整式的乘法知识讲解
整式的乘除知识点归纳

整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。
一、整式的定义整式由单项式或多项式组成。
单项式是一个数字或变量的乘积,也可以包含指数。
例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。
多项式是多个单项式的和。
例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。
二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。
2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。
3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。
在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。
例如,(2x^2)×(3y)=6x^2y。
三、整式的除法整式的除法是乘法的逆过程。
除法运算中,被除数除以除数得到商。
以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。
例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。
例如,5/0没有意义。
在进行整式的除法运算时,要注意约分和消去的原则。
例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。
四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。
常见的运算顺序规则如下:1.先解决括号内的运算。
2.然后进行乘法和除法的运算。
3.最后进行加法和减法的运算。
五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。
对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。
整式的乘除知识点

整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。
整式的除法运算是指对一个整式除以另一个整式的运算。
整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。
一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。
例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。
例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。
例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。
例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。
例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。
例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。
这个性质可以简化计算,使得整式的乘法更加灵活。
2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。
这个性质可以改变运算次序,简化计算过程。
3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。
整式乘法法则知识点总结

整式乘法法则知识点总结一、整式乘法法则的定义整式乘法法则是指在代数中,两个整式相乘得到的结果仍为整式。
简单来说,整式乘法就是指对两个整式进行乘法运算,得到的结果仍然是整式。
整式乘法的结果可以表示为一个新的整式,它由被乘数和乘数的各项的乘积相加得到。
整式乘法法则的定义包括以下几点:1. 整式乘法的定义:两个整式相乘得到的结果仍为整式。
2. 整式的乘法形式:当两个整式相乘时,可以将它们的各项进行对应的乘法运算,然后将乘积相加得到结果。
3. 乘法的交换律:在整式的乘法中,乘法的交换律成立,即乘数的顺序可以交换,结果不变。
整式乘法法则的定义是整式乘法的基础,理解了这个定义,我们就能够正确地进行整式的乘法。
接下来,我们将介绍整式乘法法则的性质,以及整式乘法的具体运算规则。
二、整式乘法法则的性质整式乘法法则有许多重要的性质,这些性质包括了整式乘法的基本规律和运算法则。
了解整式乘法法则的性质,可以帮助我们更好地理解整式乘法的运算规则。
下面是整式乘法法则的性质:1. 分配律:整式乘法满足分配律,即加法和乘法的结合性。
对于任意的整式a、b、c,有a*(b+c) = a*b + a*c。
2. 乘法的交换律:整式乘法满足交换律,即乘数的顺序可以交换,结果不变。
对于任意的整式a、b,有a*b = b*a。
3. 乘法的结合律:整式乘法满足结合律,即乘法的顺序可以变换,结果不变。
对于任意的整式a、b、c,有(a*b)*c = a*(b*c)。
4. 零乘法则:任何整式与0相乘,结果都为0。
即0*a = 0。
5. 单位元素法则:任何整式与1相乘,结果都为它本身。
即1*a = a。
整式乘法法则的性质是整式乘法的基本规律,它们对于整式乘法的具体运算具有重要的指导作用。
了解了整式乘法法则的性质,我们就能够更好地运用整式乘法进行代数运算。
接下来,我们将介绍整式乘法的具体运算规则,以及整式乘法法则在具体应用中的运用。
三、整式乘法法则的运算规则整式乘法法则的具体运算规则是在整式乘法的基础上,根据乘法法则的性质进行整式的具体运算。
整式乘除知识点

整式乘除知识点整式是由常数和变量按照代数运算的规则经过加、减、乘、除等基本运算得到的式子。
整式乘除是代数学中的重要内容,掌握整式乘除的知识点对于解决代数问题和化简式子非常有帮助。
下面将介绍整式乘法和整式除法的要点和方法。
一、整式乘法整式乘法是指将两个整式相乘得到一个新的整式。
整式乘法的基本思想是利用分配律和合并同类项的原则进行运算。
1. 分配律分配律是整式乘法的基本运算定律,即对于任意的整式a、b、c来说,有:a × (b + c) = a × b + a × c这个定律表示乘法可以分别作用于加减运算中的每一项。
2. 合并同类项在整式乘法中,对于相同的字母次幂,只需要将系数相乘即可。
例如:3x × 4x = 12x²,3a² × 2a² = 6a^4。
二、整式除法整式除法是指将一个整式除以另一个整式,得到商和余数的运算过程。
整式除法的基本思想是通过长除法的方式进行计算。
整式除法的步骤如下:1. 对除数和被除数的次数进行降幂排列,确保被除数和除数的次数次幂之间存在对应关系。
2. 从被除数中选择一个项作为被除数,与除数的首项进行除法运算,得到一个商和余数。
3. 将商乘以除数,并减去这个乘积。
4. 重复步骤2和步骤3,直到被除数的次数次幂小于除数的次数次幂为止。
5. 将所有的商相加,并将余数放在最后。
例如,计算整式 (3x³ - 2x² + 5x - 1) ÷ (x - 2) 的步骤如下:(3x³ - 2x² + 5x - 1) ÷ (x - 2) = 3x² + 4x + 13 + 25/(x - 2)通过以上步骤,我们可以得到商和余数。
三、整式乘除综合运算在实际应用中,整式的乘法和除法常常需要综合运算。
在进行整式乘除综合运算时,需要根据分配律以及合并同类项的原则,进行逐步计算。
整式乘除知识点总结

