概率论复习重点与习题共48页

合集下载

概率论与数理统计题库及答案-知识归纳整理

概率论与数理统计题库及答案-知识归纳整理

概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21− (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A)41414121 (B)161814121(C)1631614121 (D)81834121−3. 设延续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f则下列等式成立的是( ).(A) X P (≥1)1=− (B) 21)21(==X P(C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为延续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞−=x x F b d )() (B) X a P <(≤⎰=b ax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞−=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ).(A)⎰ba x x F d )( (B)⎰bax x f d )((C) )()(a f b f − (D) )()(b F a F −6. 下列函数中可以作为延续型随机变量的密度函数的是( ).知识归纳整理7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+−)(x Φ1)(=x (C) Φ=−)(a Φ)(a (D) 2)(=<a x P Φ1)(−a9. 下列数组中,不能作为随机变量分布列的是( ).(A ) 61,61,31,31 (B)104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23−=X Y ( ).(A) )3,2(−N (B) )3,4(−N (C) )3,4(2−N (D) )3,2(2−N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p(C) 1- p (D) p−1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ).(A) E X D X (),().==321(B) 9.0)(,3)(==X D X E 求知若饥,虚心若愚。

概率论期末复习知识点

概率论期末复习知识点

知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1) (或).(2) 和事件: ;(简记为).(3) 积事件: ,(简记为或).(4) 互不相容:若事件A 和B 不能同时发生,即 (5) 对立事件: .(6) 差事件:若事件A 发生且事件B 不发生,记作(或) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有, .2. **古典概率的定义 古典概型:.几何概率·3.**概率的性质 (1) .(2) (有限可加性) 设n 个事件两两互不相容,则有.(3).(4) 若事件A ,B 满足,则有A B ⊂B A ⊃A B ⋃12n A A A ⋃⋃⋃1nii A =AB 12nA A A ⋂⋂⋂12nA A A 1nii A =AB φ=A A B -AB A B A B ⋃=⋂A B A B ⋂=⋂()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)()0P φ=1,2,,nA A A 121()()nn i i P A A A P A =⋃⋃⋃=∑()1()P A P A =-A B ⊂,.(5) .(6) (加法公式) 对于任意两个事件A ,B ,有.对于任意n 个事件,有.4.**条件概率与乘法公式.乘法公式:.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:,事件A 与B 相互独立的充分必要条件二:.对于任意n 个事件相互独立性定义如下:对任意一个,任意的,若事件总满足,则称事件相互独立.这里实际上包含了个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率,则在n 次重复独立试验中.,事件A恰发生次的概率为,7.**全概率公式与贝叶斯公式 贝叶斯公式:()()()P B A P B P A -=-()()P A P B ≤()1P A ≤()()()()P A B P A P B P AB ⋃=+-1,2,,nA A A 111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑()(|)()P AB P A B P B =()()(|)()(|)P AB P A P B A P B P A B ==()()()P AB P A P B =(|)()P A B P A =1,2,,n A A A 2,,k n =11k i i n≤<<≤1,2,,nA A A 11()()()k k i i i i P A A P A P A =1,2,,nA A A 21nn --()(01)P A p p =<<k ()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭如果事件两两互不相容,且,,,则.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律分布律也可用下列表格形式表示:2.*概率函数的性质 (1),(2).3.*常用离散型随机变量的分布(1) 0—1分布,它的概率函数为,其中,或1,.(2) 二项分布,它的概率函数为,其中,,.