科里奥利力演示仪

科里奥利力演示仪
科里奥利力演示仪

科里奥利力演示仪

实验目的:

演示科里奥利力的存在。

实验原理:

当小球在一作转动的圆盘上运动时,以盘为参照系,会受到惯性力。其中一部分是与小球的相对速度有关的横向惯性力称为科里奥利力,其表达式为:

其中 为小球的质量, 为小球相对于转动系的速度, 为转盘旋转的角速度。

实验仪器:

实验操作:

1.当转盘静止,不转动,此时质量为 的小球沿轨道下滑,其轨迹沿圆盘的直径方向,不发生任何的偏离。

2.使转盘以角速度 转动,同时释放小球,沿轨道滚动,当小球落到圆盘时,小球将偏离直径方向运动。

3.如果从上向下看圆盘逆时针方向旋转,即 方向向上,当小球向下滚动到圆盘时,小球将偏离原来直径的方向,而向前进方向的右侧偏离,如图1所示。如果圆盘转动方向相反,从上向下看,圆盘顺时针方向旋转,即 方向向下,当小球向下滚动到圆盘时,小球向前进方向的左侧偏离,如图2所示。

1 图2讨论与思考:

1.在北半球,若河水自南向北流,则东岸受到的冲刷严重,试由科里奥利力进行解释。

若河水在南半球自南向北流,哪边河岸冲刷较严重?

2.美国科学家谢皮诺曾注意到浴盆内的水泻出时产生的旋涡。当底部中心有孔的大盆

中的水泻出时,可在空的上方看到逆时针方向的旋涡。在澳大利亚作同样的实验,会看到什么现象?为什么?

简易摩擦力演示器

简易摩擦力演示器 【制作方法】 1.将20×10×1.5厘米3的两块木板,用四根10×1.5×0.2厘米3的金属片,以饺链连接方式连接,成一个长方体框架。铰接点必须灵活,下板的底部要粗糙一些。上板中心处去一挂钩,如图3.11-l所示。 2.如图3.11-2所示,用细钢丝绕一长2厘米的弹簧;再用厚度为1.5毫米的金属片做一个高6厘米的支柱,下部弯成直角,打上孔,固定在底板上,上部也打一孔O′。用1.5毫米厚的金属片做一长7厘米的连杆和一个长20厘米的指针,并在中心B′处打上孔。 3.把弹簧、连杆、支柱和指针照图3.11-3装在框架内。要求饺接部分摩擦力尽量小,转动自如,不加外力时框架直立,稍加一个拉力,框架就变成平行四边形。 4.把指针涂上红色。在上、下木板的两侧钉上等距离的小钉,用白线沿竖直方向缠绕,使整个长方体呈白色笼状,参见图3.11-4。 【使用方法】 1.演示静摩擦力的产生和摩擦力方向的判定。 把演示器置于水平桌面上,用手竖直下压上板,长方体不变形,指针不外露。说明长方体没有向前运动趋势,不存在静摩擦力。当手施加一推力于上木板时,长方体虽没运动,但

指针外露,表明长方体受到了静摩擦力的作用,且摩擦力的方向和运动趋势相反。当推力增大,指针外露长度也增大,表明静摩擦力防外力增大而增大。当外力撤消,指针缩回演示器内,表明静摩擦力随外力的撤消而消失。将演示器置于斜面上,指针向斜上方显露,表明放在斜面上的物体所受的静摩擦力是沿斜面向上的。 2.演示滑动摩擦力的大小和方向。 把演示器放在水平面上,用手推它的上部,使其在水平面上匀速运动,可以看到指针外露并指向与运动相反的方向,且外露的长度不变,表明滑动摩擦力在正压力和接触面材料不变的情况下大小是一定的。如果改变接触面材料或改变正压力的大小重作以上实验,可以看到摩擦力的大小也改变了,表明滑动摩擦力的大小跟正压力和接触面的材料有关。3.演示摩擦力方向和相对运动趋势的方向相反。 把演示器放在水平的垫有湿毛巾的三合板上,加速拉动三合板,由于惯性的作用,演示器的指针指向运动的方向。这表明物体所受摩擦力的方向总跟物体相对运动趋势的方向相反,而不是跟物体运动的方向相反。 【注意事项】 1.演示器上面板的质量大些,演示器的重心就会高一些,受到水平推力后,它更容易变形。 2.四个支柱和面板的铰接处摩擦力要尽量小,使其活动自

山西大学大学物理实验演示实验实验报告范文

实验目的: 1.在拓展知识面的同时训练学生的动手操作能力; 2.通过此类实验建立理论联系实践的能力与思维; 记忆合金水车:形状记忆合金是一种特殊的功能材料,它可以记住加工好的形状,当外力或温度改变使其形状发生改变的时候,只要适当的加热就可以恢复原来的形状。该装置让所选记忆合金周期性地与高温热源和低温热源接触,形状随之周期性地变化,从而驱动水车轮的转动,形象地展示了热变为功的过程和形状记忆合金的特性和用途。 该种形状记忆合金为镍钛合金,有双程记忆功能(即能记忆温度高低两种情况下的形状)可以有上百万次的变形和恢复。镍钛合金还有相当好的生物相容性,相变温度较低,约在40-50℃,医学上用于脊柱侧歪、骨骼畸形等的矫正。 低温差热机:可以利用比环境温度高4℃的任何热源,使一组活塞运动并推动转轮运转,是一种很好的利用低温热源的热机,可以利用不高的温度差实行热工转化。主要应用在于能利用传