整式乘除知识点总结为了让大家更好的迎接中考,那么,整式的知识点是必不可少的。
下面是小编与大家分享的整式乘除知识点总结,欢迎大家参考借鉴!整式乘除知识点总结(一)1.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。
3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到整式乘除知识点总结(二)单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:a)积的系数等于各因式系数积,先确定符号,再计算绝对值。
整式的乘法运算

整式的乘法运算整式的乘法运算是数学中的基本运算之一,它涉及到多项式之间的相乘。
在本文中,我们将探讨整式的乘法运算原理以及应用。
同时,我们还将介绍一些乘法运算的基本性质和技巧。
一、整式的定义首先,我们需要了解整式的概念。
整式是由常数、变量及其乘积,并通过加法和减法连接而成的表达式。
一般形式为:f(x) = a0 + a1x + a2x^2 + ... + anxn其中,a0, a1, a2, ..., an为常数系数,x为变量,n为整数。
整式可以包含多个项,每个项都由常数系数乘以变量的幂次构成。
二、整式的乘法原理整式的乘法运算遵循分配律的原则,即整式A乘以整式B的结果等于A的每一项分别乘以B的每一项,然后将结果相加。
具体而言,假设A和B分别为两个整式,其形式如下:A = a0 + a1x + a2x^2 + ... + anxnB = b0 + b1x + b2x^2 + ... + bmxm则A乘以B的结果为:AB = (a0b0) + (a0b1)x + (a0b2)x^2 + ... + (a0bm)xm + (a1b0)x +(a1b1)x^2 + ... + (a1bm)x^(m+1) + ... + (anbn)x^(n+m)根据以上乘法原理,我们可以进行整式的乘法运算。
三、整式乘法的基本性质整式乘法具有以下几个基本性质:1. 乘法交换律:整式的乘法满足交换律,即A乘以B等于B乘以A。
2. 乘法结合律:整式的乘法满足结合律,即(A乘以B)乘以C等于A乘以(B乘以C)。
3. 乘法分配律:整式的乘法满足分配律,即A乘以(B加上C)等于A乘以B加上A乘以C。
基于这些性质,我们可以灵活运用乘法运算。
四、整式乘法的技巧在进行整式乘法时,我们可以运用一些技巧来简化计算过程。
下面介绍几个常用的技巧:1. 使用加法运算简化:当整式的某些项相乘时,我们可以先将这些项相加,然后再进行乘法运算。
2. 同类项的乘法:如果两个整式中含有相同的变量和相同的幂次,我们可以将它们的系数相乘,然后保留相同的变量和幂次。
八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。
3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。
2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。
三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
3. 公式法:利用平方差公式和完全平方公式进行因式分解。
注意:分解因式必须分解到每一个因式都不能再分解为止。
四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。
方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。
五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。
在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。
熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。
掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。
整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。
下面就让我们一起来深入了解整式乘除的相关知识点。
一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。
例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法(基础)
【学习目标】
1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.
2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.
【要点梳理】
要点一、单项式的乘法法则
单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.
要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合
应用.
(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系
数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相
同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计
算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的
一个因式.
(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.
(4)三个或三个以上的单项式相乘同样适用以上法则.
要点二、单项式与多项式相乘的运算法则
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 即()m a b c ma mb mc ++=++.
要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为
多个单项式乘单项式的问题.
(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.
(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,
同时还要注意单项式的符号.
(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到
最简的结果.
要点三、多项式与多项式相乘的运算法则
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.
