灰色关联分析(1)
灰色关联分析法

灰色关联分析法灰色关联分析法是一种用于研究多个指标之间相关性的统计方法。
它通过计算不同指标之间的关联度来确定它们之间的关系强度。
本文将介绍灰色关联分析法的原理、应用领域以及优点和局限性。
灰色关联分析法最早由中国科学家陈进才于1981年提出,并广泛应用于工程和管理学科领域。
它的核心思想是通过将不同的指标序列转化为灰色级数形式,然后计算各指标之间的关联系数,以揭示它们之间的关系。
灰色关联分析法的基本步骤包括:首先,将各指标序列归一化,使得数据位于相同的量纲范围内;其次,构建灰色级数模型,将指标序列转化为灰色级数;然后,计算各指标之间的关联系数,确定关联度;最后,利用关联度进行综合评价,得出最终的结论。
灰色关联分析法在许多领域具有广泛的应用。
在经济管理领域,它可以用于评估企业绩效、判断市场趋势、研究产业发展等。
在工程领域,它可以用于分析工艺参数对产品质量的影响、评估设备可靠性等。
在环境科学领域,它可以用于评估生态环境质量、分析污染物传输和扩散等。
灰色关联分析法具有一些优点。
首先,它可以对多指标间的关联进行定量分析,较为客观地反映指标之间的关系。
其次,它适用于小样本数据的分析,不依赖于大样本假设。
此外,它对序列变化的敏感性较高,能够较好地发现序列间的规律性或趋势。
然而,灰色关联分析法也存在一些局限性。
首先,它对数据的要求较高,需要有较为完整的时间序列数据。
其次,它假设指标之间的关系是线性的,对非线性关系的分析有一定局限性。
此外,灰色关联分析法对指标权重的确定也有一定的主观性,可能引入一定的误差。
综上所述,灰色关联分析法作为一种多指标关联分析方法,在多个领域得到了广泛应用。
它通过计算不同指标之间的关联程度,为决策提供了科学的依据。
然而,使用灰色关联分析法时需要充分考虑相关因素,避免误导决策。
未来,随着数据技术的不断发展,灰色关联分析方法也将继续完善和应用于更多的领域中。
灰色关联分析详解+结果解读

灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。
输出:反应考核指标与母序列的关联程度。
3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。
其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。
4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。
step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。
当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。
6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。
输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。
图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。
灰色关联度分析

灰色关联度分析一、 灰色关联分析及理论对于两系统之间的因素,其随时间或不同对象而变化的关联性的大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即变化程度较高,即可谓二者的关联度较高;反之,则较低。
因此,灰色关联度分析方法,是根据因素之间发展趋势的相似或相异程度,即“灰色关联度”作为衡量因素之间关联程度的一种方法。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定方法,去寻求系统各子系统(或因素)之间数值的关系。
因此,灰色关联度分析对于一个系统的发展变化态势提供了量化的度量,非常适合动态历程分析。
灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。
根据R 的数值,进行排序。
(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。
此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。
选定最优指标集后,可构造矩阵D (矩阵略)式中ikj 为第i 个期货公司第k 个指标的原始数值。
(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。