统热机无法利用的能量来源。 经典置换式热气机:利用酒精灯的热量驱动一组活塞、连杆和转轮往复运动,工作物质为封闭在透明活塞筒中的空气。活塞和工作物质在往复过程中完成吸放热和能量转化,工作过程形象直观,是对热力学定律和热机原理极好的阐释。其透明活塞材料为石英玻璃,主要特点是热胀冷缩系数小,透光性好。耐腐蚀性强。 投影式伽耳顿板:可以用来验证大量随机物理事件共同遵循的统计物理规律。统计物理规律因等概率假设则其结果可靠,在应用方面很广泛,比如相对论基本假设的提出等等。 辉光盘:利用低压气体分子在在高频强电场中激发、碰撞、电离、复合的过程,外界声音影响电场分布从而影响电子运动,在盘上显示出形状变化的荧光。 昆特管(声驻波演示):利用管中泡沫小球在声驻波场中形成的“泡沫墙”将看不见的声波显示出来,实现了抽象概念的具象化。该装置的缺点是无法消除静电的影响:泡沫小球帖在管内壁上。 气柱共鸣声速测量装置:通过气柱共鸣测量

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。 【注意事项】: 注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。 实验三弹性碰撞仪 【实验目的】: 1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2. 演示弹性碰撞时能量的最大传递。 3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 【实验仪器】:弹性碰撞仪 图3,弹性碰撞仪

洛伦兹力的应用教案

洛伦兹力的应用 教学目标: 1.知识与技能 (1)理解运动电荷垂直进入匀强磁场时,电荷在洛仑兹力的作用下做匀速圆周运动。(2)能通过实验观察粒子的圆周运动的条件以及圆周半径受哪些因素的影响。推导带电粒子在磁场中做匀速圆周运动的半径周期公式,并会应用它们分析实验结果,并用于解决实际问题。 2.过程与方法 多媒体和演示实验相结合 3.情感态度及价值观 培养科学的探究精神 教学重点:掌握运动电荷在磁场中圆周运动的半径和周期的计算公式以及运用公式分析各种实际问题。 教学难点:理解粒子在匀强磁场中的圆周运动周期大小与速度大小无关。 教具:洛伦兹力演示仪 复习导入: 提问学生带电粒子在磁场中的受力情况: (1)平行进入磁场中:F=0;粒子将做匀速直线运动。 (2)垂直进入磁场中:F=Bqv。 猜想:粒子将做什么运动? 教学过程: 一、理论探究: 匀速圆周运动的特点:速度大小不变;速度方向不断发生变化;向心力 大小不变;向心力方向始终与速度方向垂直。 洛伦兹力总与速度方向垂直,不改变带电粒子的速度大小,所以洛伦兹 力对带电粒子不做功且洛仑兹力大小不变。 洛伦兹力对电荷提供向心力,故只在洛伦兹力的作用下,电荷将作匀速 圆周运动。 二、实验演示: 用Flash演示正电荷和负电荷垂直进入匀强磁场中得运动。 介绍洛伦兹力演示仪: (1)加速电场:作用是改变电子束出射的速度 (2)励磁线圈:作用是能在两线圈之间产生平行于两线圈中心匀强磁 场。 实验过程:a、未加入磁场时,观察电子束的轨迹; b、加入磁场时,观察电子束的轨迹;

c 、改变线圈电流方向时,观察电子束的轨迹。 结论:带电粒子垂直进入匀强磁场时,做匀速圆周运动。 提问:若带电粒子是以某个角度进入磁场时,运动轨迹是什么呢? 用Flash 演示带电粒子以某个角度进入磁场时的运动轨迹。 提问:为什么轨迹是螺旋形? 小结:带电粒子在磁场中做匀速圆周运动的条件: (1)、匀强磁场 (2)、B ⊥V (3)、仅受洛伦兹力或除洛伦兹力外,其它力合力为零. 三、半径与周期 推导过程: 得: 提问: 磁场强度不变,粒子射入的速度增加,轨道半径将 增大 。 粒子射入速度不变,磁场强度增大,轨道半径将 减小 。 .......(1) .. (2) 由(1)(2)可得: 提问:周期与速度、半径有什么关系? 四、应用 例1、匀强磁场中,有两个电子分别以速率v 和2v 沿垂直于磁 场方向运动,哪个电子先回到原来的出发点? 例2、已知两板间距为d ,板间为垂直纸面向内的匀强磁场,带 电粒子以水平速度V 垂直进入磁场中,穿过磁场后偏转角 为30o 。求: (1) 圆心在哪里? (2) 圆心角为多大? (3) 轨道半径是多少? (4) 穿透磁场的时间? 五、作业:P123 1,2,3,4题 r mv Bqv 2=Bq mv r =v r T ?=π2Bq mv r =Bq m T π2=