(4)** 泊松分布,它的概率函数为1,2,,nA A A 1ni i A ==Ω()0i P A >1,2,,i n =1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑(),1,2,,,.i i p P X a i n ===n a np 0i p ≥1,2,,,;i n =11ii p∞==∑(1,)B p 1()(1)i i P X i p p -==-0i =01p <<(,)B n p ()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭0,1,2,,i n =01p <<()P λ,其中,,..4.*二维离散型随机变量及联合概率二维离散型随机变量的分布可用下列联合概率函数来表示:其中,.5.*二维离散型随机变量的边缘概率 设为二维离散型随机变量,为其联合概率(),称概率为随机变量的边缘分布律,记为并有,称概率为随机变量Y 的边缘分布率,记为,并有=.6.随机变量的相互独立性 .设为二维离散型随机变量,与相互独立的充分必要条件为多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设是一个随机变量,是一个已知函数,是随机变量的函数,它也是一个随机变量.对离散型随机变量,下面来求这个新的随机变量的分布.设离散型随机变量的概率函数为则随机变量函数的概率函数可由下表求得()!iP X i e i λλ-==0,1,2,,,i n =0λ>(,)X Y (,),,1,2,,i j ij P X a Y b p i j ====0,,1,2,,1ij ijijp i j p≥==∑∑(,)X Y ijp ,1,2,i j =()(1,2,)i P X a i ==X ip .(),1,2,i i ij jp P X a p i ====∑()(1,2,)j P Y b j ==.jp .jp (),1,2,j ij iP Y b p j ===∑(,)X Y X Y ,,1,2,.ij i j p p p i j ==对一切X ()g x ()Y g X =X X Y X n a np Y g =但要注意,若的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数的性质 (1) (2);由已知随机变量的分布函数,可算得落在任意区间内的概率 .3.联合分布函数二维随机变量的联合分布函数. 4.联合分布函数的性质 (1) ;(2),;(3).5.**连续型随机变量及其概率密度设随机变量的分布函数为,如果存在一个非负函数,使得对于任一实数,有()n g a ()i g a ip ()F x 0()1;F x ≤≤()0,()1lim lim x x F x F x →-∞→+∞==X ()F x X (,]a b (,)X Y 0(,)1F x y ≤≤(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+X ()F x ()f x x ()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<成立,则称X 为连续型随机变量,函数称为连续型随机变量的概率密度. 6.**概率密度及连续型随机变量的性质 (1) (2);(3);(4)设为连续型随机变量,则对任意一个实数c ,; (5) 设是连续型随机变量的概率密度,则有=.7.**常用的连续型随机变量的分布 (1) 均匀分布,它的概率密度为其中,.(2) 指数分布,它的概率密度为其中,.(3) 正态分布,它的概率密度为,其中,,当时,称为标准正态分布,它的概率密度为,标准正态分布的分布函数记作,即()()xF x f x dx-∞=⎰()f x X ()f x ()0;f x ≥()1f x dx +∞-∞=⎰()()F x f x '=X ()0P X c ==()f x X ()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤()baf x dx⎰(,)R a b 1,;()0,a x b f x b a⎧<<⎪=-⎨⎪⎩其余.)a b -∞<<<+∞()E λ,0;()0,x e x f x λλ-⎧>=⎨⎩其余.0λ>2(,)N μσ22()2(),x f x x μσ--=-∞<<+∞,0μσ-∞<<+∞>0,1μσ==(0,1)N 22(),x f x x -=-∞<<+∞()x Φ,当出时,可查表得到;当时,可由下面性质得到.设,则有;.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数,如果存在一个二元非负函数,使得对于任意一对实数有成立,则为二维连续型随机变量,为二维连续型随机变量的联合概率密度. 9.**二维连续型随机变量及联合概率密度的性质 (1) ;(2);’(3) 在的连续点处有;(4) 设为二维连续型随机变量,则对平面上任一区域有.10,**二维连续型随机变量的边缘概率密度设为二维连续型随机变量的联合概率密度,则的边缘概率密度为;的边缘概率密度为22()t xx dt -Φ=⎰0x ≥()x Φ0x <()x Φ()1()x x Φ-=-Φ2~(,)X N μσ()()x F x μσ-=Φ()()()b a P a X b μμσσ--<≤=Φ-Φ(,)F x y (,)f x y (,)x y (,)(,)xyF x y f s t dtds-∞-∞=⎰⎰(,)X Y (,)f x y (,)0,,f x y x y ≥-∞<<+∞(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(,)f x y 2(,)(,)F x y f x y x y ∂=∂∂(,)X Y D ((,))(,)DP X Y D f x y dxdy∈=⎰⎰(,)X Y (,)f x y X ()(,)X f x f x y dy+∞-∞=⎰Y.11.常用的二维连续型随机变量 (1) 均匀分布如果在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为(2) 二维正态分布如果的联合概率密度则称服从二维正态分布,并记为.如果,则,,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .,那么,称随机变量与相互独立.设为二维连续型随机变量,则与相互独立的充分必要条件为如果.那么,与相互独立的充分必要条件是.第四章 随机变量的数字特征本章重点:随机变量的期望。

