计量经济学

合集下载

计量经济学概念

计量经济学概念
13
第二节 计量经济学方法
一. 计量经济学方法的内容
任何计量经济研究包含两个基本要素:理论和事实, 计量经济学的主要功能就是将这两个要素结合在一起。 计量经济研究既使用理论,也使用事实,将二者结合 起来,用统计技术估计经济关系,如图1.1所示。
14
理论统计理论
计量经济模型
加工好的数据
10
3. 学科发展环境 同时,随着科学技术的发展,各门学科相互渗透,数
学、系统论、信息论、控制论等相继进入经济研究领 域,使经济科学进一步数量化,有助于计量经济学的 发展。高速电子计算机的出现和发展,为计量经济技 术的广泛应用铺平了道路。
11
4. 发展过程
上世纪三十年代,侧重于个别商品供给与需求的计 量,基本上属于个量分析或微观分析。
1. 需求函数的数学模型
尽管需求定律假定价格(P)与需求量(Q)之间 呈反向关系,但并没有给出二者之间关系的精 确形式。例如,该定律并没有告诉我们价格与 需求量之间关系是线性的还是非线性的,如图 1.2中(a)和 (b) 所示。
21
Q
Q
(a)
P
(b)
P
图1.2 线性和非线性的需求函数
22
事实上,斜率为负的曲线有千千万万,在它们 之中选择正确的函数是计量经济学家的任务。
7
计量经济学的艺术成分
计量经济学虽然以科学原理为基础,但仍保留了一 定的艺术成分,主要体现在试图找出一组合适的假设 ,这些假设既严格又现实,使得我们能够使用可获得 的数据得到最理想的结果,而现实中这种严格的假设 条件往往难以满足。
“艺术”成分的存在使得计量经济学有别于传统 的科学,是使人对它提供准确预测的能力产生怀疑的 主要原因。
31

计量经济学

计量经济学

计量经济学计量经济学,是一门使用统计方法分析经济现象的学科。

计量经济学主要通过收集、处理、分析和解释经济数据,以确认和识别经济核心问题,比如需求和供给、价格变动、市场结构和经济增长等。

这门学科的进步和应用在各种政策制定和经济决策上有着广泛的应用领域,比如经济政策的分析,股票市场的预测和企业的经营决策等。

接下来,本文将解释计量经济学的主要内容和方法,并探讨计量经济学在实践中的应用。

一、计量经济学的主要内容计量经济学分析的主要对象是经济现象和经济数据。

这些现象和数据可以描述为变量和关系,比如价格,工资,利润和经济增长等。

计量经济学主要研究的是这些变量及其之间的相互关系,以便为决策者提供更好的政策建议。

在计量经济学中,通常会涉及到如下的主要内容:1. 变量的含义和测量。

计量经济学要求研究者对变量的含义进行明确界定,以便能够对其进行测量,并进行数据收集和分析。

例如,如果要研究通货膨胀的影响因素,通货膨胀就是一个重要的变量,需要进行合理的测量。

2. 经济关系的建模。

计量经济学则进一步探索变量之间的数量关系,并通过数学模型来描述它们之间的联系。

例如,经济学家可以建立一个供求模型来研究商品价格的形成。

3. 假设检验。

计量经济学通过提出假设并使用统计检验方法来验证假设。

通过检验结果,经济学家可以同样的推理得出各种假设是否成立。

4. 统计分析。

该领域强调通过统计分析方法检验模型的假设,这是检验数据和变量关系的重要手段。

统计分析包括回归分析、时间序列分析以及多元统计分析等方法。

二、计量经济学方法计量经济学的重要方法包括统计分析、回归分析、时间序列分析、概率论和经济实验等。

其中最常使用的方法是回归分析。

1. 回归分析回归分析是计量经济学的核心方法。

回归分析将一个自变量与因变量相关联。

例如,如果我们想知道变量X与变量Y的相关性,我们就会回归一个X对Y的方程。

这个方程告诉我们,当X发生变化时,Y的变化程度。

回归分析需要建立方程,并根据现有数据的信息来确定系数。

计量经济学名词解释

计量经济学名词解释

计量经济学名词解释1、计量经济学计量经济学是一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科,统计学,经济理论和数学这结合便构成了计量经济学。

