2020年高中数学公式及知识点总结大全(精华版)
高中数学公式及知识点总结大全(精华版).pdf

高中文科数学公式一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x 、那么],[)(0)()(21b a x f x f x f 在上是增函数;],[)(0)()(21b a x f x f x f 在上是减函数.(2)设函数)(x f y 在某个区间内可导,若0)(x f ,则)(x f 为增函数;若0)(x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是偶函数;对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y 在点0x 处的导数的几何意义函数)(x f y 在点0x 处的导数是曲线)(x f y 在))(,(00x f x P 处的切线的斜率)(0x f ,相应的切线方程是))((000x x x f y y.*二次函数:(1)顶点坐标为24(,)24b ac baa;(2)焦点的坐标为241(,)24b ac baa4、几种常见函数的导数①'C0;②1')(n n nxx ;③x x cos )(sin ';④x x sin )(cos ';⑤a a a xxln )(';⑥xxe e ')(;⑦ax x a ln 1)(log ';⑧xx 1)(ln '5、导数的运算法则(1)'''()uv uv . (2)'''()uv u vuv . (3)'''2()(0)uu v uv vvv.6、会用导数求单调区间、极值、最值7、求函数y f x 的极值的方法是:解方程0f x.当00fx 时:(1) 如果在0x 附近的左侧0f x ,右侧0f x ,那么0f x 是极大值;(2) 如果在0x 附近的左侧0f x,右侧0fx,那么0f x 是极小值.指数函数、对数函数分数指数幂(1)mnmn aa (0,,am nN ,且1n ). (2)11mnm nmnaaa(0,,am nN ,且1n ).根式的性质(1)当n 为奇数时,nnaa ;当n 为偶数时,,0||,0nna aaa a a.有理指数幂的运算性质(1)(0,,)r sr saaaa r s Q . (2) ()(0,,)rsrs a a a r s Q .(3)()(0,0,)rrrab a b abrQ .注:若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式与对数式的互化式:log ba NbaN (0,1,0)aa N ..对数的换底公式 :log log log m a m N N a(0a ,且1a ,0m,且1m ,0N ).对数恒等式:log a Na N (0a ,且1a ,0N ). 推论log log m na a n bb m(0a,且1a ,0N).常见的函数图象k<0k>0y=kx+boyxa<0a>0y=ax2+bx+coyx-1-212y=x+1x oyx0<a<1a>11y=a xoyx0<a<1a>11y=log a xoyx二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sincos1,tan =cossin .9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)k的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号;2k的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。
高三数学公式总结知识点

高三数学公式总结知识点在高中数学学习中,数学公式是重要的知识点之一。
掌握数学公式不仅能够帮助我们快速解题,还能够巩固对数学概念的理解。
下面,我们将对高三数学涉及的一些常用公式进行总结。
一. 几何公式1. 平面图形- 矩形面积公式:S=长×宽- 正方形周长公式:P=4×边长- 三角形面积公式:S=(底边长×高)/2- 三角形周长公式:P=边1+边2+边3- 圆面积公式:S=πr² (其中,π约等于3.14,r为半径)- 圆周长公式:C=2πr2. 空间图形- 圆柱体表面积公式:S表=2πrh+2πr² (其中,r为底面半径,h为高)- 圆柱体体积公式:V=πr²h- 球体表面积公式:S表=4πr²- 球体体积公式:V=(4/3)πr³二. 三角函数公式1. 角度关系- 锐角三角函数关系:sin α = 对边/斜边,cos α = 邻边/斜边,tan α = 对边/邻边- 任意角的三角函数关系:sin α = sin(α+180°),cos α = -cos(α+180°)2. 和差化积公式- sin(A ± B) = sinAcosB ± cosAsinB- cos(A ± B) = cosAcosB ∓ sinAsinB- tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)3. 二倍角公式- sin2θ = 2sinθcosθ- cos2θ = cos²θ - sin²θ- tan2θ = 2tanθ / (1 - tan²θ)三. 概率与统计公式1. 排列组合- 排列公式:P(n,m) = n! / (n-m)!- 组合公式:C(n,m) = n! / (m!(n-m)!)2. 概率公式- 事件A的概率:P(A) = A发生的次数 / 总的可能性次数- 事件A与B同时发生的概率:P(A∩B) = P(A) × P(B|A) (其中P(B|A)表示在事件A已经发生的条件下,事件B发生的概率)四. 微积分公式1. 导数与微分- 实函数导数:若y=f(x),则y对于x的导数为dy/dx或y',表示函数y=f(x)在x点的变化率。
高中数学常用公式及结论