概率论复习重点与习题

概率论复习重点与习题

10)掌握正态分布及其性质:理解一般正态分布函
数与标准正态分布函数的关系,会查表求概率,正 态变量的线性变换仍然是正态变量.
m , : X ~ N
2
f x
1
2
e

x m 2
2 2
< x <
X ~ N 0, 1 :
x
1 2 e
x2 2
1)理解总体、简单随机样本、统计量、样本均值、 样本方差及样本矩的概念. 1 n 样本均值 X X i , n i 1 n n 1 1 2 2 2 2 样本方差 S [ X n X ] ( X X ) i i n 1 i 1 n 1 i 1 1 n 样本k 阶原点矩 Ak X i k k 1,2, n i 1 1 n 样本k 阶中心矩 Bk ( X i X ) k k 1,2, n i 1
(7)若随机事件 A 与 B 相互独立,则
A 与 B、A 与 B 、A 与 B 也相互独立.
(8)若
A1 , A2 ,An 是相互独立的事件,则
P ( A1 A2 An )
1 P ( A1 A2 An ) 1 P ( A1 ) P ( A2 ) P ( An )
A A , A A
2)掌握概率的定义及性质,会求常用的古典概型 中的 概率; ,则 (1) 若A1 , A2 ,是两两互不相容事件 P ( A1 A2 ) P ( A1) P ( A2 )
(2) 若A1 , A2 ,, An 是两两互不相容事件 ,则 P ( A1An )
7)掌握泊松分布;
P{X k }

k

概率论总复习-精选

概率论总复习-精选

描述离散型随机变量的概率特性常用它的概率 分布或分布律,即
P (X x k ) p k ,k 1 ,2 ,
概率分布的性质

2019/11/13
pk0,k1 ,2,

pk 1
k 1
非负性 规范性
离散型随机变量的分布函数
F (x)P (Xx)P ( (Xxk))
A包含的样本点数
P(A)=k/n=
S中的样本点总数
称此概率为古典概率. 这种确定概率的方法称为古 典方法 .
排列组合是计算古典概率的重要工具 .
2019/11/13
三.概率的频率定义
例2:从同一型号同一批次的反坦克弹中任抽一发反 坦克弹射击目标,观测命中情况。设A代表“命中” 这一事件,求P(A)?
称 X 服从参数为n, p 的二项分布,记作 X~B(n,p)
0 – 1 分布是 n = 1 的二项分布
2019/11/13
例6 设有同类型设备90台,每台工作相互独立,每台设 备发生故障的概率都是 0.01. 在通 情况下,一台设备发 生故障可由一个人独立维修,每人同时也只能维修一台 设备. 问至少要配备多少维修工人,才能保证当设备发 生故障时不能及时维修的概率小于0.01?
随机变量的概念 定义 设E是一随机试验,S 是它的样本空间,若
S 按 一 定 法 实 则 X 数 ()
则称 S 上的单值实值函数 X ( )为随机变量 随机变量一般用 X, Y , Z ,或小写希腊字母, , 表示.
2019/11/13
随机变量是S R 上的映射,这个映射具有 如下的特点:
x
F ( x ) 右连续,即
F (x0 )lim F (t)F (x) t x 0