物理演示实验

大连海事大学 《物理演示实验》课程教学大纲 Syllabus for INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT 课程编号新 000000000 原13012200 学时/学分18/1 开课单位物理系考核方式考查 适用专业全校各专业执笔者牟恕德 编写日期 2008年3月 一、本课程的性质与任务 物理学是一门实验科学。所有物理定律的形成和发展都是建立在对客观自然现象的观察和研究的基础上,物理演示实验可以使学生加深对物理教学内容的理解,巩固记忆,激发兴趣,诱导思考,纠正错误观念,能使学生真实感地看到支配物理现象的规律如何起作用,通过对实验现象的观察分析,学习物理实验知识,从理论和实践的结合上加深对物理学原理的理解。 1、培养和提高学生基本的科学实验能力,其中包括: 自学能力:通过自行阅读实验教材和其它资料,能正确概括出实验内容、方法和要求,做好实验前的准备; 动手能力:借助教材《物理演示实验》和仪器说明书,正确调整和使用仪器;安排实验操作顺序,把握主要实验技能,排除实验故障;掌握常规物理实验仪器的使用,掌握科学实验的数据处理方法和科学实验报告的形成,为进一步学习和从事科学实验研究打下坚实的基础。 分析能力:运用所学物理知识,对实验现象和结果进行观察分析判断,得出结论; 表达能力:正确记录和处理实验数据,绘制曲线,正确表达实验结果,撰写合格的实验报告; 2、培养和提高学生科学实验素养:要求学生养成理论联系实际和实事求是的科学作风,严肃认真的工作态度,主动研究的探索精神和创新意识,遵守纪律、遵守操作规程、爱护公共材物、团结协作的优良品德。 物理演示实验是面向全校各年级学生的开放式实验选修课,共18学时;学生可自主安排在计划课表内任何时段来上课。 二、课程简介 《物理演示实验》将日常生活或生产实践中不易观察到的或习以为常而未引起注意的物理现象突出地显示出来,把实际较为复杂的现象,在课堂演示的条件下分解出有意义的部分,从兴趣和提高关注度出发,培养学生的探索精神,引导学生观察、思考、建立物理思想,培养学生根据物理原理分析解决实际问题的能力。演示实验片广开学生眼界,介绍现代科学技术前沿的新技术、新发明、新材料、新探索、新成果,分享现代科学技术飞跃发展的喜悦。 INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT displays the physical phenomenon which is unobservable in daily life and production practice, or is accustomed and thus not given attention. It draws out the significative parts from real complex phenomenon through the demonstration in class. In view of the students' interest,physical demonstration experiement may cultivate students' exploring spirit and inducts them to observe and think so that they can found physical idea and possess the abilities to analyse and solve questions according the physical theories. Physical demonstration experiment introduces new technique, new invention, new exploration and new production in modern technology and so widen students' eyereach and make students enjoy the flying development of modern technology

(完整版)设计制作大学物理演示实验仪器推荐题目及要求

设计制作大学物理演示实验/仪器 力学、热学类 1、牛顿摆演示仪 2、透视牛顿摆(灯泡代替钢球) 3、麦克斯韦滚(滚摆) 4、锥体上滚 5、角动量守恒实验仪 6、回转仪(陀螺) 7、分子运动模拟箱 8、伽尔顿板实验仪 9、杨氏模量测定实验的改进 10、多次直接测量数据的程序编订 11、金属线膨胀系数的测量 12、冲击摆的设计与演示(动量守恒定律的演示,须有较精确演示) 13、伯努利悬浮器演示实验 14、声悬浮演示实验 15、“火龙出水”火箭制作 16、球车互动演示仪(能量守恒定律的演示,须有数据测量和计算) 17、自制温度计(须标出刻度,并能基本显示当前温度) 18、自制油膜法测分子直径实验仪,(自制仪器和实验过程并能测出分子直径) 19、论文:简述物理学大蟒(2500字以上) 20、焦耳实验演示仪(热功当量、功、热转换) 21、还原卡文迪许扭矩实验,计算出地球质量 22、刚体转动惯量实验中时间测量的改进方法 23、还原麻省理工学院经典力学(4)自由落体实验 24、还原伽利略的加速度实验 25、验证作用力与反作用力的希罗机器 26、离心机实验(计算出旋转物体的线速度、角速度,并演示抛出时的运动路径) 电磁学类 1.制作手摇感应起电机并演示静电现象 2.演示几种常见带电体的电场线形状与分布 3.演示导体表面的场强大小分布于曲率的关系 4.尖端放电的演示 5.演示静电除尘 6.演示静电屏蔽 7.温差发电演示 8.温差电磁铁演示仪的设计与制作 9.安培力演示实验 10.磁力矩演示实验 11.模拟演示顺磁质的磁化 12.热磁轮的设计与制作

13.利用光杠杆法演示磁致伸缩现象 14.磁悬浮现象演示 15.涡流热效应演示实验 16.电磁炮的设计与制作 17.互感音频演示仪 18.演示电磁驱动现象 19.涡流阻尼摆演示涡流阻尼效应 20.电磁波的发射和接收演示 21.如何利用两只手发电? 22.演示两条平行的通电导线间的作用力是多大? 23.亥姆霍兹线圈演示 24.磁聚焦演示 25.楞次定律演示 26.动生电动势的产生 26.感生电动势的产生 27.电流秤的设计 28.电磁泵的设计及制作 29.法拉第冰桶实验 30.磁感线的模拟演示 光学类 1、光的色散现象的演示实验 2、薄透镜成像规律演示实验 3、透镜像差演示实验 4、热辐射实验演示仪 5、双光束干涉的演示实验(杨氏双缝) 6、双光束干涉的演示实验(菲涅耳双棱镜) 7、双光束干涉的演示实验(菲涅耳双面镜) 8、双光束干涉的演示实验(劳埃德镜) 9、薄膜干涉演示实验——肥皂膜的等厚干涉 10、薄膜干涉演示实验——牛顿环 11、薄膜干涉演示实验——两平晶间的空气膜的等厚和等倾干涉 12、细玻璃管的干涉演示实验 13、菲涅耳衍射的演示实验 14、夫琅禾费衍射的演示试验 15、细丝直径的测量演示实验(头发丝)(劈尖干涉、光学放大、螺旋测微计) 16、自制彩虹的演示实验 17、自制针孔眼镜(小孔成像) 18、日食和月食的演示实验 19、全反射现象演示实验 20、自制伽利略望远镜演示实验 21、自制开普勒望远镜演示实验 22、测玻璃折射率的演示实验 23、潜望镜的制作