要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2
x a x b x a b x ab ++=+++. 【典型例题】
类型一、单项式与单项式相乘
1、计算:
(1)221323ab a b abc ⎛⎫⋅-⋅ ⎪⎝⎭
; (2)121(2)(3)2n n x y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭
; (3)232216()()3m n x y mn y x -⋅-⋅⋅-.
【思路点拨】前两个题只要按单项式乘法法则运算即可,第(3)题应把x y -与y x -分别看作一个整体,那么此题也属于单项式乘法,可以按单项式乘法法则计算.
【答案与解析】
解: (1)221
323ab a b abc ⎛⎫
⋅-⋅ ⎪⎝⎭
22132()()3a a a b b b c ⎡⎤⎛⎫=⨯-⨯⋅⋅⋅⋅ ⎪⎢⎥⎝⎭⎣⎦
442a b c =-.
(2)121(2)(3)2n n x y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭
121(2)(3)()()2n n x x x y y z +⎡⎤⎛⎫=-⨯-⨯-⋅⋅⋅ ⎪⎢⎥⎝⎭⎣
⎦ 413n n x y z ++=-.
(3)232216()()3m n x y mn y x -⋅-⋅⋅-
232216()()3
m n x y mn x y =-⋅-⋅⋅- 2
2321(6)()()[()()]3m m n n x y x y ⎡⎤=-⨯⋅⋅-⋅-⎢⎥⎣⎦ 335
2()m n x y =--.
【总结升华】凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉. 举一反三:
【变式】(2014?甘肃模拟)计算:2m 2?(﹣2mn )?(﹣m 2n 3).
【答案】解:2m 2?(﹣2mn )?(﹣m 2n 3)
=[2×(﹣2)×(﹣)](m 2×mn×m 2n 3
)
=2m 5n 4.
类型二、单项式与多项式相乘
2、 计算:
(1)2124223
3ab ab ab b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭; (2)22213(6)32xy y x xy ⎛⎫-+-- ⎪⎝⎭
; (3)2222340.623a ab b a b ⎛⎫⎛⎫+--
⎪⎪⎝⎭⎝⎭; 【答案与解析】
解:(1)2124223
3ab ab ab b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭ 212114(2)23223
ab ab ab ab ab b ⎛⎫⎛⎫⎛⎫=-⋅+--+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 232221233
a b a b ab =-+-. (2)22213(6)32xy y x xy ⎛⎫-+-- ⎪⎝⎭ 2222213(6)(6)()(6)32xy xy y xy x xy ⎛⎫=--+-+-- ⎪⎝⎭
g 23432296x y xy x y =-+.
(3)2222340.623a ab b a b ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭2222334253a ab b a b ⎛⎫⎛⎫=+-- ⎪⎪⎝⎭⎝⎭ 222222223443423353a a b ab a b b a b ⎛⎫⎛⎫⎛⎫⎛⎫=
⋅-+⋅-+-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42332444235
a b a b a b =--+. 【总结升华】计算时,符号的确定是关键,可把单项式前和多项式前的“+”或“-”号看作性质符号,把单项式乘以多项式的结果用“+”号连结,最后写成省略加号的代数和.
举一反三:
【变式1】224312(6)2m n m n m n ⎛⎫-+- ⎪⎝⎭
. 【答案】
解:原式2
224232211222m n m n m n +⨯⎛⎫=-+-⋅ ⎪⎝⎭ 26262262171221244
m n m n m n m n m n =-+=-.
【变式2】若n 为自然数,试说明整式()()2121n n n n +--的值一定是3的倍数.
【答案】
解:()()2121n n n n +--=22
2223n n n n n +-+= 因为3n 能被3整除,所以整式()()2121n n n n +--的值一定是3的倍数. 类型三、多项式与多项式相乘
3、计算:
(1)(32)(45)a b a b +-;
(2)2(1)(1)(1)x x x -++;
(3)()(2)(2)()a b a b a b a b +--+-;
(4)25(21)(23)(5)x x x x x ++-+-.
【答案与解析】
解:(1)(32)(45)a b a b +-221215810a ab ab b =-+-2212710a ab b =--.
(2)2(1)(1)(1)x x x -++22(1)(1)x x x x =+--+41x =-.
(3)()(2)(2)()a b a b a b a b +--+-2222(2)(2)a ab b a ab b =---+-
222222a ab b a ab b =----+2ab =-.
(4)2
5(21)(23)(5)x x x x x ++-+- 322(5105)(2715)x x x x x =++---
32251052715x x x x x =++-++
32581215x x x =+++.
【总结升华】多项式乘以多项式时须把一个多项式中的每一项乘以另一个多项式的每一项,刚开始时要严格按法则写出全部过程,以熟悉解题步骤,计算时要注意的是:(1)每一项的符号不能弄错;(2)不能漏乘任何一项.
4、(2014秋?花垣县期末)解方程:(x+7)(x+5)﹣(x+1)(x+5)=42.
【思路点拨】先算乘法,再合并同类项,移项,系数化成1即可.
【答案与解析】
解:(x+7)(x+5)﹣(x+1)(x+5)=42,
x 2+12x+35﹣(x 2
+6x+5)=42,
6x+30=42,
6x=12,
x=2.
【总结升华】本题考查了解一元一次方程,多项式乘以多项式的应用,主要考查学生的计算能力,难度适中.
举一反三:
【变式】求出使(32)(34)9(2)(3)x x x x +->-+成立的非负整数解.
【答案】不等式两边分别相乘后,再移项、合并、求解.
解:22912689(6)x x x x x -+->+-, 229689954x x x x -->+-,
229699854x x x x --->-,
1546x ->-,
4615
x <. ∴ x 取非负整数为0,1,2,3.。