高中数学常用公式及结论高中数学常用公式及结论(计数原理、概率、随机变量及其分布)一、计数原理1、分类计数原理(加法原理):2、分步计数原理(乘法原理):3、排列数公式:4、组合数公式:组合数的两个性质:5、二项式定理:二项展开式的通项公式:二、概率1、事件的关系与运算① 关系:如果事件 a 的组成部分也是事件 b 的组成部分,(a发生必有事件b发生):a ㄷ b ;并事件(和事件):a、b中至少有一个发生的事件:a ∪b ,或者 a+b 。
且事件(积事件):a、b同时发生:a ∩ b,或者 ab。
互斥事件:a ∩ b = φ ,表示 a 与 b 不可能同时发生。
基本事件是互斥的。
对立事件:属于 a 而不属于 b 的部分所构成的事件,称为 a 与 b 的差,记为 a - b,也可表示为 a - ab ,它表示a发生而b不发生的事件。
② 运算:结合率:a(bc)=(ab)c a∪(b∪c)=(a∪b)∪c ;分配率:(ab)∪c=(a∪c)∩(b∪c) (a∪b)∩c=(ac)∪(bc) 。
2、古典概型设任一事件 a ,它是由ω1 ,ω2 ,... ωm , 组成的,则有3、几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。
对任一事件a,其中 l 为几何度量(长度、面积、体积)。
4、条件概率设 a、b 是两个事件,且p(a) > 0,则称为事件 a 发生条件下,事件 b 发生的条件概率,条件概率是概率的一种,所有概率的性质都适合于条件概率。
5、互斥事件a,b分别发生的概率的和:p(a+b)=p(a)+p(b)。
n 个互斥事件分别发生的概率的和:p(a1+a2+…+an)=p(a1)+p(a2)+…+p(an)。
6、独立事件a,b同时发生的概率:p(a·b)= p(a)·p(b)。
高三知识点总结数学公式

高三知识点总结数学公式数学在高三阶段是一个非常重要的学科,而掌握数学公式是解决问题的关键。
下面是高三数学知识点总结的数学公式:一、代数公式1. 平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 - 2ab + b^2$2. 二次方程求根公式:对于二次方程 $ax^2 + bx + c = 0$,它的解为$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$3. 因式分解公式:已知 $a,b,c$ 为实数,且 $ac > 0$,则$ax^2 + bx + c = a(x - \alpha)(x - \beta)$其中,$\alpha$ 和 $\beta$ 是二次方程的两个根4. 比例公式:若 $a : b = c : d$,则有$\frac{a}{b} = \frac{c}{d}$5. 三角函数正弦定理:在任意三角形 $ABC$ 中,设 $a,b,c$ 分别为三角形的三边,$\alpha,\beta,\gamma$ 分别为对应的内角,则$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} =\frac{c}{\sin(\gamma)}$6. 三角函数余弦定理:在任意三角形 $ABC$ 中,设 $a,b,c$ 分别为三角形的三边,$\alpha,\beta,\gamma$ 分别为对应的内角,则$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$二、几何公式1. 面积公式:长方形的面积公式为 $A = l \times w$,其中 $l$ 和 $w$ 分别代表矩形的长度和宽度2. 直角三角形斜边公式:在一个直角三角形中,斜边的长度可以通过勾股定理计算,即$c = \sqrt{a^2 + b^2}$,其中 $a$ 和 $b$ 分别代表直角三角形的两个直角边的长度3. 圆的面积公式:圆的面积可以通过半径计算,公式为 $A = \pi r^2$,其中$r$ 代表圆的半径4. 角度和公式:一个多边形的内角和可以通过公式计算,公式为 $180° \times (n-2)$,其中 $n$ 代表多边形的边数5. 正多边形内角公式:一个正 $n$ 边形的内角可以通过公式计算,公式为 $(n-2)\times 180° / n$,其中 $n$ 代表正多边形的边数三、微积分公式1. 导数规则:* 常数导数:$d/dx (c) = 0$,其中 $c$ 为常数* 幂函数导数:$d/dx (x^n) = n \cdot x^{n-1}$,其中 $n$ 为常数* 和差法则:$d/dx (f(x) \pm g(x)) = f'(x) \pm g'(x)$,其中$f(x)$ 和 $g(x)$ 为函数* 乘法法则:$d/dx (f(x) \cdot g(x)) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$,其中 $f(x)$ 和 $g(x)$ 为函数* 除法法则:$d/dx (\frac{f(x)}{g(x)}) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$,其中 $f(x)$ 和 $g(x)$ 为函数2. 积分规则:* 定积分:$\int_{a}^{b} f(x) dx$,表示从 $a$ 到 $b$ 的函数$f(x)$ 的面积* 不定积分:$\int f(x) dx$,表示函数 $f(x)$ 的原函数通过掌握这些数学公式,高三的学生们可以更加熟练地解题,提高数学能力。
高中数学知识点公式全部总结

