电力电子技术-7.2三相SPWM逆变
三项电压源型SPWM逆变器Word版

摘要与整流相对应,把直流电变成交流电称为逆变。
逆变电路根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的称为电流型逆变电路。
本文通过利用MATLAB设计分析三相电压源型逆变器PWM控制电路的方法,输出电压大小和波形的SPWM控制基本原理。
给出了基于双极性倍频正弦脉冲宽度调制法的三相电压源型逆变器的仿真实例,所谓调制法,即把希望输出的波形作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM波形。
目前中小功率的逆变电路几乎都采用了PWM技术。
它使电力电子装置的性能大大提高,因此它在电力电子技术的发展史上占有十分重要的地位。
PWM控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。
关键词逆变MATLAB SPWM目录摘要1概述 (1)1.1任务要求 (1)1.2逆变电路简介 (1)1.3 PWM简介 (2)2方案设计 (3)2.1主电路分析 (3)2.2驱动电路的设计 (5)3 MATLAB仿真 (6)3.1三相SPWM波的产生 (6)3.2 SPWM逆变器仿真 (8)3.3 滤波器粗略分析 (11)4 心得体会 (12)参考文献 (14)三相电压源型SPWM逆变器的设计1概述1.1任务要求设计一三相电压源型SPWM逆变器电路,已知直流电源电压为250V,输出200V,50HZ;三相对称RL负载(星形接法),其中R的值为2Ω、L的值为10mH。
要求完成以下主要任务:(1)方案设计;(2)完成主电路的原理分析,各主要元器件的选择;(3)驱动电路的设计;(4)利用MATLAB仿真软件建模并仿真,获取输出电压电流波形,并对结果进行分析。
1.2逆变电路简介与整流相对应,把直流电变成交流电称为逆变。
当交流侧接在电网上,即交流侧接有电源时,称为有源逆变;当交流侧直接和负载连接时,称为无源逆变。
又逆变电路根据直流侧电源性质不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的称为电流型逆变电路;它们也分别被称为电压源型逆变电路和电流源型逆变电路。
三相SPWM逆变器的调制建模和仿真详解

三相SPWM逆变器的调制建模和仿真详解随着电力电子技术的发展,SPWM正弦脉宽调制法正逐渐被人们熟悉,这项技术的特点是通用性强,原理简单。
具有开关频率固定,控制和调节性能好,能消除谐波,设计简单,是一种比较好的波形改善法。
它的出现为中小型逆变器的发展起了重要的推动作用。
由于大功率电力电子装置的结构复杂,若直接对装置进行实验,且代价高费时费力,故在研制过程中需要借助计算机仿真技术,对装置的运行机理与特性,控制方法的有效性进行试验,以预测并解决问题,缩短研制时间。
MATLAB软件具有强大的数值计算功能,方便直观的Simulink建模环境,使复杂电力电子装置的建模与仿真成为可能。
本文利用MATLAB/Simulink为SPWM逆变电路建立系统仿真模型,并对其输出特性进行仿真分析。
首先介绍的是三相电压型桥式逆变电路原理,其次阐述了SPWM逆变器的工作原理及特点,最后详细介绍了三相电压源SPWM逆变器的建模与仿真结构,具体的跟随小编一起了解一下。
一、三相电压型桥式逆变电路三相电压型桥式逆变电路如图1所示,电压型三相桥式逆变电路的基本工作方式也是180导电方式,即每个桥臂的导电角度为180,同一相上下2个桥臂交替导电,各相开始导电的角度依次相差120。
这样,在任一瞬间,将有3个桥臂同时导通。
可能是上面一个臂下面2个臂,也可能是上面两个臂下面一个臂同时导通。
因为每次换流都是在同一相上下两个桥臂之间进行的,因此也被称为纵向换流。
当urU》uc时,给上桥V1臂以导通信号,给下桥臂V4以关断信号,则U相相对于电源假想中点N的输出电压uUN=Ud/2。
当urU《uc时,给V4导通,给V1关断,则uUN=Ud/2。
V1和V4的驱动信号始终是互补的。
当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是二极管VD1(VD4)续流导通。
二、SPWM逆变器的工作原理及特点SPWM,他是根据面积等效原理,PWM波形和正弦波是等效的,对于正弦波的负半周,也可以用同样的方法得到PWM波形。
三相PWM逆变电路