2014_2015第二学期演示实验内容解析

第一次课: 锥体上滚演示装置 [实验原理] 不稳定平衡的物体偏离平衡位置时,物体总是向重心降低的方向运动。 在本装置中,影响锥体滚动的参数有三个,即导轨的坡度角α,双轨道的夹角γ和双锥体的锥顶角β。 β角是固定的,夹角γ和α是可调的。双锥体中心O 位于锥体轴线的中点。计算表明,当角α、β、γ三角满足22tg tg tg β γ α>时,重心O 下降,就会出现锥体主动上滚的现象。 [操作方法] 1、通过可调节支架调节α和γ 的大小使之满足上述关系; 2、将双锥体置于轨道低处,松手后锥体沿轨道自低向高处滚动; 3、调节α和γ中的一个角度,使之不满足上述关系,双锥体将不能上滚。 [思考] 上述公式22tg tg tg βγα>的推导过程如何? 科里奥利力演示仪 [实验目的] 模拟转动参考系中径向运动的小球的运动轨迹,直观地演示科里奥利力。 [实验仪器] 转盘 小球 [实验原理] 在相对于惯性系匀速转动的参考系(非惯性系) 中分析直线运动物体的运动时,应加以虚拟的惯性力即科里奥 利力: ω ?=r c v m f 2 其中,m 为物体质量,r v 为物体相对转动参考系的速度, ω 为转动参考系相对惯性系的转动角速度。 [操作方法] 1、转盘静止,让小球从狭槽的顶点向下运动,可以看到小球沿着狭槽的延长线方向继续向前作直线运动; 2、缓慢转动转盘,让小球从狭槽的顶点向下运动,可以发现小球在离开狭槽时,偏离原来的径向运动,其偏转方向与c f 方向相同; 3、改变转盘的转动方向,重复2的操作,可以观察到小球在离开狭槽后,向相反的方向偏离;改变转盘的转速,可以发现转盘转得越快,小球偏离原来的方向越远。 [思考] 上述观察结果是以地面为参考系还是以转盘为参考系?你能通过力的分析分析上述结果吗?若以地面为参考系,小球作什么运动? 傅科摆 [实验仪器] 摆绳长约1米的单摆。 [实验原理] 由于地球的自转,地球表面并不是惯性系。所以分析地球表面的物体运动规律时,应加上两个假想力:惯性离心力和科里奥利力 2F mv ω'=?科 北京处于北半球,地球自转的角速度方向垂直于地面向上。 故在地面上方运动的物体所侧视图 俯视图

洛伦兹力演示仪的设计制作

洛伦兹力试验仪的设计制作 第33届全国青少年科技创新大赛科技辅导员创新成果竞赛项目

洛伦兹力演示仪的设计制作 【关键词】:通电线圈磁场电解液定向移动洛伦兹力右手定则左手定则液体旋转 摘要 在线圈中有电流通过的时候,线圈周围和线圈内部就会产生磁场,而透明有机玻璃浅盘中的电解液正好处在通电线圈内部的磁场中,磁场方向始与电解液中带电粒子定向移动的方向垂直,受到洛伦兹力的作用发生偏转,使电解液旋转,偏转方向由加在线圈中的电流方向和加在电解液上的电流方向决定。能否旋转、旋转的快慢由加在线圈两段的电压和加在电解液两端的电压决定,电压越大,旋转越快。 设计背景 关于磁场的知识,在现行高中课程标准3—1中磁场一章,是高中物理的重点,也是难点,在高考中,电磁部分占有相当大的比例。为了激发学生学习物理知识的积极性,提高学习兴趣,必须加强有关磁场的演示实和学生实验。目前,有关洛伦兹力的演示实验,大部分学校都采用的是传统的演示方式:感应圈产生的高压电加在阴极射线管两端,使阴极射线管放电,然后教师拿着条形磁铁或蹄形磁铁在阴极射线管周围移动,使阴极射线改变方向的试验方法。这种演示方法的弊端是感应圈笨重、实验安全性差。为此,本人设计了使处在磁场中的电解液定向移动受磁场力,使电解液旋转的方法,操作简单、携带轻便、实验现象明显,可以演示电流磁场方向——右手定则;带电粒子受力方向——左手定则、以及洛伦兹力的大小与磁场强弱、带电粒子运动速度之间的关系等。 项目创新点

1、用电流的磁场替代了磁铁的磁场,在电解液所在区域当中磁场方向基本保持一致、磁场强弱基本保持一致,带电粒子的受力方向更容易判定。 2、由于使用最高电压24v,可连续变化的电源适配器,磁场强弱、带电粒子运动速度调节方便、安全可靠,实验中不再小心翼翼、胆战心惊。减轻了重量,整个装置、两个电源适配器、以及电解液,质量不足2kg,携带方便, 3、电路连接设计中采用了香蕉头固定式插头和双位红黑连体接线柱的配套使用,电路连接、电流方向调整快捷方便,可以节省演示时间。 4、可以演示带电粒子受到的磁场力的方向与磁场方向、粒子运动方向之间的关系,洛伦兹力大小与磁场强弱、带电粒子速度大小的关系,演示效果明显。 工作原理 1、在线圈中有电流通过的时候,线圈周围和线圈内部就会产生磁场,而透明有机玻璃浅盘中的电解液正好处在通电线圈内部的磁场中,磁场方向要嘛向上,要嘛向下,只有这两种情况,磁场方向取决于电流方向和线圈的绕向,磁场强弱取决于电流强弱和线圈的匝数。 线圈内部的磁场强弱与匝数N成正比、与线圈中的电流强度I成正比,与线圈面积成S正比,既:B∝N I/S,而I=u/R,R=ρL/S1 (其中,ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积),又由于N 与导线长度成正比,由此推论得: B∝U S1/ρS 在线圈绕制完成定型的情况下,电阻率、导线截面积、线圈面积一定情况下,线圈内部的磁场强弱与所加的电压成正比。虽然与导线长度无关,由于电源的最大输出电流是有限的,还得考虑导线的长度。本实验中电源最大电压24v,最大