高中数学知识点公式全部总结一、代数1. 集合与函数- 集合的表示与运算:列举法、描述法,交集、并集、补集。
- 函数的概念:定义域、值域、单调性、奇偶性。
- 函数的运算:加法、减法、乘法、除法、复合函数。
2. 代数式- 整式与分式:单项式、多项式、因式分解、分式的加减乘除。
- 二次根式:开方、根式的乘除、有理化因式。
3. 一元一次方程与不等式- 方程的解法:移项、合并同类项、系数化为1。
- 不等式的解法:移项、合并同类项、分数的交叉相乘。
4. 一元二次方程- 标准形式、配方法、公式法、因式分解法。
- 根的判别式:Δ = b² - 4ac。
5. 多项式函数- 多项式的图像:零点、极值点、对称轴。
- 多项式的因式分解:提公因式、分组分解、十字相乘。
二、几何1. 平面几何- 点、线、面的基本性质。
- 三角形:边角关系、内角和定理、海伦公式。
- 四边形:平行四边形、矩形、菱形、正方形的性质。
- 圆的性质:圆心角、弦、切线、割线、圆周角。
2. 立体几何- 空间图形的表面积与体积计算。
- 棱柱、棱锥、圆柱、圆锥、球的性质与计算。
3. 解析几何- 坐标系:直角坐标系、极坐标系。
- 直线与圆的方程:点斜式、两点式、一般式、圆的标准式。
- 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。
三、概率与统计1. 概率- 随机事件的概率:古典概型、几何概型。
- 条件概率与独立事件。
- 贝叶斯定理。
2. 统计- 数据的收集与整理:频数分布、直方图。
- 统计量:平均数、中位数、众数、方差、标准差。
- 线性回归与相关系数。
四、数学归纳法- 证明方法:直接证明、间接证明。
- 数学归纳法的步骤:基础情况、归纳步骤。
五、数列1. 等差数列与等比数列- 通项公式、求和公式。
- 等差数列与等比数列的性质。
2. 级数- 等差级数与等比级数的求和。
- 无穷级数的概念:收敛与发散。
六、微积分初步1. 极限- 极限的概念:数列极限、函数极限。
高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<−上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>−上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =−,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f −=−,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y −'=−.*二次函数: (1)顶点坐标为24(,)24b ac b a a −−;(2)焦点的坐标为241(,)24b ac b a a−+− 4、几种常见函数的导数 ①'C 0=;②1')(−=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '−=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v −=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa−==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨−<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
2020最新高一数学重点公式总结三篇