设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈ikC 。
ikk k i ki k j j j j C --=21,m i,2,1=,n k ,,2,1 =(矩阵略)(3)计算综合评判结果 根据灰色系统理论,将],,,[}{**2*1*n C C C C=作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i kkkii kki k k k ii k k kiCC C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。
灰色关联分析

灰色关联分析灰色关联分析是一种常用于研究和预测多个影响因素之间关联程度的方法。
该分析方法可以通过对各个因素的数值进行比较,得出它们之间的关联强度,从而为决策提供依据。
下面将详细介绍灰色关联分析的原理、应用以及优势。
灰色关联分析的原理基于灰色系统理论,该理论是中国科学家陈纳德于1982年提出的一种对部分已知和部分未知信息进行分析的数学方法。
灰色关联分析将各个影响因素的数据进行标准化处理,然后计算各个因素之间的关联度。
通过对关联度进行排序,即可得出影响因素之间的关联程度大小。
灰色关联分析在各个领域都有广泛的应用,比如经济学、管理学、环境科学等。
在经济学领域,可以使用灰色关联分析来研究不同经济指标之间的关联程度,从而预测未来的经济趋势。
在管理学中,可以利用灰色关联分析来研究不同管理指标之间的关联程度,进而指导管理决策。
在环境科学领域,可以运用灰色关联分析来分析各个环境因素对生态系统的影响程度,以及控制污染等。
灰色关联分析相对于其他分析方法有一些独特的优势。
首先,它不要求数据分布满足正态分布等数学假设,可以对数据进行较好的处理。
其次,灰色关联分析可以处理样本量较小的情况,对于样本量不足的数据分析也有较好的适用性。
此外,由于灰色关联分析能够捕捉到数据之间的内在联系,因此对于某些非线性关系的分析,其结果可能更加准确。
然而,灰色关联分析也存在一些限制和不足之处。
首先,该分析方法依赖于数据的稳定性,对于非稳态的数据可能会导致分析结果不准确。
其次,灰色关联分析无法处理存在时间滞后效应的数据。
此外,该方法对数据的标准化要求较高,如果数据质量较差或者存在异常值,也会影响分析结果。
综上所述,灰色关联分析是一种研究和预测多个影响因素之间关联程度的有效方法。
它的原理基于灰色系统理论,可以在各个领域中广泛应用。
灰色关联分析相对于其他分析方法有一些独特的优势,但也存在一定限制。
在实际应用中,我们应该结合具体情况,合理选择分析方法,并充分考虑其适用性和局限性,以提高分析和决策的准确性。
灰色关联度方法介绍

灰色关联度方法介绍一、灰色关联度方法的概念灰色关联度方法是一种常用的分析方法,它是将各个因素之间的关系转化为数学模型进行计算,从而得出它们之间的相关程度。
灰色关联度方法主要应用于多因素分析和决策评价等领域。
二、灰色关联度方法的原理灰色关联度方法是基于灰色系统理论的,它通过对数据进行处理,将数据转化为一组序列,然后通过对这些序列进行比较,得出各个因素之间的相关程度。
具体来说,它主要包括以下步骤:1. 数据预处理:将原始数据进行标准化处理,使得各个因素之间具有可比性。
2. 灰色关联度计算:通过对标准化后的数据进行加权平均值计算,并与参考序列进行比较,得出各个因素与参考序列之间的相关程度。
3. 灰色预测模型建立:根据各个因素与参考序列之间的相关程度建立预测模型,并对未来趋势进行预测。
三、灰色关联度方法的应用1. 多因素分析:在复杂多变的环境下,往往需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,从而帮助决策者进行有效的决策。
2. 决策评价:在决策过程中,需要对各种方案进行评价,灰色关联度方法可以通过对各种方案之间的比较,得出它们之间的相关程度,从而帮助决策者选择最优方案。
3. 经济预测:在经济预测中,需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,并建立预测模型进行未来趋势预测。
四、灰色关联度方法的优缺点1. 优点:(1)能够充分考虑多个因素之间的相互作用和影响。
(2)具有较高的精确性和可靠性。
(3)能够处理样本数据量较小、数据质量较差等问题。
2. 缺点:(1)需要对数据进行标准化处理,增加了计算复杂度。
