压电式传感器及应用

合集下载

压电式压力传感器原理特点及应用

压电式压力传感器原理特点及应用

压电式压力传感器原理特点及应用压电效应是压电材料受到外力时会产生电荷的现象。

压电材料具有这种特性的原因是在材料内部存在着一种称为压电效应的耦合效应,即机械能与电能之间的相互转换。

当外力作用在压电材料上时,会导致材料内部的正负离子产生位移,形成电偶极矩,从而产生电荷。

该电荷可以通过导线或电极传递到外部电路中,产生电压信号。

根据压电效应的特性,压电材料通常是通过连接传感器的终端来感受外部力或压力的变化。

1.高灵敏度:压电材料的压电系数比较大,对外界力或压力的变化非常敏感,能够很好地转换为电信号输出。

2.宽测量范围:压电式压力传感器的测量范围通常为几千帕到几百兆帕,能够满足不同应用场景的需求。

3.稳定性好:压电材料的压电效应相对稳定,且传感器无需额外的温度、湿度校正,不易受外界条件的干扰。

4.快速响应:由于压电材料具有较低的惯性和刚性,能够在短时间内响应外部力或压力变化。

1.工业自动化控制:压电式压力传感器可以用于工业自动化控制系统中,用于监测压力值,如液体或气体管道的压力、机械设备的载荷等。

2.汽车工程:压电式压力传感器广泛应用于汽车工程领域,如发动机进气管压力、轮胎压力、刹车系统压力等的检测。

3.生物医学领域:压电式压力传感器可用于测量人体血压、血氧饱和度、心脏健康状态等,用于临床监测和医疗设备。

4.航天航空领域:压电式压力传感器应用于航天器的气压监测、飞机的液压系统监测等,对于保证飞行安全起到重要作用。

5.环境监测:压电式压力传感器用于测量大气压力、水深、土壤压力等环境参数的监测,可用于气象、水利、地质等领域。

总之,压电式压力传感器以其高灵敏度、快速响应、稳定性好等特点,在多个领域中得到广泛的应用,为实时监测和控制提供了重要的技术支持。

压电式传感器的发展与应用

压电式传感器的发展与应用

压电式传感器的发展与应用压电式传感器是一种基于压电效应工作的传感器,它将外界的压力、振动、加速度等物理量转化为电信号输出,具有高灵敏度、宽频响特性、快速响应速度等优点。