2020最新高一数学重点公式总结三篇很多同学一看到数学题目就脑子一片空白,毫无思路,那是因为你没有把公式记牢,找到相应的公式是解决数学难题的第一步。
高一数学重点公式总结1一)两角和差公式(写的都要记)sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA ?cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)二)用以上公式可推出下列二倍角公式tan2A=2tanA/[1-(tanA) ]cos2a=(cosa) -(sina) =2(cosa) -1=1-2(sina)(上面这个余弦的很重要)sin2A=2sinA_co 1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60 34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等高一数学重点公式总结3立体几何基本课题包括:-面和线的重合-两面角和立体角-方块,长方体,平行六面体-四面体和其他棱锥-棱柱-八面体,十二面体,二十面体-圆锥,圆柱-球-其他二次曲面:回转椭球,椭球,抛物面,双曲面公理立体几何中有4个公理:公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2过不在一条直线上的三点,有且只有一个平面.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4平行于同一条直线的两条直线平行.立方图形立体几何公式名称符号面积S体积V正方体a边长S=6a V=a长方体a长S=2(ab+ac+bc)V=abcb宽c高棱柱S底面积V=Shh高棱锥S底面积V=Sh/3h高棱台S1和S2上、下底面积V=h〔S1+S2+(S1 )/2〕/3 h高拟柱体S1上底面积V=h(S1+S2+4S0)/6S2下底面积S0中截面积h高圆柱r底半径C=2rV=S底h=rhh高C底面周长S底底面积S底=RS侧侧面积S侧=ChS表表面积S表=Ch+2S底S底=r空心圆柱R外圆半径r内圆半径h高V=h(R -r )直圆锥r底半径h高V=r h/3圆台r上底半径R下底半径h高V=h(R +Rr+r )/3球r半径d直径V=4/3r =d /6球缺h球缺高r球半径a球缺底半径a =h(2r-h)V=h(3a +h )/6=h2(3r-h)/3 球台r1和r2球台上、下底半径1.1有向线段1.2直线上的点的直角坐标1.3几个基本公式1.4平面上的点的直角坐标1.5射影的基本原理1.6几个基本公式二曲线与议程2.1曲线的直解坐标方程的定义2.2已各曲线,求它的方程2.3已知曲线的方程,描绘曲线2.4曲线的交点三直线3.1直线的倾斜角和斜率3.2直线的方程Y=kx+b3.3直线到点的有向距离3.4二元一次不等式表示的平面区域3.5两条直线的相关位置3.6二元二方程表示两条直线的条件3.7三条直线的相关位置3.8直线系四圆4.1圆的定义4.2圆的方程4.3点和圆的相关位置4.4圆的切线4.5点关于圆的切点弦与极线4.6共轴圆系4.7平面上的反演变换五椭圆5.1椭圆的定义5.2用平面截直圆锥面可以得到椭圆5.3椭圆的标准方程5.4椭圆的基本性质及有关概念5.5点和椭圆的相关位置5.6椭圆的切线与法线5.7点关于椭圆的切点弦与极线5.8椭圆的面积六双曲线6.1双曲线的定义6.2用平面截直圆锥面可以得到双曲线6.3双曲线的标准方程6.4双曲线的基本性质及有关概念6.5等轴双曲线6.6共轭双曲线6.7点和双曲线的相关位置6.8双曲线的切线与法线6.9点关于双曲线的切点弦与极线七抛物线7.1抛物线的定义7.2用平面截直圆锥面可以得到抛物线7.3抛物线的标准方程7.4抛物线的基本性质及有关概念7.5点和抛物线的相关位置7.6抛物线的切线与法线7.7点关于抛物线的切点弦与极线7.8抛物线弓形的面积八坐标变换二次曲线的一般理论8.1坐标变换的概念8.2坐标轴的平移8.3利用平移化简曲线方程8.4圆锥曲线的更一般的标准方程8.5坐标轴的旋转8.6坐标变换的一般公式8.7曲线的分类8.8二次曲线在直角坐标变换下的不变量8.9二元二次方程的曲线8.10二次曲线方程的化简8.11确定一条二次曲线的条件8.12二次曲线系九参数方程十极坐标十一斜角坐标。
2020高考数学高中数学必备公式与知识点大汇总

2020高考数学:高中数学必备公式与知识点大汇总向学霸进军特意整理出2020高考数学之高中数学必备公式与知识点,希望能够为广大考生和家长提供帮助。
1函数的单调性2函数的奇偶性3函数在某处的导数的几何意义4几种常见函数的导数5导数的运算法则6求函数的极值7分数指数幂8根式的性质9有理数指数幂的运算性质10对数公式11常见的函数图像12同角三角函数的基本关系式13正弦、余弦的诱导公式14和角与差角公式15二倍角公式16三角函数的周期17正弦定理18余弦定理19面积定理20三角形内角和定理21a与b的数量积22平面向量的坐标运算23两向量的夹角公式24平面两点间距离公式25向量的平行与垂直26数列通项公式与前n项和的关系27等差数列通项公事与前n项和公式28等差数列的性质29等比数列的通项公式与前n项和公式30等比数列的性质31常用不等式32直线的三角方程33两条直线的垂直和平行34点到直线的距离35圆的两种方程36点与圆的位置关系37直线与圆的位置关系38椭圆、双曲线、抛物线的性质39双曲线方程与渐近线方程的关系40抛物线的焦半径公式41平方差标准差的计算42回归直线方程43独立性检验44复数45参数方程、极坐标化为直角坐标。