概率论知识点整理及习题答案

概率论知识点整理及习题答案

概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。

(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。

(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。

而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。

特别地,=A、AU= 、AI=φ。

2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。

我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。

而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。

3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。

其中基本事件也称为样本点。

而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。

通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。

在每次试验中,一定发生的事件叫做必然事件,记作。

而一定不发生的事件叫做不可能事件,记作φ。

为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。

这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。

条件发生变化,事件的性质也发生变化。

例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。

而样本空间中的样本点是由试验目的所确定的。

例如:(1)={3,4,5,L,18}。

(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。

概率论复习重点与习题48页PPT

概率论复习重点与习题48页PPT
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
概率论复பைடு நூலகம்重点与习题
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹

概率论与数理统计部分课后习题

概率论与数理统计部分课后习题

第25页第2题从1,2....10这10个自然数中任取3个数有C(3,10)=10*9*8/(3*2*1)=120种情况3个数中最大数为3,只有,1,2,3这种情况所以概率=1/120第五题:已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品的被误判为合格品的概率为0.03,求任意抽查一个产品,它被判为合格品的概率?解:设A事件为“合格品”,次品为非A; B表示“被判为次品”.被判为正品为非B。

有95%是合格品则有P(A)=0.95 , 可以推出P(非A)=0.05一个合格品被误判为次品的概率为0.02 P(B/A)=0.02 可推出P(非B / A)=0.98一个次品误判为合格品的概率是0.03 P( 非B / 非A )=0.03 可推出P(B/非A)=0.97问:1)任意抽查一个产品,它被判为合格品的概率。

就是求P(非B)的概率由全概率公式可得:P(非B)=P(非 B / A)*P(A)+P(非 B / 非A)*P(非A)=0.98*0.95+0.03*0.05=0.931+0.0015=0.93252)一个经查被判为合格的产品确实是合格品的概率?就是求P(A/非B)用贝叶斯公式P(A/非B)= 【P(A)P(非B/A)】/【P(A)P(非B/A)+P(非A)P(非B/非A)】=(0.95*0.98)/(0.95*0.98+0.05*0.03)=0.998391楼主,由于一些符号表示不出来,只能用中文代替了,所以希望你谅解哈~~~具体过程如上,我敢保证绝对无误!!第五题38页:设随机变量X的分布函数为F(x)=a+barctanx, 负无穷<x<正无穷,(1)求常数a,b;(2)P{-1<X<1}F(x)=A+Barctanx0=F(-∞)=A-Bπ/2{1=F(+∞)=A+Bπ/2①A=1/2,B=1/π,(2)F(x)=1/2+(1/π)arctanx;F(1)-F(-1)=(1/π)arctan1-(1/π)arctan(-1)=(2/π)arctan1=1/2;tan45=1 arctan45=1第六题lna-lnb=ln(a/b) e=2.7第48页第1题sin(-α)=-sinαcos(-α)=cosα(sinα)导数为(cosα); (cosα)导数为(-sinα)第三题(1)第49页第11题(2)设X-N(10,4)求:常数d,使P{|X-10|<d}<0.9因为X~N(10,2^2),所以(X-10)/2~N(0,1)所以P{|X-10|<d}=P{|X-10|/2<d/2}=Φ(d/2)-Φ(-d/2)=Φ(d/2)-[1-Φ(d/2)]=2Φ(d/2)-1<0.9所以Φ(d/2)<0.95查表得到d/2=1.645, 所以d≈3.3注:查标准正态分布表Φ(1.645)=0.95).57页第六题:知识点—x的原函数为x²/2;如果函数f(x)={ x,a<=x<=b, 0,其他;是某连续型随机变量X的概率密度,则区间【a,b】可以是______。

概率论复习重点与习题共48页文档

概率论复习重点与习题共48页文档

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档