自制教具——力学多功能实验板

自制教具——力学多功能实验板关键词:创意材料制作方法实验操作及效果 九年级物理探究“摩擦力的大小与什么因素有关”的装置如图1,探究“斜面的机械效率”装置如图2,这两个实验均要用到一长木板,第二个实验要求改变斜面的倾斜程度。探究“阻力对物体运动的影响”的装置如图3,探究“动能的大小与什么因素有关“的装置如图4,这两个实验均要用到一长一短配套的两块木板,但实验室没有这两个实验的专用器材,教师到实验室准备器材时,找到的两木板厚度可能不相等,在讲桌上组成实验装置时,斜面木板与水平木板接口处往往不平滑,从斜面上滚下来的小车、小球在平面上不一定是直线运动,一般需要调整斜面几次,从斜面上滚下的小车或小球,在平面才作直线运动;由于斜面(短木板)无支撑物,斜面不易固定,难以保证小车从同一斜面的同一高度滚下的前提条件;所以需要改进这两个实验的装置。探究“杠杆的平衡条件”装置如图5,探究“比较定滑轮、动滑轮的特点”装置如图6,这两个实验都要用到铁架台。探究“使用杠杆、动滑轮省功吗”装置如图7,实验“测滑轮组的机械效率”装置如图8,这两个实验也要用到铁架台,还要用到刻度尺测量动力移动距离s和阻力移动距离h,由于没有与动力作用点,阻力作用点距离很近又便于测量s与h的参照物,导致测出的s与h误差大,测出的s与h的倍数关系,与实际的倍数关系不等,直接影响了探究结论的得出,所以必须改进这两个实验的装置。上九年级物理课时,教师要多次到实验室借还木板、铁架台、米尺和配套器材,会占用很多时间,也很麻烦。基于上述原因,本人萌发了一个创意,要自制一个教具,同时具有木板、铁架台、刻度尺的功能,并且要实验效果好,可见度大,操作简单,制作容易,携带方便,可反复使用,存放时可挂在办公室墙壁上,以减少准备器材的时间。经过多次改进,制作成功了力学多功能实验板,配合其它器材,能够很好完成上面提到的实验和另外的实验。下面介绍力学多功能实验板的材料、制作方法、实验操作及效果。 材料:70cm×35cm×1cm和35cm×12cm×1cm的规则木板或层板各一块;110cm×3.7cm×2.8cm的木条(装修房屋用)一段;4孔合页2个;长6.3cm直径0.5cm 的螺丝杆(靠螺帽端有2cm长无螺旋纹)2枚,用钢锯将其中一枚的螺帽锯掉,用砂子将锯口砂平滑;与螺丝杆配套的螺母、垫片各4个;6cm长的铁钉8枚;长3cm 宽1cm有弹性有个孔的钢片(作卡子)一片;宽度小于1cm、长18cm的皮带或其它结实的带子(作提手)一段;直径2mm的铁丝62cm;木螺丝15枚(其中一枚长1.8cm左右,用来固定卡子,其余长度小于1cm)。 制作方法: 1、画线:①用白色油漆或颜料在大木板上每隔5cm画一条与宽平行的线共13条,线要较粗,让教室后排的同学也能看清。②从下至上在线的两端标出5、10、15…… 55、60、65。③画出与长平行的中线,背面也画出这条中线。④在小木板上画出与长平行的中线,背面也画出同样的中线。 2、打孔:用钻头直径为5mm的钻子,在大木板上打穿A、B、C、D、E、F、G7个孔,如图9。 3、连接大、小木板如图10:①准备一块长60cm宽20cm较厚的硬纸板。②在纸板一长边距宽35cm处,用量角器画出一个与长边的25cm线段成40°的角,再剪去

安培力演示实验

1 实验器材与装置 取两块大小相同的立方体磁铁,磁铁选用铁氧体或铝铁硼磁性材料,长是宽的二倍(10cm×5cm),N极向上(或向下);取两条薄铜片P、Q,长约30cm,上下边平行且较光滑,高度比磁铁高度略高0.5cm左右。把两薄铜片用两铁片固定在一块磁铁的两侧,充当导轨,并在一铜片上贴有刻度尺,形成如图1所示的实验装置,在导轨上放置一根轻质圆形导体棒(可选用空心天线),两薄铜片与电源通过导线构成电路,电源可选用蓄电池或干电池。 2 实验原理 将导体棒垂直放在导轨上,闭合开关,导体棒上通有电流,在磁场力(安培力)作用下运动,从指定起点A开始,导体棒在磁场中运动的距离为S0,在导轨上运动的距离为S。由于桌面水平,则f不变,且保持每次实验的导体棒从同一位置A出发,则S0就不变。由动能定理可得:F安S0-fS=0。由此可得:F安/S=f/S0=定值,即F安∝S。要研究F 安与I、L的关系,就只要研究S与I、L的关系。 3 实验方法 (1)在磁场中导体棒长度一定时,研究F安与I的关系 ①按图1装置,将导体棒垂直放在导轨上的固定标记处,电源选用2V蓄电池或二节干电池,闭合开关,导体棒运动的距离为S1(从刻度尺上读出)。②将导体棒垂直放在导轨上的固定标记处,电源选用4V蓄电池或四节干电池,闭合开关,导体棒运动的距离为S2。③比较S1、S2大小,得S2≈2S1,说明S∝I。④结论:F安∝I。

(2)在电流一定时,研究F安与L的关系 ①将两块磁铁并放在一起,N极与上述方向相同,导体棒垂直放在导轨上的固定标记处,此时电流长度变成原来的两倍。保持电源选用2V蓄电池或二节干电池。闭合开关,导体棒运动距离为S3。②比较S1、S3大小,得S3≈2S1,说明S∝I。结论:F安∝I 。 (3)安培力的大小 由上述结论可得:F安∝I。 (4)判断安培力的方向 根据以上实验,分析电流方向,磁场方向,安培力方向,从三者方向关系,可总结出左手定则。