(2)依赖于参考序列的选择和权重设置,在实际应用中可能存在一定误差。
(3)不适用于非线性系统和高维数据分析。
五、灰色关联度方法的发展趋势随着计算机技术的不断发展和数据处理能力的提高,灰色关联度方法在多因素分析、决策评价和经济预测等领域得到了广泛应用。
灰色关联分析法讲解

“非唯一性”
目标非唯一 灰靶思想
目标可约束
目标可接近 信息可扩充 方案可改善 关系可协调 思维可多向 认识可深化 途径可优化
灰色系统理论研究灰元、灰数、灰关系 灰数——指信息不完全的数。
灰关联分析法
(一)什么是灰色系统
灰色系统理论是1982年由邓聚龙创立的一门边缘性学科 (interdisciplinary)
灰色系统用颜色深浅反映信息量的多少。说一个系统是黑色的, 就是说这个系统是黑洞洞的,信息量太少;说一个系统是白色的, 就是说这个系统是清楚的,信息量充足。
这种处于黑白之间的系统,就是灰色系统,或说信息不完全的系 统,成为灰色系统或简称会系统(grey system)。
如“这个人的年龄18岁左右” “今天的气温10 - 15度之间” 灰元——指信息不完全的元素。如“货币”是灰元。
货币的两种功能:流通手段和价值尺度 灰关系——指信息不完全的关系。例:多种经济成份并存、一国两制
换轨思维
例1:小司马光灵机一动,换个角度处置眼前的危急场面。其实, 他砸碎的不完全是一口现实生活中看得见摸得着的缸,同时也打破 了一种旧的思维模式。当我们打破旧思维,再将我们的思路重新组 装的时候,结果一定是一幅好风光。 爱迪生是美国的大发明家。他的一切发明都是和他的思维活跃分不 开的。
例2:一天,爱迪生在实验室里工作,急需知道一个灯泡容量的数 据。由于手头忙不开,他便递给助手一个没有上灯口的玻璃灯泡, 吩咐助手把灯泡的容量数据量出来。过了很久,爱迪生手头的活早 已干完,助手仍未将数据送来。爱迪生只好亲自去找助手,一进门, 就看到助手正忙于计算,桌上演算纸已经推了一大迭。爱迪生忙问: “还需多长时间?”助手说:“一半还没完呢。”爱迪生明白了。 原来,他的助手用软尺测量灯泡的周长、斜度,正在用复杂的公式 计算呢!小伙子还把程序说给爱迪生听,证明自己的思路没错。爱 迪生不等他说完,便拍拍他的肩膀说:“别白忙了,小伙子,瞧我 这么干。”说着,他往灯泡里面注满了水,交给助手:“把这里的 水倒在量杯里,马上告诉我它的容量。”助手听到后,脸马上就红 了。
灰色关联分析

灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。
它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。
原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。
在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。
最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。
灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。
灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。
2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。
3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。
4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。
5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。
适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。
它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。
优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。
《灰色关联分析法》课件

计算关联度
4
确定各个因素对评估对象的贡献程度。
5
确定因素集合和影响因素
精确定义评估的因素及其关联程度。
计算关联系数
衡量因素之间的关联程度。
排序、评价和综合比较
综合评价并排序所得的关联度。
灰色关联分析法 实例分析
案例1 :消费者购买行为分析
研究消费者购买决策中的因素关联性,指导 市场策略制定。