2、计量经济学模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。

3、解释变量影响被解释变量的因素或因子,是原因变量,记为“X”.4、被解释变量结果变量称为被解释变量,记为“Y”。

5、结构分析结构分析是对经济现象中变量之间相互关系的研究。

所采用的主要方法是弹性分析、乘数分析与比较静力分析。

6、时间序列数据按照时间先后顺序排列的统计数据,又称为纵向数据。

7、截面数据一批发生在同一时间截面上的调查数据,又称横向数据。

8、平行数据(面板数据)时间序列数据与截面数据的合成体,又称面板数据。

9、回归分析回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。

10、随机误差项被解释变量数值与其条件期望之间的离差,是一个不可观测的随机变量,称为随机误差项,或随机干扰项。

11、最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。

12、最佳线性无偏估计量拥有有限样本性质或小样本性质这类性质的估计量,称为最佳线性无偏估计量。

13、拟合优度是SRF对样本观测值的拟合程度,即样本回归直线与观测散点之间的紧密程度。

14、方程显著性检验对所有被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断的检验。

15、变量显著性检验是对模型中某一个具体的解释变量X与被解释变量Y之间的线性关系在总体上是否显著成立做出判断,换言之,是考察所选择的X在总体上是否对Y有显著的线性影响。

16、最小样本容量是指从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。

17、满足基本要求的样本容量当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。

18、需求函数的零阶齐次性当所有商品价格和消费者货币支出总额按照同一比例变动时,需求量保持不变,这就是所谓的消费者无货币幻觉。

计量经济学简答题

计量经济学简答题

第一章1、什么叫计量经济学.计量经济学是统计学、经济学和数学的结合,是根据理论和观测的事实,运用合理的推理方法使之联系起来同时推导,对实际经济现象进行的数量分析。

2、计量经济学与经济理论、统计学、数学的联系是什么?计量经济学是统计学、数学和经济学的结合,经济学理论是分析经济数量关系的理论基础,经济统计是计量经济学据以估计参数、验证理论的基本依据,数理统计学是计量经济学的方法论基础.3、运用计量经济学研究问题,一般可分为哪四个步骤?①模型设定,确定变量和数学关系式②估计参数,分析变量间具体的估计参数③模型检验,检验所的结论的可靠性④模型应用,作经济分析和经济预测4、设定合理计量经济模型应注意的问题。

要有科学的理论依据;模型要选择适当的数学形式;变量要具有可观测性.5、计量经济模型检验主要包括哪几个方面。

包括经济意义检验、统计推断检验、计量经济学检验、模型预测检验.6、简述模型应用的具体内涵?①经济结构分析,用已经估计出参数的模型,对所研究的经济关系作进行定量的考察,以说明经济变量之间的数量比例关系②经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值③政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟预测,从而对各种政策方案作出评价④检验与发展经济理论,是利用计量经济模型去验证既有经济理论或提出新的理论结论7、经济变量用来描述经济因素数量水平的指标。

内生变量由模型系统内部因素所决定的变量,表现为具有一定概率分布的随机变量,是模型求解的结果.外生变量由模型系统之外的因素决定的变量,表现为非随机变量,它影响模型中的内生变量,其数值在模型求解之前就已经确定。

8、计量经济学应用的数据主要分为哪几类?时间序列数据、横截面数据、面板数据;虚拟变量数据。

第二章9、回归分析与相关分析之间的区别和联系。

相关分析与回归分析既有联系又有区别。

[经济学]计量经济学

[经济学]计量经济学

名词解释1,计量经济学;计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2,虚拟变量数据;虚拟变量数据是人们构造的,用来表征政策定性事实的数据。