教科版高中物理选修3-1:《洛伦兹力的应用》教

教科版高中物理选修3-1:《洛伦兹力的应用》教案-新版

3.5 洛伦兹力的应用(3课时) 【教学目的】 1.理解运动电荷垂直进入匀强磁场时,电荷在洛仑兹力的作用 下做匀速圆周运动。 2.能通过实验观察粒子的圆周运动的条件以及圆周半径受哪 些因素的影响。推导带电粒子在磁场中做匀速圆周运动的半径周期公 式,并会应用它们分析实验结果,并用于解决实际问题。 3.能通过定圆心,求半径,算圆心角的过程利用平几知识解决 磁场中不完整圆周运动的问题。 4.了解带电粒子在磁场中偏转规律在现代科学技术中的应用。 (如质谱仪、回旋加速器等,了解我国在高能物理领域中的科技发展 状况。 5.能应用所学知识解决电场、磁场和重力场的简单的综合问 题,如速度选择器、磁流体发电机、电磁流量计等。 其中(1)~(2)为第1课时,(3)~(4)为第2课时,(5)为第3课时。 【教学重点】 掌握运动电荷在磁场中圆周运动的半径和周期的计算公式以及运用公式分析各种实际问题。 【教学难点】 理解粒子在匀强磁场中的圆周运动周期大小与速度大小无关。 【教学媒体】 洛仑兹力演示仪/回旋加速器FLASH/质谱仪图片。 【教学安排】 【新课导入】 上节课我们学习讨论了磁场对运动电荷的作用力──洛仑兹力,下面请同学们确定黑板上画的正负电荷所受洛仑兹力的大小和方向(已知匀强磁场B、正负电荷的q、m、v.). 通过作图,我们再一次认识到,洛仑兹力总是与粒子的运动方向垂直.所以洛仑兹力对带电粒子究竟会产生什么影响?这样一来粒子还能做直线运动

吗?——改变速度的方向,但不变速度大小,所以如果没有其他力的作用,粒子将做曲线运动。 那么粒子做什么曲线运动呢?是不是向电场中一样的平抛运动?——不是,平抛必须是恒力作用下的运动,象匀强电场中的电场力或重力,但洛仑兹力会随速度的方向改变而改变,是变力。 板书(课题):带电粒子在磁场中的运动. 【新课内容】 1.带电粒子在磁场中的运动规律 研究带电粒子在磁场中的运动规律应从哪里着手呢?我们知道,物体的运动规律取决于两个因素:一是物体的受力情况;二是物体具有的速度,因此,力与速度就是我们研究带电粒子在磁场中运动的出发点和基本点.黑板上画的粒子,其速度及所受洛仑兹力均已知,除洛仑兹力外,还受其它力作用吗?严格说来,粒子在竖直平面内还受重力作用,但通过上节课的计算,我们知道,在通常情况下,粒子受到的重力远远小于洛仑兹力,所以,若在研究的问题中没有特别说明或暗示,粒子的重力是可以忽略不计的,因此,可认为黑板上画的粒子只受洛仑兹力作用. 为了更好地研究问题,我们今天来研究一种最基本、最简单的情况,即粒子垂直射入匀强磁场,且只受洛仑兹力作用的运动规律. 下面,我们从洛仑兹力与速度的关系出发,研究粒子的运动规律,洛仑兹力与速度有什么关系呢? 第一、洛仑兹力和速度都与磁场垂直,洛仑兹力和速度均在垂直于磁场的平面内,没有任何作用使粒子离开这个平面,因此,粒子只能在洛仑兹力与速度组成的平面内运动,即垂直于磁场的平面内运动. 第二、洛仑兹力始终与速度垂直,不可能使粒子做直线运动,那做什么运动?——匀速圆周运动,因为洛仑兹力始终与速度方向垂直,对粒子不做功,根据动能定理可知,合外力不做功,动能不变,即粒子的速度大小不变,但速度方向改变;反过来,由于粒子速度大小不变,则洛仑兹力的大小也不变,但洛仑兹力的方向要随速度方向的改变而改变,因此,带电粒子做匀速圆周运动,所需要的向心力由洛仑兹力提供.

对摩擦力演示实验的改进

龙源期刊网 https://www.360docs.net/doc/5d8473800.html, 对摩擦力演示实验的改进 作者:王文祥王硕军弭宝国 来源:《教学与管理(理论版)》2011年第06期 一、传统实验方法存在的不足 传统的摩擦力演示实验,都是用弹簧秤拉着一个木块在一“水平面”上运动,通过增加压力、更换“水平面”来研究与摩擦力有关的因素。这种方法存在着如下不足:一是弹簧秤位于水平面上,只有前排少数学生能看到,可见度差;二是弹簧秤是运动的,学生不容易看清其读数;三是人拉动弹簧秤时很难保证真正“匀速”运动,这样就会使木块的速度忽大忽小,致使木块的加速度a不等于零,根据牛顿第二定律F拉-f=ma,此时木块受到的摩擦力和拉力就不再是一对平衡力(即摩擦力f不等于拉力F拉,而弹簧秤的示数等于F拉),在实验中的表现就是弹簧秤指针不停地跳动,并不能稳定地指在某一刻度处,这进一步增加了学生读数的困难。 二、原因分析 笔者通过认真分析发现,该实验效果不好的原因在于“弹簧秤水平放置;弹簧秤和木块是运动的,且不能保证运动的匀速性”,造成学生看不到指针,少数学生围拢过来后,看到的弹簧秤是运动的,并且指针也不稳定,造成读数困难。假如把弹簧秤固定下来,并且面向学生,学生读数就方便了;假如把移动“木块”改为移动“水平面”,那么只要“木块”和“水平面”有相对运动(或相对运动趋势),当“木块”静止时,它受到的摩擦力f和弹簧秤的拉力F拉就是一对平衡力,即弹簧秤的拉力永远等于“木块”受到的摩擦力,而与“水平面”的运动是否“匀速”无关,弹簧秤的指针也能稳定地指在某一刻度处而不再跳动。 基于上述分析,笔者对实验进行了改进,制作了摩擦力演示仪,有效地克服了上述缺点,取得了很好的实验效果。 三、仪器的制作 本仪器的主体结构就是一个竖起来的弹簧秤,如图1所示。 1.制作思路 把一个弹簧秤固定在一个支架上,用定滑轮改变力的方向,实验时拉动长木板,使木块和木板之间产生相对运动或相对运动趋势,用细线拉动弹簧秤挂钩,使弹簧秤产生读数。 2.所需器材 (1)光滑长方形木板:60cm×20cm×1cm的木板一块(标记为A,用作底座), 36cm×9cm×1cm的木板一块(标记为B,用作支架的前面),36cm×3.5cm×1cm的木板两块