随着科技的不断进步,压电式传感器的发展和应用也越来越广泛。

压电式传感器的发展可以追溯到20世纪初,当时主要应用于水听器和石英晶体振荡器等领域。

20世纪60年代以后,随着电子器件技术的发展,压电式传感器开始得到广泛应用。

目前,压电式传感器已经成为电子测量技术中的一种重要传感器,应用于军事、工业、医疗、环保、航天、汽车等领域。

压电式传感器的应用非常广泛。

在军事领域,压电式传感器可以应用于声纳系统、地震探测、战车装甲监测等方面。

在工业领域,压电式传感器可以应用于压力传感、温度测量、物料流量检测等方面。

在医疗领域,压电式传感器可以应用于心电图监测、血压测量、呼吸检测等方面。

在环保领域,压电式传感器可以应用于噪声监测、震动控制等方面。

在航天领域,压电式传感器可以应用于火箭探测、空间站定位等方面。

在汽车领域,压电式传感器可以应用于车速控制、安全气囊控制等方面。

随着科技的进步和应用领域的不断扩展,压电式传感器在技术上也在不断创新。

目前,压电式传感器不仅仅可以测量静态压力和振动加速度,还可以测量动态压力、温度、流量等多种物理量。

此外,压电式传感器还可以实现智能化和自适应控制,提高传感器的灵敏度和精度。

虽然压电式传感器在应用领域和技术水平上已经取得了很大的进展,但是仍然存在一些问题需要解决。

首先,传感器的灵敏度和线性度需要进一步提高。

其次,传感器的工作温度范围需要扩大,以适应更广泛的应用环境。

再次,传感器的功耗和体积需要进一步减小,以提高系统的可靠性和效率。

综上所述,压电式传感器的发展和应用前景广阔。

随着科技的不断进步,压电式传感器将在更多的领域得到应用,为社会的发展和人类的生活提供更多的便利和可能性。

压电式压力传感器原理及应用

压电式压力传感器原理及应用

压电式压力传感器原理及应用自动化研1302班王民军压电式压力传感器是工业实践中最为常用的一种传感器。

而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。

压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。

也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。

它既可以用来测量大的压力,也可以用来测量微小的压力。

一、压电式传感器的工作原理1、压电效应某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。

当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。

压电式传感器的原理是基于某些晶体材料的压电效应。

2、压电式压力传感器的特点压电式压力传感器是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

它的敏感元件由压电材料制成。

压电材料受力后表面产生电荷。

此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。

压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。

压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。

由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。

式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。

通过测量电荷量可知被测压力大小。

压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。

为了保证静态特性及稳定性,通常多采用压电晶片并联。

在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。

二、压电压力传感器等效电路和测量电路在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

压电式传感器的工作原理和应用

压电式传感器的工作原理和应用

压电式传感器的工作原理和应用1. 压电式传感器的工作原理压电式传感器是一种基于压电效应的传感器,利用压电材料的压电效应将机械能转化为电能。

压电效应是指某些晶体在受到压力或振动时会产生电荷,并且这种电荷与压力或振动的大小成正比。

常用的压电材料包括石英、陶瓷等。

这些材料具有特殊的晶体结构,使得在压力或振动作用下,晶格发生畸变,从而使晶体表面产生电荷。

压电式传感器通常由压电材料、电极和支撑结构组成。

当外力施加在压电材料上时,压电材料发生形变,导致电荷的积累。

电极将电荷收集,并通过导线传输到测量电路中。

2. 压电式传感器的应用2.1 压力传感器压力传感器是压电式传感器的一种常见应用。

由于压电材料对压力具有敏感性,因此可以将压电材料作为传感器的敏感元件,用于测量各种介质的压力。

压力传感器广泛应用于工业控制、医疗设备、环境监测等领域。

例如,在工业控制中,压力传感器可用于监测液体或气体的压力,从而实现对设备状态的监测和控制。

在医疗设备中,压力传感器可用于血压监测、呼吸机控制等应用。

2.2 加速度传感器加速度传感器是另一种常见的压电式传感器应用。

加速度传感器用于测量物体在运动过程中的加速度。

当物体受到加速度时,压电材料会发生振动,并产生电荷信号,通过测量电荷信号的大小可得到物体的加速度。

加速度传感器在车辆安全、航空航天、工程结构监测等领域有着广泛的应用。

例如,汽车中的车辆稳定系统会使用加速度传感器监测车辆的倾斜角度和加速度,以实现提高行驶安全性能。

2.3 声音传感器压电式传感器还可以用作声音传感器。

当声波通过压电材料时,材料内的晶体结构会发生振动,从而产生电荷信号。

通过测量这种电荷信号的大小,可以实现对声音的测量和分析。

声音传感器在声学测量、语音识别、噪音控制等领域有广泛的应用。

例如,在噪音控制系统中,声音传感器可以用于捕捉环境噪音信号,并通过控制系统反馈,实现噪音的消除或降低。

3. 总结压电式传感器利用压电效应将机械能转化为电能,以实现对外界力的测量。

压电式传感器原理及应用

压电式传感器原理及应用
(2)锆钛酸铅Pb(Zr·Ti)O3系压电陶瓷(PZT) 压电系数较高,各项机电参数随温度、时间等外界条件的
变化小,在锆钛酸铅的基方中添加一两种微量元素,可以 获得不同性能的PZT材料。 (3)铌镁酸铅Pb(MgNb)O3-PbTiO3-PbZrO3压电陶瓷(PMN)
具有较高的压电系数,在压力大至700kg/cm2仍能继续 工
产生电荷
02
d11——压 电系数
(C/N)
03
作用力是沿 着机械轴方

电荷仍在与 X轴垂直的
平面
a
a
Qx d12bFy d11bFy
04 此时,
返回
d12 d11
上一页
下一页
切片上电荷的符号与受力方向的关系
图(a)是在X轴方向受压力, 图(b)是在X轴方向受拉力, 图(c)是在Y轴方向受压力, 图(d)是在Y轴方向受拉力。
返回
上一页
下一页
2.压电式传感器的信号调节电路
压电式传感器要求负载电阻RL必须有很大的数值,才能使测量误差小到一定数值以 内。
因此常先接入一个高输入阻抗的前置放大器,然后再接一般的放大电路及其它电路。
测量电路关键在高阻抗的前置放大器。
前置放大器两个作用:
○ 把压电式传感器的微弱信号放大; ○ 把传感器的高阻抗输出变换为低阻抗输出。
作,可作为高温下的力传感器。
返回
上一页
下一页
1
等效电路及信号变换电路
2
一.压电元件的等效电路 二.压电式传感器的信号调节
电路
1.压电元件的等效电路
Ca
s
h
r0s
h
U Q Ca
返回
上一页
下一页

