(整理)作业1数学建模,姜启源版.
数学模型_第3版_姜启源_高等教育出版社_课后答案

综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题)(1)用多种方法都能给出一个达到要求的赛程.(2)用多种方法可以证明支球队“各队每两场比赛最小相隔场次n r 的上界”(如=5时上界为1)是n ⎥⎦⎤⎢⎣⎡-23n ,如: 设赛程中某场比赛是,i j 两队, 队参加的下一场比赛是,两队(≠i i k k j ),要使各队每两场比赛最小相隔场次为r ,则上述两场比赛之间必须有除i ,j ,以外的2k r 支球队参赛,于是,注意到32+≥r n r 为整数即得⎥⎦⎤⎢⎣⎡-≤23n r . (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的编排出达到该上界的赛程.如对于n =8, =9可以得到: n n 1A 2A 3A 4A 5A 6A 7A 8A 每两场比赛相隔场次数 相隔场次总数1A× 1 5 9 13 17 21 25 3,3,3,3,3,3 18 2A 1 × 20 6 23 11 26 16 4,4,4,3,2,2 193A 5 20 × 24 10 27 15 2 2,4,4,4,3,2 19 4A 9 6 24 × 28 24 3 19 2,2,4,4,4,3 19 5A 13 23 10 28 × 4 18 7 2,2,2,4,4,4 18 6A 17 11 27 14 4 × 8 22 3,2,2,2,4,4 177A 21 26 15 3 18 8 × 12 4,3,2,2,2,4 178A25 16 2 19 7 22 12 × 4,4,3,2,2,2 17w w w .k h d a w .c o m 课后答案网1A 2A 3A 4A 5A 6A 7A 8A 9A 每两场比赛相隔场次数 相隔场次总数1A× 36 6 31 11 26 16 21 1 4,4,4,4,4,4,4, 28 2A 36 × 2 27 7 22 12 17 32 4,4,4,4,4,4,3 27 3A 6 2 × 35 15 30 20 25 10 3,3,4,4,4,4,4 26 4A 31 27 35 × 3 18 8 13 234,4,4,4,3,3,3 25 5A 11 7 15 3 × 34 24 29 193,3,3,3,4,4,4 24 6A 26 22 30 18 34 × 4 9 144,4,3,3,3,3 23 7A16 12 20 8 24 4 × 33 28 3,3,3,3,3,3,4 22 8A21 17 25 13 29 9 33 × 53,3,3,3,3,3,3, 21 9A 1 32 10 23 19 14 28 5 × 3,4,3,4,3,4,3 24 可以看到, =8时每两场比赛相隔场次数只有2,3,4, =9时每两场比赛相隔场次数只有3,4,以上结果可以推广,即为偶数时每两场比赛相隔场次数只有n n n 22-n ,12-n ,2n ,n 数时只有为奇23-n ,21-n . 量赛程优劣其他指标如(4)衡的平均相隔场次 记第i 队第j 个ij c ,2,2,1,,,2,1-==n j n i ,间隔场次数为则平均相隔场次为∑∑=n i 1-=n r 21 =-j n n 1)2(ij c r 是赛程整体意义下的指标,它越大越好.可以计算=8,=9的n n r ,并讨论它是否达到上界. 相隔场次的最大偏差 定义||,r c Max f ij j i -=∑---=2)2(|n r n c Max g =1|j ijw w w .k h d a w .c o m 课后答案网f 为整个赛程相隔场次的最大偏差, 为球队之间相隔场次的最大偏差,它们都是越小越好.可以计算=8,=9的,g ,并讨论它是否达到上界.g n n f 参考文献工程数学学报第20卷第5期20032. 影院座位设计建立满意度函数),(βαf ,可以认为α和β无关, ()()βαβαh g f -=),(,g ,取尽量简单的形式,h 如αα=)(g ;0)(=βh (),030≤β0)(h h =β)30(0>β.(1)可将作为必要条件,以030≤βα最大为最佳座位的标准.在上图中以第1排座位为坐标原点建立坐标轴x ,可以得到 ⎪⎭⎫ ⎝⎛+----⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+--=d x x h c H d x x c H d x x c H θθαθβtan arctan tan arctan ,tan arctan β是x 的减函数.可得x ≈1.7m,即第3(或4)排处.又通过计算或分析可知030=βα也是x 的减函数,所以第3(或4)排处是最佳座位.(2)设定一个座位间隔(如0.5m), l x 从0(或处)到030≤βd D -按离散,对于计算l )20~0(00θα的平均值,得时其值最大. 020=θ(3)可设地板线是x 的二次曲线,寻求,b 使2bx ax +a α的平均值最大. 实际上,还应考虑前排不应挡住后排的视线. 3.节水洗衣机(1996年全国大学生数学建模竞赛B 题) 该问题不要求对洗衣机的微观机制(物理、化学方面)深入研究,只需要从宏观层次去把握.宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上原有污物与洗涤剂的总和. w w w .k h da w .c o m 课后答案网假设每轮漂洗后污物均匀地溶于水中;每轮脱水后衣物含水量为常数.~初始污水量,第轮加水量,~第k 轮脱水量c 0x ~k u k k x ),,2,1( =k .设每轮脱水前后污物在水中的浓度不变.于是cx c u x u c x n n n =+==--111,,, c x 2c x +21u x 10, 得到)()(210c u c u u c x x n n n ++= . 在最终污物量与初始污物量之比小于给定的清洁度条件下,求各轮加水量,使总用水量最小,即0/x x n k u ),,1(n k =∑=nk k u u Min k 1()ε<++)(..21c u c u u c t s n n 等价于)()(21c u c u u Min n u k +++++ α=++)()(..21c u c u u t s na 为常数可得c u c u u n +==+= 21,即第轮加水量n ~2u u k =(常数),第1轮加水量.c u u +=1令,问题简化为cx u =nx Min u n , ε<⎪⎭⎫ ⎝⎛+n x t s 11.. 其解为,即,而0→x 0→u ∞→n n .这与实际上是不合理的.应该加上对u 的限制:.则得n ,其中 21v u v ≤≤max min n n ≤≤max min n n ≤≤,1+)/1ln(2min ⎥⎦⎤⎢⎣⎡+=c v n αn 这样,为有限的几个数,可一一比较,具体数据计算从略.参考文献:《数学的实践与认识》第27卷第1期,1997w w w .k h d a w .c o m 课后答案网4.教师工资调整方案(1995年美国大学生数学建模竞赛B 题)题目对职称提升年限表述得不甚清楚(如未提及助理教授的提升),教龄也未区分是什么职称下工作的年限,所以应该作出一些相应的简化假设.按所给信息,工资仅取决于职称和教龄.建立新方案的一种办法是将职称折合成教龄,如定义x=教龄t+7×k (对于讲师、助理教授、副教授、教授,k 分别取值0,1,2,3),然后寻求工资函数I(x),使之满足题目的要求,如I(0)=27000,I(7)=32000等,以及x 较大时022<dxI d .另一种办法是职称、教龄分别对待,工资函数J(k,t)从多种函数中选择,如最简单的线性函数J(k,t)=k k k k b a t b a ,,+(k=0,1,2,3)根据一定条件确定.按照第一种办法得到的新工资方案,以职称和教龄综合指标为x 的教师的工资都应为I(x),而人们的目前工资会低于或高于它.根据题目要求,高工资不应降低,低工资则应逐渐提高,尽快达到理想值I(x).需要做的只是根据每人(目前)工资与(理想值的)差额,制定学校提供的提薪资金的分配方案.它应该是简单、合理、容易被人接受的. 按以上原则可以建立不同的模型,应通过检验比较其恶劣.检验可基于题目所给数据,按照提薪计划运行若干年,考察接近理想方案的情况,即用过渡时期的情况检验模型;也可进行随机模拟,按照一定规则随机产生数据(可以包括聘用、提职、解聘、退休的人数和时间等),再按照提薪计划运行,考察接近理想方案的情况.参考文献:叶其孝,《大学生数学建模竞赛辅导教材》(四),湖南教育出版社,20015. 一个飞行管理问题(1995年全国大学生数学建模竞赛A 题)设为第i 架飞机与第j 架飞机的碰撞角(即ij a )8arcsin(ij ij r a =其中为这两架飞机连线的长度),ij r ij β为第i 架飞机相对于第j 架飞机的相对速度(矢量)与这两架飞机连线(从i 指向j 的矢量)的夹角(以连线矢量为基准,逆时针方向为正,顺时针方向为负),i θ为第架飞机飞行方向角调整量. 本问题中的优化目标函数可以有不同的形式:如使所有飞机的最大调整量最小;所有飞机的调整量绝对值之和最小等.以所有飞机的调整量绝对值之和最小,可以得到如下的数学规划模型:w w w .k h d a w .c o m 课后答案网∑=61i i Min θ s.t. ,)(21ij j i ij a >++θθβ j i j i ≠=,6,,1,30≤i θ , 6,,1 =i 为了利用LINGO 求解这个数学规划模型,可以首先采用其他数学软件计算出ij α和ij β.其实,ij α和ij β也是可以直接使用LINGO 来计算的,这相当于解关于ij α和ij β的方程,只是解方程并非LINDO 软件的特长,这里我们作为一个例子,看看如何利用LINGO 计算ij α,可输入如下模型到LINGO 求解ij α:MIDEL :1]SETS:2] PLANE/1..6/:x0,y0; 3] link(plane,plane):alpha,sin2: 4]ENDSETS5] @FOR(LINK(I,J)|I#NE#J:6] sin2(I,J)=64/((X0(I)-X0(J))*(X0(I)-X0(J))+7] (Y0(I)-Y0(J))*(Y0(I)-Y0(J)));8] );9] @FOR(LINK(I,J)|I#NE#J: 10] (@SIN(alpha*3.14159265/180.0))^2=SIN2; 11] ); 12]DATA:13] X0=150,85,150,145,130,0; 14] Y0=140,85,155,50,150,0; 15]endataEND计算结果如下:w w w .k h d a w .c o m 课后答案网ij a j=1 2 3 4 5 6i=1 0.000 0 5.3912 32.231 05.091 8 20.963 4 2.234 5 2 5.391 2 0.000 0 4.8046.613 5 5.807 9 3.815 9 3 32.231 0 4.804 0 0.0004.364 7 22.833 7 2.125 5 45.091 86.613 5 4.36470.000 0 4.4.537 2.989 8 5 20.963 4 5.807 922.8337 4.537 70.000 0 2.309 8 6 2.234 5 3.815 9 2.125 5 2.989 82.309 80.000 0 ij β也可类似地利用LINGO 求得,计算结果如下: ij β j=1 2 3 4 5 6 i=1 0.000 0 109.263 6 -128.250 0 24.1798173.065 1 14.474 9 2 109.263 6 0.000 0-88.871 1 -42.2436-92.304 8 9.000 03 -128.250 0 -88.871 1 0.000 012.4763-58.786 2 0.310 84 24.179 8 -42.243 6 12.476 30.000 0 5.969 2-3.525.65 173.065 1 -92.304 8 -58.78625.969 20.000 0 1.914 4614.474 9 9.000 00.310 8-3.5256 1.914 4 0.000 0w w w .k h d a w .c o m 课后答案网于是,该飞机管理的数学规划模型可如下输入LINGO 求解:MODEL:1]SETS2] plane/1..6/:cita:3] link(plane,plane):alpha,beta;4]ENDSETS5] min=@sum(plane:@abs(cita));6] @for(plane(I):7] @bnd(-30,cita(I),30);8] );9] @fpr(link(I,j)|I#NE#J:10] @ABS(beta(I,J)+0.5*cit(I)+0.5*cita(J))11] >alpha(I,J);12] );13]DATA:14] A;[JA=0.000 0 5.391.2….. …2.309 8 0.000 020] ;21] BETA=0.000 010 9.263 6………1.914 4 0.000 027] ;28]enddata END[注] alpha,beta 中数据略去,见上面表格. 求解结果如下: OPTIMUM FOUND AT STEP 197 SOLUTION OBJECTIVE V ALUE= 3.630 V ARIABLE V ALUE REDUCED COST CITA(1) 0.2974033E-06 -1.000 000 CITA(2) -0.1424833E-05 -0.715 033 4 w w w .k h d a w .c o m 课后答案网CITA(3) 2.557 866 1.000 000 CITA(4) -0.3856641E-04 0.0000000E+00CITA(5) 0.2098838E-05 -1.000 000CITA(6) 1.071 594 0.0000000E+00………. (以下略)由此可知最优解为: (其它调整角度为0). ︒︒≈≈07.1,56.263θθ 评注:如果将目标改为最大调整量最小,则可进一步化简得到线形规划模型,也可用LINDO 或LINGO 求解.参考文献:《数学的实践与认识》第26卷第1期,19966. 降落伞的选择这个优化问题的决策变量是降落伞数量n 和每一个伞的半径r ,可先将n 和r 看作连续变量,建立优化模型,求得最优解后,再按题目要求作适当调整. 目标函数之降落伞的费用,可以根据表1数据拟合伞面费用与伞的半径r 的关系。
姜启源数学建模资料

姜启源数学建模资料简单的优化模型3.1 3.2 3.3 3.4 存贮模型生猪的出售时机森林救火最优价格3.5 血管分支3.6 消费者均衡3.7 冰山运输<i>姜启源数学建模资料</i>静态优化模型现实世界中普遍存在着优化问题静态优化问题指最优解是数不是函数静态优化问题指最优解是数(不是函数不是函数) 建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数求解静态优化模型一般用微分法<i>姜启源数学建模资料</i>问题3.1存贮模型配件厂为装配线生产若干种产品,配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。
备要付生产准备费,产量大于需求时要付贮存费。
该厂生产能力非常大,即所需数量可在很短时间内产出。
生产能力非常大,即所需数量可在很短时间内产出。
已知某产品日需求量100件,生产准备费5000元,贮存费件生产准备费已知某产品日需求量元每日每件1元试安排该产品的生产计划,每日每件元。
试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。
),每次产量多少一次(生产周期),每次产量多少,使总费用最小。
不只是回答问题,而且要建立生产周期、要不只是回答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系。
求需求量、准备费、贮存费之间的关系。
<i>姜启源数学建模资料</i>问题分析与思考日需求100件,准备费5000元,贮存费每日每件元。
件准备费日需求元贮存费每日每件1元每天生产一次,每次每天生产一次,每次100件,无贮存费,准备费件无贮存费,准备费5000元。
元每天费用5000元元每天费用10天生产一次,每次天生产一次,天生产一次每次1000件,贮存费件贮存费900+800+…+100 =4500 准备费5000元,总计元,准备费元总计9500元。
元平均每天费用950元元平均每天费用50天生产一次,每次天生产一次,天生产一次每次5000件,贮存费件贮存费4900+4800+…+100 =*****元,准备费元准备费5000元,总计元总计*****元。
数学模型 姜启源

数学模型
数学模型
精选ppt
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称
学时
36
数学模型与数学建模 Mathematical Modeling
学分 课程类别
3 专业选修课
先修课程
微积分、线性代数、概率论与数理统计
课程简介
本课程是计算机及管理专业的一门专业选修课。也是本科生参加数学建 模竞赛的辅导课程。数学模型是架于数学理论和实际问题之间的桥梁。 数学建模是应用数学解决实际问题的重要手段和途径。本书介绍数学建 模中常用的一些基本概念、理论和典型的数学模型,包括:数据拟合, 网络模型,优化模型,离散模型、随机模型,时间序列预报模型,回归 分析及其试验设计。通过数学模型和数学建模有关问题的论述和模型实 例的介绍,使学生应用数学解决实际问题的能力有所提高。
• 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);
• 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20千米/小时)。
精选ppt
9
《数学模型》 姜启源 主编
第一章 建立数学模型
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
《数学模型》 姜启源 主编
第一章 建立数学模型
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个
准
比较清晰
备 搜集有关信息 掌精选握ppt 对象特征 的‘问题’25
姜启源 数学模型第五版-第1章

1.3
问题
建模示例之一 包饺子中的数学
通常,1kg馅, 1kg面, 包100个饺子. 今天,馅比 1kg多, 1kg面不变, 要把馅包完.
应多包几个(每个小些), 还是少包几个(每个大些)?
分析
直观认识——“大饺子包的馅多”! 但是:“用的面皮也多”!
需要比较:饺子从小变大时馅和面增加的数量关系.
C
C´ B´ B A´
O
A
x
D´
D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
模型建立
地面为连续曲面 椅子在任意位置 至少三只脚着地 椅子旋转900, 对 角线AC和BD互换 f() , g()是连续函数 对任意, f(), g() 至少一个为0 g(0)=0,f(0) > 0, f(/2)=0, g(/2)>0.
不平的地面上的椅子, 通常三只脚着地—— 放不稳! 挪动几下,使四只脚着地——椅子放稳!
讨论椅子能放稳的条件.
椅子能在不平的地面上放稳吗
模型假设
四腿一样长,椅脚与地面点接触,四脚连线呈正方形. 地面高度连续变化,可视为数学上的连续曲面. 地面相对平坦,椅子在任意位置至少三只脚着地.
模型建立
椅子位置 利用正方形(椅脚连线)的对称性. 用表示椅子位置. 四只脚着地 椅脚与地面距离为零 距离是的函数. 四个距离 (四只脚) 对称性 两个距离
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤 模型 求解 模型 分析 模型 检验 各种数学方法、软件和计算机技术. 如结果的误差分析、统计分析、 模型对数据的稳定性分析. 与实际现象、数据比较, 检验模型的合理性、适用性.
(完整版)数学模型姜启源-第三章(第五版)

平均每天费用950元 • 50天生产一次,每次5000件, 贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元.
平均每天费用2550元
c2 t1x x
c3 x
其中 c1,c2,c3, t1, ,为已知参数
模型求解 求 x使 C(x)最小
dC 0 dx
x
c t 2 2c t
11
21
2c 2
3
结果解释 x c1t12 2c2t1
2c32
dB
dt
/ 是火势不继续蔓延的最少队员数
x
x 0.45
0.4 0.35
0.3 0.25
0.2 0.15
0.1 0.05
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a
a
1
空杯质量w2取决于材料 (纸杯、塑料杯、玻璃杯).
设w2=150g 半升啤酒杯w1=500g a=0.3 x=0.3245
一杯啤酒约剩1/3时重心最低,最不容易倾倒!
问题分析与模型假设 x
w1 ~ 啤酒 (满杯) 质量
1
w2 ~空杯侧壁质量, w3 ~空杯底面质量
啤酒杯重心s(x)由啤酒重心和空杯 重心合成.
• s2=1/2 •xs(x) 液面 • s1=x/2 0
液面高度x时啤酒质量w1x, 啤酒重心位置 s1=x/2
忽略空杯底面质量w3 空杯重心位置 s2=1/2
数学模型(姜启源 第三版第一章)

1、举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型等。
2、从下面不大明确的叙述中确定要研究的问题,要考虑哪些有重要影响的变量:(1)一家商场要建一个新的停车场,如何规划照明设施;(2)一农民要在一块土地上作出农作物的种植规划;(3)一制造商要确定某种产品的产量及定格;(4)卫生部门要确定一种新药对某种疾病的疗效;(5)一滑雪场要进行山坡滑道和上山缆车的规划。
3、怎样解决下面的实际问题。
包括需要哪些数据资料,要作些什么观察、实验以及建立什么样的数学模型等。
(1)估计一个人体内血液的总量;(2)为保险公司制定人寿保险金计划(不同年龄的人应缴纳的金额和公司赔偿的金额);(3)估计一批日关灯管的寿命;(4)确定火箭发射至最高点所需的时间;(5)决定十字路口黄灯亮的时间长度;(6)为汽车租凭公司制订车辆维修、更新和出租计划;(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划。
4、在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。
试构造模型并了解。
5、模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除了需要人划之外,至多能载猫、鸡、米三者之一,而当下人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河的方案,并使渡河次数尽量地最少。
6、利用1.5节表1和表3给出的1790—2000年美国实际人口资源建立下列模型:(1)分段的指数增长模型。
将时间分为若干段,分别确定增长率r ;(2)阻滞增长模型。
换一种方法确定固有增长率r 和最大容量m x 。
7、说明1.5节中Logistic 模型(9)可以表为0()()1mr t t x x t e --=+,其中是人口增长出现拐点的时刻,并说明0t 与,r ,m x 的关系。
8、假定人口的增长服从这样的规律:t 时刻的人口为()x t ,到t t +∆时间内人口的增量与()m x x t 成正比(其中m x 为最大容量)。
数学模型课后答案姜启源

数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
数学模型第四版课后规范标准答案姜启源版

.
再由初始条件,得
又由
其解为
(1)
即乙方取胜时的剩余兵力数为
又令
注意到 .
(2) 若甲方在战斗开始后有后备部队以不变的速率 增援.则
相轨线为
此相轨线比书图11中的轨线上移了 乙方取胜的条件为
《数学模型》作业解答
第六章(2008年11月20日)
1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic规律,而单位时间捕捞量为常数h.
S取最大值.
由 解得
此时 =20 =350(元)
2.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:
货物
体积
(立方米/箱)
重量
(百斤/箱)
利润
(百元/箱)
甲
5
2
20
乙
4
5
10
已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.
A
B
C
3 2 2
3 3 3
4 5 5
4 4 3
5 5 5
6 6 7
总计
10 10 10
15 15 15
2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型.
解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.
考虑 到 时间内录像带缠绕在右轮盘上的长度,可得 两边积分,得
《数学模型》作业解答
故应改变订货策略.改变后的订货策略(周期)为T = ,能节约费用约53.33元.
《数学模型》作业解答
第四章(2008年10月28日)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一动力系统一、实验目的与要求掌握运用软件求解动态系统模型,通过研究散点图得到动态系统的内在性质和长期趋势。
通过对数据进行处理,归纳出动态系统模型。
1、用Excel对数据进行处理,建立动态系统模型并且进行验证;2、用Excel画散点图,对动态系统模型解的长期趋势进行分析;3、用Excel求解动态系统模型并估计均衡点;4、用Excel分析多元动态系统模型。
二、实验内容Example 1.1 P9 研究课题第一题随着汽油价格的上涨,今年你希望买一辆新的(混合动力)汽车。
你把选择范围缩小到以下几种车型:2007Toyota Camry混合动力汽车2007Saturn混合动力汽车2007Honda Civic混合动力汽车2007Nissan Altima 混合动力汽车2007Mercury Mariner混合动力汽车。
每年公司都向你提供如下的“优惠价”。
你有能力支付多达60个月的大约500美元的月还款。
采用动力系统的方法来确定你可以买那种新的混合动力系统汽车。
混合动力汽车“优惠价”(美元)预付款(美元)利率和贷款持续时间Saturn 22045 1000 年利率5.95%,60个月Honda Civic24350 1500年利率5.5%,60个月Toyota Camry26200 750年利率6.25%%,60个月Mariner27515 1500年利率6%%,60个月Altima24900 1000年利率5.9%%,60个月解答如下,对五家公司分别建立动力系统模型:Saturn:Δb n=b n+1-b n=0.0595b n-6000b n+1= b n+0.0595b n-6000b0=21045Honda Civic:Δb n=b n+1-b n=0.055b n-6000b n+1= b n+0.055b n-6000b0=22850Toyota Camry: Δb n=b n+1-b n=0.0625b n-6000b n+1= b n+0.0625b n-6000b0=25450Mariner:Δb n=b n+1-b n=0.06b n-6000b n+1= b n+0.06b n-6000b0=26015Altima: Δb n =b n+1-b n =0.059b n -6000b n+1= b n +0.059b n -6000 b 0=23900Excel 操作步骤:1.打开excel 表格,输入如下表格::2.用智能标识把月份从0拉到5:3.在B 5 输入= B 4+0.0595B 4-6000,回车后下拉即可可到序列B=(16297.18, 11266.86, 5937.238,…)。
同理在D,F,H,J 行输入,得到如下表格:4. 在插入→图表→XY 散点图,选中数据格就可得出下表: (1)选中A1到B9的数据,建立散点图,得到Saturn 表:Saturn-10000-500005000100001500020000250000123456月份余额Saturn 余额(2)选中C1到D9的数据,建立散点图,得到Honda Civic 表:Honda Civic-500005000100001500020000250000123456月份余额Honda Civic 余额(3)选中E1到F9的数据,建立散点图,得到Toyota Camry 表Toyota Camry0500010000150002000025000300000123456月份余额Toyota Camry 余额(4)选中G1到H9的数据,建立散点图,得到Mariner 表Mariner0500010000150002000025000300000123456月份余额Mariner 余额(5)选中I1到J9的数据,建立散点图,得到Altima 表Altima-50000500010000150002000025000300000123456月份余额Altima 余额由图可知:Saturn 表的线最早与X 轴相交,故我们可以得出应当购买Saturn 公司的汽车。
Example 1.2 P16 习题第二题下列数据表示从1790到2000年的美国人口数据 Yearpopulation Year Population Year Population 1790 3,929,000 1870 38,558,000 1940 131,669,00018005,308,000 188050,156,000 1950150,697,0001810 7,240,000 1890 62,948,000 1960 179,323,000 1820 9,638,000 190075,995,000 1970203,212,000 1830 12,866,0001910 91,972,0001980226,505,000 184017,069,000 1920105,711,0001999248,710,000185023,192,0001930122,755,000 2000281,416,000186031,443,000求出能够相当好地拟合该数据的动力模型,通过画出模型的预测值和数据值来测试你的模型。
解答如下:首先均差计算公式可得下列差分表divided difference table均差Year Observed population∆2∆3∆4∆1790392,9001800530,800 13,79018107,240,000 670,920 32856.518209,638,000 239,800 -21556-1813.75183012,866,000 322,800 4150856.866766.76542 184017,069,000 420,300 487524.16667-20.8175 185023,192,000 612,300 9600157.5 3.333333 186031,443,000 825,100 1064034.66667-3.07083 187038,558,000 711,500 -5680-544-14.4667 188050,156,000 1,159,800 22415936.537.0125 189062,948,000 1,279,200 5970-548.167-37.1167 190075,995,000 1,304,700 1275-156.59.791667 191091,972,000 1,597,700 14650445.833315.05833 1920105,711,000 1,373,900 -11190-861.333-32.6792 1930122,755,000 1,704,400 16525923.833344.62917 1940131,669,000 891,400 -40650-1905.83-70.7417 1950150,697,000 1,902,800 505703040.667123.6625 1960179,323,000 2,862,600 47990-86-78.1667 1970203,212,000 2,388,900 -23685-2389.17-57.5792 1980226,505,000 2,329,300 -2980690.166776.98333 1990248,709,873 2,220,487 -5440.64-82.0212-19.3047 2000281,416,000 3,270,613 52506.271931.56450.33962根据excel中“工具→数据分析→回归”,可得如下图像50,000,000100,000,000150,000,000200,000,000250,000,000300,000,0000510152025系列1多项式 (系列1)模型:y = 670127x 2 - 3E+06x + 8E+06Example 1.4 P50 第四题假定斑点猫头鹰的主要食物来源是单一的食饵:老鼠。
生态学家希望预测在一个鸟兽类保护区里斑点猫头鹰和老鼠的种群量水平。
令 M n 表示 n 年后老鼠的种群量, On 表示 n 年后斑点猫头鹰的种群量。
生态学家提出了下列模型: Mn+1=1.2Mn-0.01OnMn On+1 =0.7On+0.002OnMn生态学家想知道在栖息地两个种群能否共存以及结果是否对起始种群量敏感。
(a) 比较上面模型中系数的正负号和例 3 中猫头鹰-模型中系数的正负号。
依次解释正在建模的捕食者——食饵关系中四个系数 1.2、-0.01、0.7 和 0.002 的正负号的意义。
(b) 对下列表中初始种群数量进行检验并预测其长期行为:猫头鹰 老鼠 猫头鹰 老鼠 情况 A 150 200 情况 C 100 200 情况 B 150150300情况 D1020(c) 现在利用给定的起始值对不同的系数的值做实验,然后再试不同的起始值。
长期行为是怎样的你的实验结果是否表明模型对系数是敏感的是否对起始值敏感?解答如下:(a)1.2和0.7分别是老鼠和猫头鹰增长率,都是正常数。
猫头鹰的存在是为了降低老鼠的增长率,反之亦然。
OnMn为两种生物竞争的激烈程度。
-0.001的负号表示随着竞争激烈程度的增加,老鼠的数目不断减少。
0.002的正号表示随着竞争激烈程度的增加,猫头鹰的数目不断增加。
(b)平衡点:如果把(M,O)成为平衡点,那么必须同时有M=Mn+1=Mn和O= On+1= On,把它们带入模型给出0=M*(0.2-0.001*O)0=0*(-0.3+0.002*M)平衡点的意义:第一个方程表明如果M=0或O=200,那么老鼠的种群量没有变化。
第二个方程表明如果O=0或M=150,那么斑点猫头鹰的种群量没有变化。
如下图(1)所示在(M,O)=(0,0)和(M,O)=(150,200)处于平衡点,因为两个种群的种群量在这两个点都没有变化。
Excel操作步骤:1.打开excel表格,输入如下表格:2.用智能标识把天数从2拉到30:3.在B4输入=0.7*B3+0.002*B3*C3回车后下拉即可可到序B=(200,200,200…)。
在C4输入=1.2*C3-0.001*B3*C3回车后下拉即可可到序B=(150,150,150…)。
得到如下表格:4.在插入→图表→XY散点图,选中数据格就可得出下表:选中A1到C32的数据,建立散点图,得到平衡表:平衡0501001502002505101520253035天数生物的数目猫头鹰老鼠(图1)图1:如果老鼠的种群量从150开始而猫头鹰的种群量从200开始,那么这两个种群都停留在它们的起始值处。