3,计量经济学检验;计量经济学检验主要是检验模型是否符合计量经济学方法的基本假定。

4,回归平方和;回归平方和用ESS表示,是被解释变量的样本估计值与其平均值得离差平方和5,拟合优度检验;拟合优度检验是指检验模型对样本观测值的拟合程度,用R²表示,该值越接近1,模型对样本观测值拟合得越好。

6,总体回归函数;将总体被解释变量的条件期望表现为解释变量的函数,这个函数称为总体回归函数。

7,样本回归函数;是指被解释变量的样本条件均值也是随解释变量的变化而又规律的变化,如果把被解释变量的样本均值比奥斯为解释变量的某种函数,称这个函数为样本回归函数8,回归方程的显著性检验(F检验);是指对模型中北解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

9,回归参数的显著性检验(t检验);是指对其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

10, 多重共线性;是指解释变量之间精确的线性关系和解释变量之间近似的线性关系。

11, 完全的多重共线性;是指解释变量的数据矩阵中,至少有一个列向量可以用其余的列向量线性表示。

12,不完全的多重共线性;指对解释变量k X X X ,,,32 ,存在不全为0的数k λλλλ,,,,321 ,使得 033221=+++++i ki k i i v X X X λλλλ ),,2,1(n i =,其中,i v 为解释变量。

13,异方差性;是指随即变量的方差不是确定的常数,即被解释变量观测值的分散程度随解释变量的变化而变化。

14,序列相关性;指总体回归模型的随机误差项之间存在相关关系。

15.滞后效应;是指由于经济活动的惯性,一个经济指标以前的变化态势往往会延续到本期,从而形成被解释变量的当期变化同自身过去取值水平相关的情形。

什么是计量经济学

什么是计量经济学

第一二章1、什么是计量经济学?答:计量经济学是经济学、数学、统计学三者合一的课程,以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过坚力数学模型来研究经济数量关系和规律的一门经济学分支学科。

2、什么是总体回归函数和样本回归函数?它们之间有什么区别?答:总体回归函数:将总体被解释变量Y的条件期望值表现为解释变量X的函数,这个函数被称为总体回归函数。

样本回归函数:对应于解释变量的选定水平,对被解释变量Y的某些样本进行观测,然后通过对样本观测获得的信息去估计总体回归函数,这个函数被称为样本回归函数。

区别:总体回归函数是确定的,样本回归函数会随着抽样发生变化。

总体回归的参数β1和β2是确定的常数,而样本回归函数的参数是随抽样变化的随机变量。

总体回归函数中的μi 是不可直接观测的;而样本回归函数中的e i是只要估计出样本回归的参数就可以计算的数值。

3、对随机误差扰动项的假设?答:零均值假定:在给定解释变量X i的条件下,随机扰动项μi的条件期望或条件均值为零。

同方差假定:对于每一个给定的X i,随机扰动项的条件方差都等于一个常数。

无自相关假定:即随机扰动项μi的逐次值互不相关对于所有的i和j(i不等于j),μi和μj 协方差为零随机扰动项μi和解释变量X i不相关正态性假定:随机扰动项服从期望值为零,方差为σ2的正态分布也称高斯假定或者古典假定4、ols估计量的统计性质与对模型的基本假定的关系是什么?(p26)答:ols估计量的统计性质:线性特征、无偏性、有效性假定解释变量Xi是确定性变量,是非随机的,或者虽然是非随机的,但与随机扰动项μi不相关。

假定模型中的变量没有测量误差假设模型不存在设定误差解释变量Xi是确定变量,决定了回归模型具有线性特征;变量没有测量误差,决定了模型的无偏性;模型不存在设定误差,决定了模型的一致性。