压电式传感器的原理及应用

压电式传感器的原理及应用

压电式传感器的原理及应用压电式传感器是一种应用了压电效应的传感器,通过将压电材料置于受力区域,当被测物体发生变形或受力时,压电材料发生形变,从而产生电荷信号,利用该信号来测量被测量的变化情况。

一、压电效应的原理压电效应是一种物理现象,指在压力或拉伸下,某些晶体(通常是晶体的极性方向)会产生电位差。

这种效应被广泛应用于各种传感器中,特别是在加速度计、其它惯性传感器、压力传感器和液位传感器等方面。

二、压电式传感器的原理压电式传感器通常由压电晶体和测量电路组成。

当被测物体发生形变或受力时,压电材料中的极性方向的晶体产生压电效应,导致产生电荷的位移,并与电荷电容匹配的放大器或其他电路连接。

由于被测量的变化(压力,成形,位移等)与电荷位移之间存在特定关系,所以可以根据电荷电荷读数来确定被测物体发生变化的精确程度。

三、压电式传感器的应用由于压电效应具有高灵敏度、高频响应、耐腐蚀、抗干扰等优点,压电式传感器在各种领域得到广泛应用。

1.压力测量:压电式传感器常用于压力传感器的制造,用于测量汽车轮胎、气缸、油压和空气压力等。

2.振动测量:压电式传感器还可以用于测量机器和车辆的振动水平,以便定位有问题的部件。

3.流量测量:压电式传感器在流量测量中应用广泛,例如在医疗方面测量血流,工业方面可以应用于计算液体的流量。

4.力学测试:压电式传感器的高灵敏度和高频响应特性,在体育、自然科学和工程学中用于测量冲击、震动和变形等量。

5.地震观测:压电式传感器还可以用于地震观测,以便在监测过程中测量地震的振动率。

压电式传感器在上述应用领域中具有重要作用,并与其他类型的传感器如压阻式传感器、光电式传感器、磁性传感器等合作,实现了各种领域的数据测量工作,体现了良好的应用前景。

压电式力传感器的应用场景

压电式力传感器的应用场景

压电式力传感器的应用场景压电式力传感器是一种常用于测量力的传感器,具有灵敏度高、响应速度快、体积小、重量轻等特点。

由于其优越的性能和广泛的应用领域,压电式力传感器在工业、医疗、航空航天等领域有着广泛的应用。

1. 工业自动化在工业自动化领域,压电式力传感器可以用于测量机械设备的力学特性,例如测量机械臂的扭矩、压力、力量等参数。

通过实时监测这些参数,可以对机械设备进行精确控制,提高生产效率和产品质量。

2. 汽车行业压电式力传感器在汽车行业的应用非常广泛。

例如,在汽车制动系统中,可以使用压电式力传感器来测量制动踏板的力度,从而实现对刹车系统的精确控制。

另外,压电式力传感器还可以用于测量引擎输出的扭矩和功率,以及车辆的加速度和行驶速度等参数。

3. 医疗设备在医疗设备中,压电式力传感器被广泛应用于各种测量和监测系统中。

例如,在手术中,可以使用压电式力传感器来测量手术器械的握力,以确保手术的精确性和安全性。

此外,压电式力传感器还可以用于测量患者的呼吸、心跳等生理参数,以监测患者的健康状况。

4. 航空航天在航空航天领域,需要对飞机、火箭等飞行器的各种力学参数进行准确测量。

压电式力传感器可以用于测量飞行器的气动力、推力、重力等参数,从而为飞行器的设计和控制提供重要的数据支持。

此外,压电式力传感器还可以用于测量航天器的姿态变化和振动特性等。

5. 智能手机和电子设备压电式力传感器在智能手机和其他电子设备中也有着广泛的应用。

例如,智能手机的触摸屏和按键部分常常使用压电式力传感器来实现用户的触摸输入。

此外,压电式力传感器还可以用于测量电池的充电状态、设备的重量和压力等参数。

压电式力传感器具有广泛的应用场景,在工业、医疗、航空航天和电子设备等领域发挥着重要的作用。

随着科技的不断进步和创新,压电式力传感器的应用将会越来越广泛,为各个领域的发展和进步提供更加可靠和精确的力学测量。

压电式传感器的应用和原理

压电式传感器的应用和原理

压电式传感器的应用和原理应用领域压电式传感器是一种广泛应用于各个领域的传感器,主要包括以下几个方面的应用:1.工业自动化:在工业自动化领域中,压电式传感器常被用于测量力、压力、力矩等参数,可以实时监测设备的工作状态,保证生产过程的稳定性和安全性。