6.科里奥利力演示仪

科里奥利力演示仪 【仪器介绍】 如图6-1所示,科里奥利力演示仪由底座、 转盘、飞轮、塑料串珠等构成。 【操作与现象】 一手握住底座上方的转盘,使传盘固定,另 一手驱动飞轮,使飞轮绕水平自转轴转动,可以 观察到飞轮边缘上的塑料串珠都在同一竖直平 面内作圆周运动,呈一朵花的形状。 飞轮绕自转轴转动的同时,驱动转盘使飞轮 绕转盘支承轴转动,可以观察到塑料串珠构成的 花的形状发生了改变,串珠产生了向竖直转动平 面内或外的偏移,一眼望去,串珠的边缘似乎起 了波浪。 【原理解析】 塑料串珠发生偏移的原因,是因为受到了科里奥利力的作用。科里奥利力是由法国气象学家科里奥利在1835年提出的,是为了描述非惯性系(旋转体系)的运动而需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理非惯性系(旋转体系)中的运动方程,大大简化了非惯性系的处理方式。 科里奥利力:ω ?=v m f 2 (6-1) 式中f 就为科里奥利力,v 为质点相对非惯性系 (旋转体系)运动的线速度,ω 为质点绕垂直轴转动的角速度。f 的方向可由右手螺旋法则来判 断。 取四个特殊位置(上、下、左、右)的珠子 来判断串珠的运动变化。假设转盘是逆时针转动, 即非惯性系的转动角速度ω 的方向竖直向上,若 飞轮绕自转轴在纸平面内的转动也是逆时针的, 此时四个位置上的珠子相对于飞轮(非惯性系) 的线速度v 如图6-2所示,则可以判断出:左、右 两颗珠子所受的科里奥利力为零;上面的珠子受到的科里奥利力为ωmv f 2=,方向垂直纸面向内(如图6-2所示),从而该位置上的串珠向内偏移;下面的珠子也受到同样大小的科里奥利力,方向却是垂直纸面向外图6-1 科里奥利力演示仪

高中物理实验器材一览表.doc

单 编号名称规格型号单价 位 0001 演示直尺1000mm 只 0002 木直尺1000mm 只 0005 游标卡尺125mm, 0.1mm 个 0006 螺旋测微器(千分尺)25mm, 0.01mm 个 0101 分析天平1/1000g,100g 台 0102 电子天平1/1000 台 0103 物理天平500g 台 0104 学生天平200g, 0.02g 台 0105 托盘天平500g,0.5g 台 0201 数字计时器四位 , 台 0203 电磁打点计时器个 0204 石英钟秒分度个 0205 机械停钟块 0206 节拍器电子个 0207 电火花计时器单频率: , 火花距离不小于 10mm, 个平均电流不大于 0301 热敏温度计-10 ~+100℃,线性刻度个0302 演示温度计只0401 演示电表直流、电压、电流、检流台0402 演示电流电压表J0402 型台0403 演示电阻表J0403 型台0404 演示( 瓦特 ) 功率表J0404 型台0405 电能表单相只0406 绝缘电阻 ( 兆欧) 表500V 只

0407 直流电流表级, 0.6A,3A 只0408 直流电压表级, 3V, 15V 只0409 灵敏电流计±300μA只0410 多用电表只0411 学生多用电表只0412 直流电压表级,毫伏级台0413 携式直流单双臂电桥台0414 交流电流表级,毫安级只0415 直流电流表级, 200μA只 0416 多用大屏幕数字显示可做万用电表 , 计时 . 计频 . 计数 . 台测试仪测温等 0417 数字电容表10pF~100μF台 0420 投影电流表套 单 编号名称规格型号单价 位 0421 投影电压表套 0422 投影检流计只 0423 教学 Q表台 1005 钢制黑板900mm×600mm,双面块 1007 旋片式真空泵单相,直联泵台 1008 两用气筒脚踏式个 1009 离心沉淀器手摇式台 1012 空盒气压表DYM3型个 1013 手摇抽气机双缸式台