案例2 :市场竞争态势分析
灰色关联分析法 PPT课件
灰色关联分析法是一种综合多因素、多层次、多角度的综合评判方法,用于 处理数据量小、不完备、不确定的问题。
灰色关联分析法 简介
1 灰色关联分析法
2 基本原理
综合评判方法,处理不完备、不确定的问题。
灰色系统理论,关联度的测度。
灰色关联分析法 步骤
1
数据标准化处理
2
使不同类型的数据具备可比性。
分析市场上不同竞争因素之间的关联程度。
灰色关联分析法 应用领域
经济管理
用于分析经济发展中的关联因素。
生态环境
评估环境因素对生态系统的和优化。
市场分析
研究市场竞争态势和市场需求。
灰色关联分析法 优缺点
优点
• 有效分析多层次、多因素的问题 • 适用于小样本、不完备数据的分析
缺点
• 无法对因果关系进行分析 • 灰色关联度的确定较为主观
灰色关联分析法 总结
灰色关联分析法是一种有效的综合评判方法,应用广泛,但也存在一些局限性。在具体应用中需要根据 问题特点和数据情况进行调整和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中,
T
H (V) bij b jk vi
b b nj nk j k
m m
m m G b1 j b1k j k
则 H (V) GW
max f 2 GV T s.t. 1, 0
组合赋权的方法即为如下最优化问题: 求解,得
rij (cij c ji),i, j =1, 2, , n,i j
,则主观权重模型的目标函数课写成 ,其最优解为
n qij j 1 wi n n , i 1, 2, qij i 1 j 1
T w n)
T f1 w Rw
,n
最小平方法主观权重为 W主 =(w1,w2
灰色关联法及其应用
主要内容
一、灰色系统理论
二、灰色关联分析
三、案例应用
一、灰色系统理论
1、灰色系统理论基本概念
灰色系统理论是我国学者邓聚龙教授于1982年创 立,是一种研究生少数据、贫信息不确定性问题的新方 法。灰色系统理论以“部分信息已知、部分信息未知” 的“小样本”、“贫信息”不确定性系统为研究对象, 主要通过对“部分”已知信息的生成、开发,提取有价 值的信息,实现对系统运行行为、演化规律的正确描述 和有效监控。
1i m 1i m
式(1)和(2)中 i 1, 2,
, m ;j 1, 2,
,n。
sij
min min bij 1 max max bij 1
i j i j
bij 1 max max bij 1
i j
min min bij 1 为所有评价指标差值的最小值; i j
z [0.8181 0.5502 0.6641 0.6004 0.5473]
由y1的值最大,因而其为最佳选择方案。
W客 0.1362 0.1011 0.1469 0.1320 0.1236 0.1171 0.1259 0.1171
W主 0.0693 0.1765 0.3411 0.0938 0.0651 0.1367 0.0730 0.0446
* 1 0.5023
T
T
* 2 0.4976
一、灰色系统理论
2、灰色系统理论主要内容 灰色系统理论经过二十年的发展,现已基本建立起集系统 分析、评估、建模、预测、决策、控制、优化技术于一体的一 门新兴学科的结构体系。主要内容包括: (1)以灰色代数系统、灰色方程、灰色矩阵等为基础的理 论体系; (2)以序列算子和灰色序列生成为基础的方法体系; (3)以灰色关联空间和灰色聚类评价为依托的分析、评价 模型体系; (4)以GM(1,1)为核心的预测模型体系; (5)以多目标智能灰靶决策为标致的决策模型体系; (6)以多方法融合创新为特色的灰色组合模型体系; (7)以灰色规划、灰色投入产出、灰色博弈、灰色控制为 主体的优化模型体系。
二、灰色关联分析
数理统计中的回归分析、方差分析、主成分分析等都是用 来进行系统分析的方法、这些方法都有下述不足之处: (1)要求有大量数据,数据量少就难以找出统计规律; (2)要求样本服从某个典型的概率分布,要求各因素数据 与系统特征数据之间呈线性关系且各因素之间彼此无关,这种 要求往往难以满足; (3)计算量大,一般要靠计算机帮助; (4)可能出现量化结果与定性分析结果不符的现象,导致 系统的关系和规律遭到问去和颠倒。 灰色关联分析方法弥补了采用数理统计方法作系统分析所 导致的缺憾。它对样本量的多少和样本有无规律都同样适合, 而且计算量小,十分方便,更不会出现量化结果与定性分析结 果不符合的情况 。
二、灰色关联分析