2.汽车工业:在汽车工业中,压电式传感器被广泛应用于发动机控制、刹车系统、悬挂系统等方面,可以实时监测汽车的各项参数,提高行驶安全性和驾驶舒适性。

3.医疗设备:在医疗设备中,压电式传感器可以用于测量心率、呼吸、体温等生命体征参数,用于疾病诊断、治疗和康复监测,为医疗工作者提供精准的数据支持。

4.空气质量监测:压电式传感器可以用于监测空气质量,检测并记录大气中的各种有害气体,为改善环境质量提供客观数据。

5.智能穿戴设备:压电式传感器适用于智能手环、智能手表等穿戴式设备中,可以实时监测心率、睡眠质量、运动步数等健康指标,为用户提供全面的健康数据。

工作原理压电式传感器的工作原理基于压电效应,压电效应是指某些特定的材料在受到机械应力作用时,会产生正比于应力大小的电荷。

压电式传感器通常由一个或多个压电晶体组成,压电晶体一般为陶瓷材料,具有压电效应。

当外部施加压力或力矩时,压电晶体发生微小的尺寸变化,导致晶格结构的变化,从而产生极性的电荷。

这种电荷的变化可以通过电路进行测量和记录。

压电式传感器通常由以下几个主要组件构成:1.压电晶体:负责将机械应力转换为电荷信号,并根据机械应力的大小和方向产生相应的电荷。

2.支撑结构:提供对压电晶体的支持和保护,使其能够承受外部应力并稳定工作。

3.信号调理电路:负责将压电传感器输出的微弱信号放大和处理,以便能够进行准确的测量和记录。

压电式传感器的工作原理可以用以下步骤总结:1.压电晶体受到外部力或压力作用,发生微小的尺寸变化。

2.压电晶体的晶格结构发生相应的变化,产生极性的电荷。

3.电荷被信号调理电路检测和放大。

4.信号被记录或用于控制其他设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11
8.1.2 压电材料
1.压电材料的主要特性参数 (1)压电常数 (2)弹性常数 (3)介电常数 (4)机械耦合系数 (5)绝缘电阻 (6)居里点
19.10.2020
12
2.常用压电材料
石英晶体、钛酸钡、锆钛酸铅等材料是 性能优良的压电材料。
应用于压电式传感器中的压电元件材料 一般有3类:压电晶体、经过极化处理的 压电陶瓷、高分子压电材料。
沿光轴看去,可以等效地认为正六边形 排列结构。
19.10.2020
8
石英晶体的压电效应机理
1—正电荷等效中心 2—负电荷等效中心
19.10.2020
9
分析说明
(1)在无外力作用时
(2)当晶体沿电轴(x轴)方向受到压
力时,晶格产生变形
(3)同样,当晶体的机械轴(y轴)方
向受到压力时,也会产生晶格变形
将压电晶片产生电荷的两个晶面封装上 金属电极后,就构成了压电元件。当压 电元件受力时,就会在两个电极上产生 电荷,因此,压电元件相当于一个电荷 源;两个电极之间是绝缘的压电介质, 因此它又相当于一个以压电材料为介质 的电容器,其电容值为
Ca = εRε0A/δ
19.10.2020
23
压电元件的等效电路
26
输出信号
根据压电式传感器的工作原理及等效电 路,它的输出可以是电荷信号,也可以 是电压信号,因此与之配套的前置放大 器也有电荷放大器和电压放大器两种形 式。
由于电压前置放大器的输出电压与电缆 电容有关,故目前多采用电荷放大器。
19.10.2020
27
1.电荷放大器
并联输出型压电元件可以等效为电荷源。 电荷放大器实际上是一个具有反馈电容 Cf的高增益运算放大器电路
电荷放大器原理图
19.10.2020
28
结论
电荷放大器的输出电压仅与输入电荷和 反馈电容有关,电缆电容等其他因素的 影响可以忽略不计。
19.10.2020
29
2.电压放大器(阻抗变换器)
串联输出型压电元件可以等效为电压源, 但由于压电效应引起的电容量很小,因 而其电压源等效内阻很大,在接成电压 输出型测量电路时,要求前置放大器不 仅有足够的放大倍数,而且应具有很高 的输入阻抗
19.10.2020
2
主要章节