1.多元回归的基本假设是什么,与简单线性回归的基本假设有什么区别?答:(1)零均值假定:假定随机扰动项的期望值或均值为零。

计量经济学

计量经济学

计量经济学计量经济学是:指通过计量工具来研究具有统计意义的经济问题的经济学科。

计量经济学的工具:数学(如优化理论,微分方程),概率与统计分析,计算机及其应用软件,数据分析等学科的相关知识。

计量经济学的研究对象:经济问题,包括各种经济现象。

经量经济学的研究目的:对所关心的经济问题做适当的经济预测,政策评估,评价或建议1.计量经济学的发展历程:经济学的一个分支学科 1926年挪威经济学家R.Frish 提出Econometrics1930年成立世界计量经济学会 1933年创刊《Econometrica 》20世纪40、50年代的大发展和60年代的扩张20世纪70年代以来非经典(现代)计量经济学的发展2.计量经济学模型的步骤:(1)、理论模型的设计 (2)、样本数据的收集 (3)、模型参数的估计(4)、模型的检验 (5)、计量经济学模型成功的三要素:理论,数据,方法3.随机误差项主要包括下列因素的影响:1)在解释变量中被忽略的因素的影响;2)变量观测值的观测误差的影响;3)模型关系的设定误差的影响; 4)其它随机因素的影响。

4.产生并设计随机误差项的主要原因:(1)理论的含糊性;2)数据的欠缺;3)节省原则。

5.参数的普通最小二乘估计(OLS )给定一组样本观测值(Xi, Yi )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares, OLS )给出的判断标准是:二者之差的平方和最小。

由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量。

6.最小二乘估计量的性质:一个用于考察总体的估计量,可从如下几个方面考察其优劣性:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。

这三个准则也称作估计量的小样本性质。

拥有这类性质的估计量称为最佳线性无偏估计量。

计量经济学

计量经济学

第二讲

第一章 绪论 第3节 计量经济模型及其应用 第4节 统计和计量经济分析软件

第二章 计量经济分析的统计学基楚 第1节 概率和概率分布
一、计量经济模型的分类
● 单方程模型和连立方程模型:单方程模型描述一个因变量和若干自变量间 的结构关系;连立方程模型则是由多个方程组成的方程组,描述整个经济 系统或子系统。 例:① 消費函数就是一个单方程模型。
实证分析 实证分析
三、 计量经济分析的步骤(1)
● 下面通过一个实例来说明计量经济分析的步骤 例: 一空调生产商請计量经济学家为他研究价格上涨対空调需求的影响。下 面対该问题进行计量经济分析。 步骤1 陈述理论 根据需求定律:一商品的价格与其需求量成反比。 步骤2 建立计量经济模型 (1)根据需求定律建立需求函数的数学模型。需求定律只是说一商品 的价格与其需求量成反比,但没有说明具体的关系(图1-2,图1-3)。
三、 计量经济分析的步骤(6)
● 通过本次课的学习,主要了解计量经济学的定义、计量经济学研究的内容 和方法,重点把握计量经济分析的步骤:
1.陈述理论或假说 需求定律 2.建立计量经济模型 Q=α+βP+u 3.収集数据 表1-1 4.估计参数 5.假设检验 Q*=76.05-3.88P 是否β<0
〇 1979年,成立了“中国数量经济研究会”和“数量经学研究所”, 出版了《数量经济技术经济研究》 〇 1982年,召开了第一届数量经济研究学会 〇 1992年,开始毎年対中国宏观经济进行分析和预测,11月出版 《中国经济蓝皮书》 〇 1998年,经教育部审定,计量经济学确定为经济类各専业八门核 心课程之一
--1935年,J.Tinbergen建立了世界上第一个宏观经济模型,开創了微观转向宏观模 型的新阶段 --1936,Keynes《就业、利息和货币通论》为计量经济学提供了理论根据 --1950年代,H.Theil发表了二阶段最小二乗法、计算机技术的迅速发展为计量经济 学提供了重要手段 〇 发展应用时期(20世纪70年代后)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章
多重共线性:其中的某一个解释变量可以表示为其它解释变量的线性函数。

完全多重共线性的存在对计量经济学方程的估计产生的影响?
当存在完全多重共线性时,运用普通最小二乘估计将无法得出回归参数的估计值,并且,大多数通最小二乘估计程序会意识错误信息。

