什么是灰色关联分析
灰色关联度分析

1.灰色关联理论
1982年,华中理工大学邓聚龙教 授首先提出灰色系统的概念,并建立了 灰色系统理论。 灰色系统理论认为,人们对客观 事物的认识具有广泛的灰色性,就是信 息的不完全性和不确定性,因而有客观 事物所形成的是一种灰色系统,即部分 信息已知、部分信息未知的系统。例如: 社会系统、经济系统、生态系统等都可 以看作是灰色系统。
\\
(min) (max) 0i (k ) 0i (k ) (max)
最后分别对各产业与GDP的关联系数求 平均可得: r01= (0.4191+0.3796+0.5808+0.7055+0.3696 +0.2881)/6 =0.4571 同样求出: r02=0.5760, r03=0.7209 r0i称为序列x0和xi(i=1,2,3)的灰 色关联。由于r03˃r02˃ r01,因而第三 产业产值与GDP的关联度最大,其次是 第二产业,第一次去农业。
5.用GRA进行综合评价
灰色关联分析的目的是揭示因素间 关系的强弱,其操作对象是因素的时间 序列,最终的结果表现为通过关联度对 各比较序列做出排列。综合评价的对象 也可以看作是时间序列(每个被评价事 物对应的各项指标值),并且往往需要 对这些时间序列做出排序,因而也可以 借助灰色关联分心来进行。
01 (1) 02 (1) ... 0 n (1) (2) (2) ... (2) 01 02 0n ... ... ... 01 ( N ) 02 ( N ) ... 0 n ( N ) N n 其中 0i (k ) x0 (k ) xi (k ) (05式) i 1,2,...n; k 1,2,..., N 绝对差矩阵中最大数和 最小数就是最大差和最 小差: max 0i (k ) (max)( 式) 06
灰色关联分析法与TOPSIS评价法

3.对指标数据进行无量纲化 无量纲化后的数据序列形成如下矩阵:
x0 1 x0 2 X 0 , X 1 , , X n x m 0 x1 2 x1 1 x n 1 x n 2 x n m
与
maxmax x0 (k ) xi (k )
i 1 k 1
n
m
6.计算关联系数 由(12-5)式,分别计算每个比较序列 与参考序列对应元素的关联系数.
i (k )
min min x 0 (k ) xi (k ) max max x0 ( k ) xi ( k )
03 (t )
0.8687 0.7257 0.5213 0.7338 1.000 0.4758
最后分别对各产业与GDP的关联系数序列求算术 平均可得
1 r01 (0.4191 0.3796 0.5808 0.7055 6 0.3696 0.2881) 0.4571 1 r02 (0.6067 0.5178 0.4903 0.8761 6 0.6141 0.3510) 0.5760 1 r03 (0.8687 0.7257 0.5213 0.7338 6 1.000 0.4758) 0.7209
两序列变化的态势是表现在其对应点的间距上.如果 各对应点间距均较小,则两序列变化态势的一致性强,否 则,一致性弱.分别计算各产业产值与GDP在对应期的间 距(绝对差值),结果见表所示. 年份t
x0 (t ) x1 (t )
0.1044 0.1231 0.0547 0.0319 0.1284 0.1857
一个自然的想法就是分别将三次产业产值的时间序列 与GDP的时间序列进行比较,为了能够比较,先对各序列进 行无量纲化,这里采用均值化法.各序列的均值分别为: 2716,461.5,1228.83,1025.67,上表中每列数据除以其均值可 得均值化序列(如表所示) 年份t GDP x0(t) 一产业 x1(t) 二产业 x2(t) 三产业 x3(t) 2000 0.7320 0.8364 0.6828 0.7440 2001 0.7588 0.8819 0.6885 0.7878 2002 0.8597 0.9144 0.7812 0.9291 2003 1.0125 1.0444 1.0237 0.9847 2004 1.2356 1.1073 1.2833 1.2363 2005 1.4013 1.2156 1.5405 1.3182
灰色关联分析计算实例

(123) (124)
2021/7/1
7
4.逐个计算每个被评价对象指标序列(比较 序列)与参考序列对应元素的绝对差值,即
x0(k)xi(k) (k1, ,mi1, ,n, n为被评
价对象的个数)。
nm
5.确定 mii1nmki1nx0(k) xi (k) 与
nm
mia1xmka1xx0(k) xi(k)
2021/7/1
12
1.建立原始数据矩阵:
(X´)=
2045.3 1942.2
34374 31793 14.6792 14.8449 120.9 100.1 65.9
0.3069 0.7409 49.4201 34.8699
1637.2 1884.2 1602.3
27319 32516 16297
11
表1 灾害直接经济损失及各相关影响因素原始数据表
年份
2000
2001
2002
2003
灾害直接经济损失(亿元) 2045.3 1942.2 1637.2 1884.2
灰色关联分析

灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。
灰色关联分析(算法步骤)

灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。
灰色关联度评价方法(10)讲解

01 (t )
x0 (t ) x2 (t )
0.0492 0.0704 0.0785 0.0112 0.0477 0.1392
02 (t )
x0 (t ) x3 (t )
0.0119 0.0289 0.0694 0.0278 0.0006 0.0832
首 页 上 页 下 页 尾 页
式中分辨系数 在(0,1)内取值,一般情况下依据 (6.10)中数据情况多在0.1至0.5取值, 越小越能 提高关联系数间的差异.关联系数 0i (k ) 是不超 过1的正数, 0i (k ) 越小, 0i (k ) 越大,它反映第i 个比较序列Xi与参考序列X0在第k个期关联程度.
首 页 上 页 下 页 尾 页
0i (t )
首 页 上 页 下 页 尾 页
上式可变形为
(min) (max) 0i (t ) 0i (t ) (max) i 1, 2,3; t 2000, , 2005
(6.1)
0i (t )称为序列xi和序列x0在第t期的灰色关联系 数(或简称为关联系数). 由(6.1)式可以看出, 取值的大小可以控制(max) 对数据转化的影响, 取较小的值,可以提高关联 系数间差异的显著性,因而称 为分辨系数. 利用(6.1)对表6-3中绝对差值0i (t ) 进行规范化,取 0.4, 结果见表6-4,以01 (2000)计算为例:
首 页 上 页 下 页 尾 页
表6-1是某地区2000-2005年国内生产总值的统计 资料.现在提出这样的问题:该地区三次产业中, 哪一产业的变化与该地区国内生产总值(GDP)的 变化态势更一致?也就是哪一产业与GDP的关联 度最大呢? 表6-1 某地区国内生产总值统计资料(百万元)
数学建模——灰色关联度分析讲解

for i=1:15 x(i,:)=x(i,:)/x(i,1); %标准化数据 end for i=16:17 x(i,:)=x(i,1)./x(i,:); %标准化数据 end data=x; n=size(data,1); ck=data(1,:);m1=size(ck,1); bj=data(2:n,:);m2=size(bj,1); for i=1:m1 for j=1:m2 t(j,:)=bj(j,:)-ck(i,:); end jc1=min(min(abs(t'))); jc2=max(max(abs(t'))); rho=0.5; ksi=(jc1+rho*jc2)./(abs(t)+rho*jc2); rt=sum(ksi')/size(ksi,2); r(i,:)=rt; end r
因 素 分 析 优 势 分 析 综 合 评 价
二、铅球运动员专项成绩的因素分析 通过对某健将级女子铅球运动员的跟踪调查,获 得其 1982~1986 年每年最好成绩及 16 项专项素质和 身体素质的时间序列资料,见下表。
指 铅球专项成绩 4 公斤前抛 4 公斤后抛 4 公斤原地 立定跳远 高翻 抓举 卧推 3 公斤前抛 3 公斤后抛 3 公斤原地 3 公斤滑步 立定三级跳远 全蹲 挺举 30 米起跑 100 米
X i (1) X i (1) X i (1) X i (1) Xi 1, X (2) , X (3) , X (4) , X (5) i 15,16 i i i i
依照问题的要求,我们自然选取铅球运动员专项 成绩作为参考数列,将上表中的各个数列的初始化数 列代入(1) 、 (2) ,易计算出各数列的关联度,如下表 所示。
由于各因素各有不同的计量单位,因而原始数据存在量纲和数量级上的 差异,不同的量纲和数量级不便于比较,或者比较时难以得出正确结论。 因此,在计算关联度之前,通常要对原始数据进行无量纲化处理。
灰色关联分析法与TOPSIS评价法

0 i ( t ) 称为序列xi和序列x0在第t期的灰色关联系 数(或简称为关联系数).
由(6.1)式可以看出, 取 值的大小可以控制 (max)
对数据转化的影响, 取较小的值,可以提高关联系
数间差异的显著性,因而 称为 分辨系数.
利用(6.1)对表6-3中绝对差值 进0 i行( t规) 范化,取
结0.果4,见表6-4,以
计0算1(2为00例0):
( m i n ) 0 .0 0 0 6 , ( m a x ) 0 .1 8 5 7
0 1 (2 0 0 0 ) 0 0 ..0 1 0 0 0 4 6 4 0 0 ..4 4 0 0 ..1 1 8 8 5 5 7 7 0 .4 1 9 1
18987529
27875738
39796647
46888436
58669838
68957648
3.确定参考数据列:
{ x 0 } { 9 , 9 , 9 , 9 , 8 , 9 , 9 }
4.计算 x0(k)xi(k) , 见下表
编号 专业 外语 教学 科研 论文 著作 出勤 量
1
1
0
1
2
参考数据列应该是一个理想的比较标准, 可以以各指标的最优值 (或最劣值)构 成参考数据列,也可根据评价目的选择 其它参照值.记作
X 0 x 0 ( 1 ) , x 0 2 , , x 0 m
3.对指标数据进行无量纲化 无量纲化后的数据序列形成如下矩阵:
X0,X1, ,Xnxx001 2 x0m
年份t GDP x0(t) 一产业 x1(t) 二产业 x2(t) 三产业 x3(t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是灰色关联分析
灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]
关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]
[编辑]
灰色关联分析的步骤[2]
灰色关联分析的具体计算步骤如下:
第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X
i={X i(k) | k = 1,2,Λ,n},i= 1,2,Λ,m。
第二步,变量的无量纲化
由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。
第三步,计算关联系数
x
0(k)与x i(k)的关联系数
记,则
,称为分辨系数。
ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值
可视情况而定。
当时,分辨力最好,通常取ρ = 0.5。
第四步,计算关联度
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它
的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,
关联度r
i公式如下:
第五步,关联度排序
关联度按大小排序,如果r
1 < r2,则参考数列y与比较数列x2更相似。
在算出X
i(k)序列与Y(k)序列的关联系数后,计算各类关联系数的平均值,平均值r i就称为Y(k)与X i(k)的关联度。