8.1压电效应及压电材料 8.2压电式传感器测量电路 8.3压电式传感器的应用
19.10.2020
3
8.1压电效应及压电材料
8.1.1 压电效应
1.压电效应的概念
某些电介质,当沿着一定方向对其施力而使它 变形时,其内部就产生极化现象,同时在它的 两个表面上便产生符号相反的电荷,当外力去 掉后,其又重新恢复到不带电状态,这种现象 称压电效应。相反,当在电介质极化方向施加 电场,这些电介质也会产生变形,这种现象称 为“逆压电效应”(电致伸缩效应)。
(4)当晶体的光轴(z轴)方向受到受
力时,由于晶格的变形不会引起正负电 荷中心的分离,所以不会产生压电效应。
19.10.2020
10
结论
沿机械轴方向的力作用在晶体上时,产 生的电荷与晶体切面的几何尺寸有关, 式中的负号说明沿机械轴的压力引起的 电荷极性与沿电轴的压力引起的电荷极 性恰好相反。
19.10.2020
轴又称电轴,它通过六面体相对的两个棱线并
垂直于光轴:y轴又称为机械轴,它垂直于两
个相对的晶柱棱面。
19.10.2020
6
石英晶体及切片
19.10.2020
7
石英晶体的压电效应与其内部结构有关, 产生极化现象的机理可说明。
石英晶体的化学式为SiO2,它的每个晶
胞中有3个硅离子和6个氧离子,一个硅 离子和两个氧离子交替排列(氧离子是 成队出现的)。
8.2.2 压电式传感器测量电路
压电式传感器的内阻很高,要求与高输 入阻抗的前置放大电路配合,与一般的 放大、检波、显示、记录电路连接,防 止电荷的迅速泄漏而使测量误差减少。
压电式传感器的前置放大器的作用有两 个:一是把传感器的高阻抗输出变为低 阻抗输出;二是把传感器的微弱信号进 行放大。
19.10.2020
第8章压电式传感器及应用
19.10.2020
1
引言
压电式传感器的工作原理是基于某些介 质材料的压电效应,是典型的有源传感 器。当材料受力作用而变形时,其表面 会有电荷产生,从而实现非电量测量。 压电式传感器具有体积小,重量轻,工 作频带宽等特点,因此在各种动态力、 机械冲击与振动的测量,以及声学、医 学、力学、宇航等方面都得到了非常广 泛的应用。
19.10.2020
13
石英晶体
天然形成的石英晶体外形
19.10.2020
14
天然形成的石英晶体外形(续)
19.10.2020
15
石英晶体切片及封装 石英晶体薄片
19.10.2020
双面镀银并封装
16
石英晶体振荡器(晶振)
晶振
19.10.2020
石英晶体在振荡 电路中工作时,压电 效应与逆压电效应交 替作用,从而产生稳 定的振荡输出频率。17
压电元件等效为一个与电容相并联的电 荷源,也可以等效为一个与电容相串联 的电压源,
19.10.2020
24
压电元件实际的等效电路图
压电式传感器不能用于静态测量。压电 元件只有在交变力的作用下,电荷才能 源源不断地产生,可以供给测量回路以 一定的电流,故只适用于动态测量。
19.10.2020
25
19.10.2020
30
8.3压电式传感器的应用
8.3.1 压电传感器的基本,往往采 用多片压电晶片粘结在一起。其中最常用的是 两片结构。由于压电元件上的电荷是有极性的, 因此接法有串联和并联两种
压电陶瓷外形
19.10.2020
18
高分子压电薄膜及拉制
19.10.2020
19
高分子压电材料制作的压电薄膜和电缆
19.10.2020
20
可用于波形分析及报警的高分子压电踏脚板
19.10.2020
21
压电式脚踏报警器
19.10.2020
22
8.2压电式传感器测量电路
8.2.1 压电式传感器的等效电路
19.10.2020
4
压电效应可逆性
19.10.2020
5
2.压电效应原理
具有压电效应的物质很多,如石英晶体、压电 陶瓷、高分子压电材料等
石英晶体是一种应用广泛的压电晶体。它是二 氧化硅单晶体,属于六角晶系。它为规则的六
角棱柱体。石英晶体有3个晶轴:x轴、y轴和 z轴。 z轴又称光轴,它与晶体的纵轴线方向一致:x
相关文档
最新文档