b^2) 通常化简成√a^2 + √b^2 = a + b3. 一元二次方程的求解公式:对于方程ax^2 + bx + c = 0,有:x = (-b ± √(b^2 - 4ac)) / 2a4. 三角函数的基本关系:sin^2θ + cos^2θ = 1tanθ = sinθ / cosθcotθ = 1 / tanθsecθ = 1 / cosθcosecθ = 1 / sinθ二、数列与数学归纳法1. 等差数列的通项公式:a_n = a_1 + (n - 1)d2. 等比数列的通项公式:a_n = a_1 × r^(n - 1)3. 等差数列的前n项和公式:S_n = n/2 × (a_1 + a_n)4. 等比数列的前n项和公式:S_n = a_1 × (1 - r^n) / (1 - r)三、平面几何1. 三角形的内角和公式:α + β + γ = 180°2. 三角形的面积公式:S = 1/2 × a × hS = √[s(s - a)(s - b)(s - c)] (海伦公式)3. 直角三角形勾股定理:a^2 + b^2 = c^24. 三角形余弦定理:a^2 = b^2 + c^2 - 2bc × cosα5. 三角形正弦定理:a/sinα = b/sinβ = c/sinγ6. 直线与圆的位置关系:切线斜率 = 圆上点的斜率7. 长方形的性质:对角线相等,且相互垂直四、立体几何1. 立方体的体积和表面积: V = a^3S = 6a^22. 圆柱的体积和表面积:V = πr^2hS = 2πrh + 2πr^23. 圆锥的体积和表面积:V = 1/3πr^2hS = πr (l + r)4. 球的体积和表面积:V = 4/3πr^3S = 4πr^2五、概率与统计1. 基本概率公式:P(A) = 所求事件A的可能性数 / 总的可能性数2. 随机事件的相互关系:交集:A∩B并集:A∪B互斥事件:A∩B = ∅3. 正态分布:标准正态分布:μ = 0,σ = 1一般正态分布:μ为平均值,σ为标准差4. 统计指标:平均数: (x1 + x2 + ... + xn) / n中位数:将一组数据从小到大排列后的中间值众数:数据集中出现次数最多的数值极差:最大值与最小值之差方差:各个数据与平均数之差的平方和的平均数标准差:方差的平方根通过对以上重点知识点和常用公式的整理,我们可以更加方便地应用数学工具解决实际问题。

高中数学公式及知识点速记

高中数学公式及知识点速记

高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设x1,x2∈[a,b],x1<x2,那么在[a,b]上是增函数:在[a,b]上是减函数。

(2)设函数y= f(x)在某个区间内可导,若f′(x)>0,则f(x)为增函数;若f′(x)<0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(-x)=-f(x),则f(x)是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

3、函数y=f(x)在点x。

处的导数的几何意义函数y= f(x)在点x处的导数是曲线y=f(x)在P(x0,f(x0))处的切线的斜率f′(xo),相应的切线方程是y-y0=f′(x0)(x-x0).4、几种常见函数的导数①C′=0;②(x n)′=nx n-1;③(sinx)′=cosx:④(cosx)′=-sinx;⑤(a x)′=a x lna;⑥(e x)′=e x;x)′=1/xlna:⑧(lnx)′=1/x;⑦loga5、导数的运算法则(1)(u+v)′=u′+v′(2)(u-v)′=u′-v′(3)(uv)′=u′v+uv′.(4)(u/v) ′=(u′v-uv′)/v^2(v≠0)6、会用导数求单调区间、极值、最值7、求函数y=f(x)的极值的方法是:解方程f′(x)=0,当f'(x0)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x)是极小值。

二、三角函数、三角変換、解三角形、平面向量8、同角三角函数的基本美系式+=1,tana=sina/cosa9、正弦、余弦的诱导公式k∏+(-)a的正弦、余弦,等于a的同名函数,前面加上把a看成锐角吋该函数的符号;(k∏+∏/2) +(-)a的正弦、余弦,等于a的余名函数,前面加上把a看成锐角吋该函数的符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式及知识点速记Written by Peter at 2021 in January高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .9、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

10、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.11、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=12、三角函数的周期函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 13、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换 14、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 15、正弦定理2sin sin sin a b cR A B C ===. 16、余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-. 17、三角形面积公式111sin sin sin 222S ab C bc A ca B ===.18、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+19、a 与b 的数量积(或内积)20、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设=11(,)x y ,=22(,)x y ,则⋅=2121y y x x +. (3)设=),(y x ,则22y x a += 21、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则22、向量的平行与垂直//⇔λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅12120x x y y ⇔+=.三、数列23、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).24、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;25、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 26、等比数列的通项公式1*11()n n n aa a q q n N q-==⋅∈;27、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.四、不等式28、已知y x ,都是正数,则有xy yx ≥+2,当y x =时等号成立。

(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .五、解析几何29、直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).30、两条直线的平行和垂直 若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-. 31、平面两点间的距离公式,A Bd =A 11(,)x y ,B 22(,)x y ).32、点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).33、 圆的三种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.34、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 弦长=222d r -其中22BA CBb Aa d +++=.35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质椭圆:22221(0)x y a b a b +=>>,222b c a =-,离心率1<=ace ,参数方程是cos sin x a y b θθ=⎧⎨=⎩. 双曲线:12222=-b y a x (a>0,b>0),222b a c =-,离心率1>=ace ,渐近线方程是x aby ±=. 抛物线:px y 22=,焦点)0,2(p ,准线2px -=。

抛物线上的点到焦点距离等于它到准线的距离.36、双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上). 37、抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径2||0px PF +=.(抛物线上的点到焦点距离等于它到准线的距离。

)38、过抛物线焦点的弦长p x x px p x AB ++=+++=212122.六、立体几何39、证明直线与直线平行的方法(1)三角形中位线 (2)平行四边形(一组对边平行且相等) 40、证明直线与平面平行的方法(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行)(2)先证面面平行41、证明平面与平面平行的方法平面与平面平行的判定定理(一个平面内的两条相交....直线分别与另一平面平行) 42、证明直线与直线垂直的方法 转化为证明直线与平面垂直 43、证明直线与平面垂直的方法(1)直线与平面垂直的判定定理(直线与平面内两条相交....直线垂直) (2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面)44、证明平面与平面垂直的方法平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直) 45、柱体、椎体、球体的侧面积、表面积、体积计算公式圆柱侧面积=rl π2,表面积=222r rl ππ+ 圆椎侧面积=rl π,表面积=2r rl ππ+13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).球的半径是R ,则其体积343V R π=,其表面积24S R π=.46、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算 47、点到平面距离的计算(定义法、等体积法)48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。

相关文档
最新文档