aij min{aij } 1 i m aij } min{aij } max{ 1 i m 1 i m bij 1
max{aij } min{aij } 0
1i m 1i m
(1)
max{aij } min{aij } 0
max max bij 1 为所有评价指标差值的最大值。 i j
灰色关联系数构成灰色关联矩阵 S (sij )mn
(4)计算灰色挂连读 设W为各评价指标的权重,则灰色关联度为:
z SW
根据灰色关联决策的准则, 值越大,则备选方案 愈接近 最优方案 ,故其为备选方案中的最佳方案。
+ + + T B (b1,b2, bn)
n n min f1 (cij w j wi ) i 1 j 1
n wj 1 s.t. j 1 wi 0 (i , j 1, 2, , n)
若记 R(rij )nn ,其中
QR 1 ( qij ) nn
m 2 rii n 2 cij , i 1
GW客 * 1 (GW客 )2 (GW主 )2 GW主 * 2 2 (GW )2 ( G W ) 主 客
则
* * W 1 W客 2 W主
三、案例分析
整车分拨中心选择与 评价指标体系
地理位置P
市场M
成本C
时间T
交 通 状 况 A1
市 场 辐 射 面 A2
1i m 1i m
max{aij } aij 1i m aij } min{aij } max{ 1i m 1i m bij 1
max{aij } min{aij } 0
1i m 1i m
(2 )
max{aij } min{aij } 0
- T B (b1,b2, bn)
b (b1i,b2i, bmi ) b max ( b , b , b ) 其中 i i min 1i 2i mi
②计算距离 采用欧氏距离公式计算各样本点到参考样本点的距离,分 别为:
Dj m + 2 (bij -bi) i 1 Dj n - 2 (bij -bi) i 1
市 场 销 售 量 M1
销 售 商 数 量 M2
管 理 成 本 C1
运 输 成 本 C2
仓 储 时 间 T1
运 输 分 拨 时 间 T2
P(1~5分) 分拔 中心 P1 4.0 3.5 4.3 4.1 4.4 P2 3.8 4.3 3.9 4.0 4.0
M M1 / 辆 24000 22500 23800 24000 23500 M2 / 个 8 7 8 7 6
则组合权重为:
V = 0.1029 0.1386 0.2435 0.1130 0.0945 0.1268 0.0996 0.0810
T
(2)备选方案灰色关联度的计算
0.5249 0.3333 S 0.8182 0.6000 1.0000
0.3333 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000 0.3846 0.4545 0.4545 0.3333 0.7895 1.0000 0.6000 0.5000 1.0000 0.5000 0.3333 0.4545 0.5556 0.3333 0.6250 0.5556 0.3333 0.5556 0.4167 0.4545 1.0000 0.3333 0.4545 1.0000 0.3333 0.5000 0.5000
C/元 C1 450 480 470 500 465 C2 100 120 150 120 135 T1
T/天 T2 2.0 1.5 2.5 2.0 2.0
A1 A2 A3 A4 A5
15 18 15 20 18
(1)评价指标权重确定
通过前面公式求得:
1 1 1 1 1 0.5 0.5556 0 0 1 0 0.5 0.4 0.6 0.4 1 B 0.8889 0.2 0.8667 1 0.6 0 1 0 0.6667 0.4 1 0.5 0 0.6 0 0.5 0.4 0.6667 0 0.7 重:W客 ( w1 , w2 令
W 1W客 2 W主
, wn ) T
主观权重:W主 =(w1,w2
U (W客 , W主 ), (1, 2 ) T
T w n)
12 22 1
1
n i m j m k
则 W = U 构造目标函数 令
Cj
+ D j Dj
Dj
cj越大,表明样本点与最优样本点的相对距离越近。然后对 cj 做归一化处理,即 Cj T w n W ( w , w , w ) 则 客 1 2 n j Cj j =1 即为求得权重。
(2)主观权重确定----最小平方法 决策者对评价对象的评价指标的重要性进行逐个比较,得 出比较矩阵 C (Cij )nn ,cii 1 ,cij 1c ji ,从而评价指标的权 重问题可表示为主观权重模型: