高中数学教学设计大赛获奖作品汇编(下册,共8课,含点评)
高中数学教案获奖模板

高中数学教案获奖模板
教学目标:
1. 学生能够理解并应用数学知识解决实际问题。
2. 学生能够培养数学思维和解决问题的能力。
3. 学生能够体会并感受数学的美丽和奥妙。
教学内容:圆的直角三角形
教学重难点:
1. 了解圆的基本概念和性质。
2. 掌握直角三角形的相关知识。
3. 能够应用数学知识解决实际问题。
教学过程:
1. 激发学生学习的兴趣,引入本节课的学习内容。
2. 讲解圆的基本概念和性质,帮助学生建立正确的数学思维。
3. 给出直角三角形的定义和性质,引导学生进行思考和讨论。
4. 给出一个实际问题,让学生运用所学知识解决问题,并展示解决过程。
5. 组织学生进行小组讨论和合作,互相交流和学习。
6. 总结今天的学习内容,强调重点和难点,鼓励学生继续努力学习数学。
教学手段:板书、讲解、讨论、实例分析
评价方法:课堂表现、小组讨论、解决问题能力
教学反思:通过本节课的教学,学生对圆和直角三角形的认识得到了加深,解决实际问题
的能力也得到了提高。
但是在教学过程中,发现学生对某些概念理解不够透彻,需要进一
步加强相关知识的学习和训练。
下节课将继续巩固和拓展学生的数学知识,帮助他们发现
数学之美。
教学效果:学生对圆和直角三角形的认识得到了加深,解决实际问题的能力也得到了提高。
通过实际应用,激发了学生学习数学的兴趣和热情。
高中数学教学设计获奖作品《等差数列》

高中数学教学设计获奖作品《等差数列》一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析我所教学的学生是我校高二(2)班的学生,经过一年的学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
高中新课程数学教学设计获奖作品汇编(下部)

高中数学教学案例设计汇编〔下部〕19、正弦定理〔2〕一、教学内容分析本节内容安排在?普通高中课程标准实验教科书·数学必修5?〔人教A版〕第一章,正弦定理第一课时,是在高二学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因此定理本身的应用又非常广泛。
根据实际教学处理,正弦定理这局部内容共分为三个层次:第一层次老师通过引导学生对实际问题的探究,并大胆提出猜测;第二层次由猜测入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法〞、“等积法〞、“外接圆法〞、“向量法〞等多种方法证明正弦定理,验证猜测的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进展简单的应用。
学生通过对任意三角形中正弦定理的探究、发现和证明,感受“观察——实验——猜测——证明——应用〞这一思维方法,养成大胆猜测、擅长考虑的品质和勇于求真的精神。
二、学情分析对普高高二的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的才能,但对前后知识间的联络、理解、应用有一定难度,因此思维灵敏性受到制约。
根据以上特点,老师恰当引导,进步学生学习主动性,多加以前后知识间的联络,带着学生直接参与分析问题、解决问题并品味劳动成果的喜悦。
三、设计思想:本节课采用探究式课堂教学形式,即在教学过程中,在老师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明〞为根本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的时机,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、开展过程中展开思维,逐步培养学生发现问题、探究问题、解决问题的才能和创造性思维的才能。
四、教学目的:1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探究,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜测,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类根本问题。
高中数学教学设计获奖(精选7篇)

高中数学教学设计获奖(精选7篇)高中数学教学设计获奖(篇1)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习课本P12练习1、2P18习题1.2A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
全国高中数学评优课大赛数学赛课教学设计(点评)一等奖作品专辑

目录单位圆与周期性、诱导公式教学设计课堂教学设计学科数学授课年级_______高二__________课题名称单位圆与周期性、诱导公式设计者_单位《单位圆与周期性,单位圆与诱导公式(一)》课例点评常葆华老师这节课的内容是北师大版必修4第一章《三角函数》第4节的4.2单位圆与周期性和4.3 单位圆与诱导公式(一).根据普通高中数学课程标准的要求,是借助单位圆推导出诱导公式,了解三角函数的周期性,这两节的内容既有区别,又有非常密切的联系.北师大版教材4.2单位圆与周期性这节只有一个周期函数的定义,把这两个内容放在一节课里,既丰富了课堂内容,又使学生对三角函数的周期性和诱导公式的推导有了更深刻的理解.这节课的主要特点:1.准确的把握了课程标准的要求和教材的编写意图.从教学目标的设置及课堂活动过程看,突出了对实例的感悟及诱导公式推导的过程,使学生较好的理解了函数的周期性的意义,并巧妙地落实了诱导公式的推导和应用,切实突出了本节的重点.2.教学活动的系列问题设计与实施,充分的为学生的自主学习与合作学习提供良好的条件,创设合理的问题情境启发学生积极思考,不仅课堂活动严谨有序,强化了学生对知识形成过程的感知,而且为学生提供了科学的学习与研究问题方法的指导.3.课堂学习小组活动的实施,有效的促进了学生的自主学习与合作学习,教师的点拨与精讲,既符合本节知识内容的特点,又在时机上把握的恰到好处,切实体现了课改对教师角色转变的要求.4.充分利用多媒体平台辅助教学,不仅丰富了学生的直观感悟与经历,化解了教学难点,较好的提高了课堂教学的效益.5.常老师的课突出的特点是教态亲切自然,课堂气氛融洽。
语言亲和,富有激情,能为学生营造出良好的学习环境。
《等差数列性质》点评高三一轮复习,重在夯基释疑,培养和提高学生运用知识、解决问题的能力。
本节课以学生为主体,教师为主导,充分调动了学生的积极性。
教师教态自然,亲和力好,课堂气氛融洽。
高中数学教学案例设计大赛获奖作品汇编27篇

高中数学教学设计大赛获奖作品汇编目 录1、集合与函数概念实习作业……………………………………2、指数函数的图象及其性质……………………………………3、对数的概念…………………………………………………4、对数函数及其性质(1)……………………………………5、对数函数及其性质(2)……………………………………6、函数图象及其应用……………………………………7、方程的根与函数的零点……………………………………8、用二分法求方程的近似解……………………………………9、用二分法求方程的近似解……………………………………10、直线与平面平行的判定……………………………………11、循环结构 …………………………………………………12、任意角的三角函数(1)…………………………………13、任意角的三角函数(2)……………………………………14、函数sin()y A x ωϕ=+的图象…………………………15、向量的加法及其几何意义………………………………………16、平面向量数量积的物理背景及其含义(1)………………17、平面向量数量积的物理背景及其含义(2)……………………18、正弦定理(1)……………………………………………………19、正弦定理(2)……………………………………………………20、正弦定理(3)……………………………………………………21、余弦定理………………………………………………22、等差数列………………………………………………23、等差数列的前n项和………………………………………24、等比数列的前n项和………………………………………25、简单的线性规划问题………………………………………26、拋物线及其标准方程………………………………………27、圆锥曲线定义的运用………………………………………前言为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。
高中数学教学设计(优秀8篇)

高中数学教学设计(优秀8篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
高中数学教学设计一等奖

高中数学教学设计一等奖一、设计理念高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。
在高考指挥棒的作用下,高中数学课程逐渐失去了其本来面目,沦为考试的工具,为了一纸成绩单,学生、家长、学校都以分数作为衡量一个学生是否优秀的唯一标准,这种现象与我们的人才培养目标是格格不入的。
如何在现行高考制度下,改变数学教学现状,提高数学教学效率,培养出真正有能力的学生,这是每一个数学教师需要思考的问题。
二、教材分析1. 教学内容:本课内容为高中数学人教版A版教材必修2第一章《空间几何体》的第二节的第二部分,即棱柱的结构特征和分类。
2. 教材所处的地位和作用:本节课是学生在初中学习了“生活中的立体图形”的基础上进行的,是研究棱柱的开始,所以可以从多面体入手,类比多面体的研究方法来研究棱柱。
一方面可以让学生温故而知新,另一方面可以为后续知识如平行六面体、长方体、正方体等的学习打下基础。
3. 教学目标:(1)知识与技能:掌握棱柱的概念,了解棱柱的结构特征,学会正确判断一个物体是不是棱柱,培养学生的空间想象能力。
(2)过程与方法:让学生通过观察、类比、探究得出棱柱的概念,培养学生的探究能力与表达能力。
(3)情感态度与价值观:让学生在探究过程中体验成功的喜悦,增强其学好数学的信心。
4. 教学重难点:(1)重点:棱柱的概念和结构特征。
(2)难点:正确判断一个物体是不是棱柱。
5. 教具准备:多媒体课件、实物模型。
三、教法与学法分析1. 教学方法:本节课采用“问题情境→建立模型→解释、应用与拓展”的模式展开教学。
通过一系列具有启发性、趣味性以及贴近学生生活实际的问题情境的设置,创设“引人入胜、小步渐进”的学习情境,引导学生动手操作、观察、归纳、总结出棱柱的概念及特征。
2. 学法指导:本节课主要采用观察、类比、归纳的方法进行学习,让学生主动参与到棱柱概念的探究过程中来,通过动手操作、观察、分析、归纳得出棱柱的概念及特征,培养学生的空间想象能力和探究能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学教学案例设计汇编(下部)19、正弦定理(2)一、教学内容分析本节内容安排在《普通高中课程标准实验教科书·数学必修5》(人教A版)第一章,正弦定理第一课时,是在高二学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。
根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。
学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
二、学情分析对普高高二的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。
三、设计思想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。
四、教学目标:1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的A B C 兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
五、教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。
六、教学过程:(一)结合实例,激发动机师生活动: 教师:展示情景图如图1,船从港口B航行到港口C ,测得BC 的距离为600m ,船在港口C 卸货后继续向港口A 航行,由于船员的疏忽没有测得CA 距离,如果船上有测角仪我们能否计算出A 、B 的距离学生:思考提出测量角A ,C教师:若已知测得75BAC ∠=︒, 45ACB ∠=︒,要计算A 、B 两地距离,你(图1)有办法解决吗学生:思考交流,画一个三角形A B C ''',使得B C ''为6cm ,75B A C '''∠=︒, 45A C B '''∠=︒ ,量得A B ''距离约为4.9cm ,利用三角形相似性质可知AB 约为 490m 。
老师:对,很好,在初中,我们学过相似三角形,也学过解直角三角形,大家还记得吗师生:共同回忆解直角三角形,①直角三角形中,已知两边,可以求第三边及两个角。
②直角三角形中,已知一边和一角,可以求另两边及第三个角。
。
教师:引导,ABC ∆是斜三角形,能否利用解直角三角形,精确计算AB 呢 学生:思考,交流,得出过A 作AD BC ⊥于D 如图2,把ABC ∆分为两个直角三角形,解题过程,学生阐述,教师板书。
解:过A 作AD BC ⊥于D在Rt ACD ∆中,sin AD ACB AC∠=sin 6002AD AC ACB ∴=∠=⨯= 45ACB ∠=︒,75BAC ∠=︒18060ABC ACB ACB ∴∠=-∠-∠= 在Rt ABD ∆中,sin AD ABC AB∠= A BC D(图2)sin2ADABABC∴===∠教师:表示对学生赞赏,那么刚才解决问题的过程中,若AC b=,AB c=,能否用B、b、C表示c呢教师:引导学生再观察刚才解题过程。
学生:发现sinADCb=,sinADBc=sin sinAD b C c B∴==sinsinb CcB∴=教师:引导,在刚才的推理过程中,你能想到什么你能发现什么学生:发现即然有sinsinb CcB=,那么也有sinsina CcA=,sinsinb AaB=。
教师:引导sinsinb CcB=,sinsina CcA=,sinsinb AaB=,我们习惯写成对称形式sin sinc bC B=,sin sinc aC A=,sin sina bA B=,因此我们可以发现sin sina bA B=sincC=,是否任意三角形都有这种边角关系呢设计意图:兴趣是最好的老师。
如果一节课有良好的开头,那就意味着成功的一半。
因此,我通过从学生日常生活中的实际问题引入,激发学生思维,激发学生的求知欲,引导学生转化为解直角三角形的问题,在解决问题后,对特殊问题一般化,得出一个猜测性的结论——猜想,培养学生从特殊到一般思想意识,培养学生创造性思维能力。
(二)数学实验,验证猜想教师:给学生指明一个方向,我们先通过特殊例子检验sin sina bA B=sincC=是否成立,举出特例。
(1)在△ABC中,∠A,∠B,∠C分别为︒60,︒60,︒60,对应的边长a:b:c为1:1:1,对应角的正弦值分别为23,23,23,引导学生考察Aasin,Bbsin,Ccsin的关系。
(学生回答它们相等)(2)、在△ABC中,∠A,∠B,∠C分别为︒45,︒45,︒90,对应的边长a:b:c为1:1:2,对应角的正弦值分别为22,22,1;(学生回答它们相等)(3)、在△ABC中,∠A,∠B,∠C分别为︒30,︒60,︒90,对应的边长a :b :c 为1:3:2,对应角的正弦值分别为21,23,1。
(学生回答它们相等)(图3)B B C(图3)教师:对于Rt ABC ∆呢学生:思考交流得出,如图4,在Rt ∆ABC 中,设BC=a,AC=b,AB=c,则有=sin a A c ,=sin b B c ,又sin 1c C c==, 则sin sin sin a b c c A B C=== 从而在直角三角形ABC 中,sin sin sin a b c A B C == 教师:那么任意三角形是否有sin sin sin a b c A B C==呢学生按事先安排分组,出示实验报告单,让学生阅读实验报告单,质疑提问:有什么不明白的地方或者有什么问题吗(如果学生没有问题,教师让学生动手计算,附实验报告单。
) 学生:分组互动,每组画一个三角形,度量出三边和三个角度数值,通过实验数据计算,比较sin a A 、sin b B 、sin c C的近似值。
教师:借助多媒体演示随着三角形任意变换,sin a A 、sin b B 、sin c C值仍然保持相等。
我们猜想:A a sin =B b sin =Cc sin 设计意图:让学生体验数学实验,激起学生的好奇心和求知欲望。
学生自己进行实验,体会到数学实验的归纳和演绎推理的两个侧面。
(三)证明猜想,得出定理师生活动:教师:我们虽然经历了数学实验,多媒体技术支持,对任意的三角形,如何用数学的思想方法证明sin sin sin a b c A B C==呢前面探索过程对我们有没有启发学生分组讨论,每组派一个代表总结。
(以下证明过程,根据学生回答情况进行叙述) 学生:思考得出①在Rt ABC ∆中,成立,如前面检验。
②在锐角三角形中,如图5设BC a =,CA b =,AB c =作:AD BC ⊥,垂足为DBa A C cb (图4)在Rt ABD ∆中,sin AD B AB=sin sin AD AB B c B ∴=•=• 在Rt ADC ∆中,sin AD C AC= sin sin AD AC C b C ∴=•=•sin sin c B b C ∴=sin sin c b C B∴= 同理,在ABC ∆中,sin sin a c A C = sin sin sin a b c A B C∴== ③在钝角三角形中,如图6设C ∠为钝角,BC a =,CA b =,AB c =作AD BC ⊥交BC 的延长线于D在Rt ADB ∆中,sin AD B AB= sin sin AD AB B c B ∴=•=•在Rt ADC ∆中,sin AD ACD AC∠= sin sin AD AC ACD b ACB ∴=•∠=•∠sin sin c B b ACB ∴•=•∠sin sin c b ACB B ∴=∠ 同锐角三角形证明可知sin sin a c A C= sin sin sin a b c A B ACB∴==∠ 教师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin sin a b c A B C== 还有其它证明方法吗学生:思考得出,分析图形(图7),对于任意△ABC ,由初中所学过的面积公式可以得出:111222ABC S AC BD CB AE BA CF ∆=•=•=•, 而由图中可以看出:sin BD BAC AB ∠=,sin AE ACB AC∠=,sin CF ABC BC ∠= sin ,sin ,sin BD AB BAC AE AC ACB CF BC ABC ∴=•∠=•∠=•∠111222ABC S AC BD CB AE BA CF ∆∴=•=•=• A B C D (图6) A B C D (图5)=111sin sin sin 222AC AB BAC CB CA ACB BA BC ABC ••∠=••∠=••∠ =111sin sin sin 222b c BAC a b ACB c a ABC •••=••∠=••∠ 等式111sin sin sin 222b c BAC a b ACB c a ABC ••∠=••∠=••∠中均除以abc 21后可得sin sin sin BAC ABC ACB a b c∠∠∠==, 即sin sin sin a b c BAC ABC ACB==∠∠∠。