完全多重共线性举例:可以观察一个解释变量是不是另一个解释变量的倍数,或者观察一个解释变量是不是另一个解释变量加上一个常数项。

简答题:多重共线性
产生的后果:(1)估计量是无偏的;(2)估计量的方差和标准差将会增大(3)多重共线性下的t统计量会变小(4)估计量对模型设定的变化变得及其敏感。

当存在显著的多重共线性时,增加或者删除某个解释变量,或者某些观测值的增加或减少,通常会导致参数估计β有较大的改变。

(5)方程的整体拟合优度以及不存在多重共线性的变量的参数估计几乎不受影响。

多重共线性的诊断:(1)考察两个解释变量之间的简单相关系数,一般r>0.8,则认为存在多重共线性。

(2)有较高的方差膨胀因子,一般VIF>5,则认为存在严重的多重共线性
多重共线性的补救措施:(1)什么都不做。

(方程中的多重共线性并非总是减少t统计量使其减少到不显著的程度,对β的影响也并非总是导致它的符号与预期的不同。

(2)去掉多余的变量
(3)增大样本容量
第十四章
分析题
内生变量:由系统本身确定的变量
外生变量:由系统外部因素所决定的变量前定变量:外生变量和置后的内生变量
结构式方程:是以外生变量和内生变量的方式,描述了隐含在每个内生变量背后的内在经济理论。

简约式方程:每个特定的内生变量都单独用用所有的前定变量和随机误差项表示的方程。

简答使用简约式方程的三个原因:(1)由于简约式方程没有内在的联动性,因而没有违背古典假设。

(2)简约式参数被解释为效应乘数,意味着它们有着经济意义和应用价值。

(3)简约式方程在最常用的的联立方程估计方法中扮演着重要的角色,
二阶段最小二乘估计法:第一阶段:对与每个内生变量相对应的简约式方程进行回归,这里的内生变量在联立方程系统中作为解释变量。

第二阶段:用简约式方程中
得到的
S
Yˆ替代出现在结构式方程右边的Ys,然后用普通最小二乘估计修正后的结构式方程。

模型识别的阶条件:是判断联立系统中的特定方程是否可惜别的一种系统方法。

(1)整个联立系统中前定变量的个数(2)所考察方程中需要估计的斜率参数的个数。

第十章
名词解释:异方差性的本质,后果,诊断,修正
非纯异方差性:有模型设定误差(比如遗漏误差)引起的。

异方差的后果:(1)纯异方差性并不会导致参数估计量有偏
(2)异方差性通常会导致普通最小二乘估计量不再具有最小方差性
(3)异方差性将导致SE(βˆ)的最小二乘估计量有偏,因而导致假设检验结果不可信。

第九章
名词解释序列相关:误差项的序列之间存在相关性
一阶序列相关:
t
t
t
μ
ρε
ε+
=
-1
ε代表回归方程中的误差项。

简答序列相关性的后果:(1)纯序列相关不会导致对参数的有偏估计。

(2)序列相关是普通最小二乘估计量不再是线性无偏估计量
(3)序列相关性导致SE(βˆ)的普通最小二乘估计是有偏的,并使假设检验不可靠。

杜宾-沃森检验重点自己去翻书
序列相关性的修正:如果确定是纯序列相关,则应考虑用广义最小二乘法或者
Newey-West标准差方法进行修正
第六章
表遗漏变量和不相干变量对参数估计值的影响
对参数估计值的影响遗漏变量不相干变量
偏误有偏无偏
方差减小增大
模型设定的四个重要准则:(1)理论:变量在方程中的含义是不是含糊不清的,从理论上看是不是合理的?
(2)t检验:变量的被估参数在预期假设是否显著?
R:变量增加后,方(3)调整的判定系数2
程的整体拟合优度是否得到改善?
(4)偏误:变量加入方程后,其他变量的参数值是否发生显著改变?。

相关文档
最新文档