旋转摆球式洛伦兹力演示仪

总第322 期 2019年9月 教具设计与制作 旋转摆球式洛伦兹力演示仪* 王 磊 陈建文 摘 要:洛伦兹力的学习是高中物理教学的一个重点和难点,洛伦兹力的实验主要以阴极射线在磁场中偏转的形式为主,设备较昂贵,实验较危险。研究将范德瓦尔斯起电机原理、洛伦兹力和圆锥摆理论结合起来,制作一种新型的洛伦兹力实验教学仪器,并对该仪器的应用进行探讨。关键词:洛伦兹力;范氏起电;圆锥摆;实验 作者简介:王磊,硕士,一级教师。辽宁省盘锦市高级中学,124000陈建文,硕士,一级教师。辽宁省辽东湾实验高级中学,124000 基金项目:盘锦市教育科学“十三五”规划2018年度立项课题《中学物理科学史与新型实验研究》(编号:PJKG135-2018-001)。 一、洛伦兹力研究的发展背景 自从库仑提出电和磁有本质上的区别以后,安培和毕奥等很多物理学家也都认为电和磁不会有任何关系。但深受康德哲学思想影响的丹麦物理学家奥斯特始终相信电、磁、光、热等物理现象存在内在联系,尤其是在富兰克林发现莱顿瓶放电能使钢针磁化的现象后,更坚定了他的观点。经过长期的大量实验探索,终于在1820年,奥斯特发现了电流的磁效应,开启了电磁学研究的新纪元[1]。此后,以法、德两国物理学家为代表的“源派”物理学家对电磁学做出了许多重大贡献,例如,库仑建立了库仑定律,安培提出磁现象的本质是电流,建立了两电流元作用力的安培定律,1845年韦伯明确提出带电粒子是既有质量又带电的粒子的概念,认为电就是带电粒子,电流就是带电粒子的运动[2]。以英国物理学家法拉第、麦克斯韦为代表的“场论派”持近距作用观点,认为电磁作用的媒介物—电磁场是客观存在的特殊形态的物质。洛伦兹集场、源两派理论之长,把气体分子动理论的成果引入电磁学,将经典电磁理论推向了高峰。 洛伦兹继承了“场论派”近距作用的场观点和源派电的带电粒子的观点并予以结合,洛伦兹认为,一切电作用力归根到底是电场对带电粒子的作用力,表示为 F E (F E =qE ),一切磁作用力归根到底是磁场对运动带电粒子的作用力,所以安培关于两电流元作用力的公式应理 解为一电流元受另一电流元产生的磁场的作用力,因电流是带电粒子的运动,故安培力的本质是磁场对运动带电粒子的作用力,以qv 取代安培力公式F =BIL 中的IL 即可得出F =qvB 。这是洛伦兹在1982年电子尚未发现、且并无任何实验证据时得出的洛伦兹力公式,简言之,洛伦兹力公式是电磁场和带电粒子两大正确观点相结合的产物和必然结果[3]。 二、洛伦兹力的实验教学现状 中学物理关于洛伦兹力的教学在高中的必修3-1部分,在学习安培力之后,作为对安培力的微观解释理论推出洛伦兹力的教学。目前我国中学阶段的洛伦兹力学习主要以理论教学的方式。教师利用辅助教具直观、形象地演示某种科学现象,提高学生的学习兴趣并充分调动积极性,是一种非常有效的教学手段。 洛伦兹力的实验主要以阴极射线在磁场中偏转的形式为主,但是这样的设备对于中学生而言比较昂贵,也比较危险。由于我国目前的教学仪器设计比较落后,能够在中学课堂普遍推广地、科学有效地演示洛伦兹力的实验仪器还处在待研发状态。 本设计给出一种演示洛伦兹力的设计方案,其设计简单、制作成本低廉、演示效果明显,对学生的启发作用突出。该装置可以显示出带电小球在磁场中的受力作用,通过改变磁场方向和带电小球的运动方向可以看出

科氏加速度和科氏惯性力演示实验平台说明书

2014 年湖北省大学生机械创新设计大赛
科氏加速度和科氏惯性力演示实验平台
设计说明书、图纸
华中科技大学武昌分校 2014 年 3 月

科氏加速度和科氏惯性力演示实验平台 设计说明书、图纸
作品名称:科氏加速度和科氏惯性力演示实验平台
设 计 者:吴志华 梅园 赵克恒 王高峰 王晔
指导教师:
吴修玉
刘海
单 位:
华中科技大学武昌分校
II

华中科技大学武昌分校
科氏加速度和科氏惯性力演示实验平台设计说明书
目录
1 绪论 ................................................................................................................... 1
1.1 作品背景及意义 ............................................................................................................... 1 1.1.1 科氏现象的产生 ............................................................................................................ 1 1.1.2 科氏现象的解释 ............................................................................................................ 2 1.1.3 问题的提出及研究意义 ................................................................................................ 3 1.2 研究目标 ........................................................................................................................... 3 1.3 研究内容 ........................................................................................................................... 3
2 科氏加速度和科氏惯性力演示实验平台的设计方案................................. 4
2.1 设计目标分析 ................................................................................................................... 4 2.1.1 科氏现象运动模型分析 ................................................................................................ 4 2.1.2 机械系统设计分析 ........................................................................................................ 4 2.1.3 控制系统设计分析 ........................................................................................................ 5 2.2 总体设计方案的提出 ....................................................................................................... 5 2.3 科氏现象运动模型的参数建立 ....................................................................................... 5 2.4 机械系统设计方案 ............................................................................................................. 6 2.4.1 机械系统设计方案 .......................................................................................................... 6 2.3.1 实验平台基本原理 ........................................................................................................... 7 2.5 控制系统设计方案 ............................................................................................................. 7
3 机械设计 ......................................................................................................... 9
3.1 机械结构设计 ................................................................................................................... 9 3.2 机身设计 ......................................................................................................................... 10 3.2.1 机身机械结构设计 ...................................................................................................... 10 3.2.2 机身计算与校核 .......................................................................................................... 10 3.3 主回转传动装置设计 ..................................................................................................... 11 3.3.1 机械结构设计 ................................................................................................................ 11
I

相关文档
最新文档