湖南工学院电力电子技术课程设计课程名称: 三相PWM逆变器控制电路设计姓名:专业名称:自动化班级:学号:指导老师:课程设计的目的及要求一、设计要求及技术指标主要技术数据输入交流电源:三相380V,f=50Hz交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=20Ω,L=15mH二、课程设计背景随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,和此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。
对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。
因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。
目录第一章整流和逆变电路原理及路图.................................................................................... - 0 -1.1.电容滤波的三相不可控整流电路原理..................................................................... - 0 - 第二章三相无源PWM逆变电路及原理................................................................................ - 2 -2.1 三相无源逆变电路及原理......................................................................................... - 2 - 第三章驱动电路........................................................................................................................ - 3 - 第四章保护电路设计.............................................................................................................. - 4 -4.1 过电流保护电路........................................................................................................ - 4 -4.2 过电压保护电路........................................................................................................ - 4 - 第五章仿真电路和波形.......................................................................................................... - 4 -5.1 三相桥式整流仿真电路及波形................................................................................. - 4 - 参考文献 .................................................................................................................................... - 6 - 课程设计的心得.......................................................................................................................... - 6 -第一章整流和逆变电路原理及路图1.1.电容滤波的三相不可控整流电路原理三相桥式不可控整流电路是由三相半波不可控整流电路演变而来的阴极连接在一起的3个二极管(VD1,VD3,VD5)称为共阴极组;阳极连接在一起的3个晶闸管(VD4,VD6,VD2)称为共阳极组。
三相SPWM逆变电源重复控制技术的研究

三相ΣΠΩΜ逆变电源重复控制技术的研究Ξ√ ≤ × 2 ≥°• √华中理工大学康勇詹长江彭力陈坚 武汉摘要 对提高≥°• 逆变电源输出电压波形质量的重复控制技术作了深入研究∀重复控制技术能减小周期性波动负载 如整流负载 引起的输出电压波形畸变∀在已往基本重复控制和无过冲重复控制的基础上 提出了一种预测重复控制算法 以解决重复控制算法中的参数优化问题∀仿真结果表明 将预测重复控制与瞬时值反馈控制结合起来构成的新型控制系统对≥°• 逆变电源输出电压波形的周期性畸变有很强的抑制作用∀Αβστραχτ: √ ∏ √ ∏ ∏ ∏ ∏ √ 2 ≥°• √ ∏ × ∏ ∏ ∏ √ √ ∏ ∏ ∏ ∏ √ √ 2 √ √ ∏ √ × ∏ ∏ ∏ √ √ 2 ∏ ∏ ∏ ∏ √ 2 ≥°• √叙词 逆变电源电压波形畸变 重复控制Κεψωορδσ:ινϖερτερποωερσυππλψ;ϖολταγεωαϖε;διστορτιον/ρεπετιτιϖεχοντρολ1引言功率半导体逆变电源所供电的各种对象中 整流负载占有很大的比重 它会在电源输出端产生周期性的干扰 使得逆变电源输出波形畸变大大增加∀然而 目前较成熟的控制方案中 虽可对负载扰动有很快的响应 但不可能将整流负载这种周期性扰动负载所引起的误差的稳态值减小到很小程度≈ ∀针对整流和相控引起的输出电压波形畸变具有周期性重复出现的特点 等人提出了一种新型的控制方式)))重复控制 √ ≤ ≈ 之后 等人又提出了一种无过冲重复控制算法来解决重复控制算法中的补偿量计算问题≈ ∀但这一算法中包含有与负载有关的参数 而负载又是时变的 因此这一算法虽比基本的重复控制前进了一步 但并不能实现真正的一步补偿到稳态值∀本文提出了一种预测重复控制的算法 它不需要知道负载参数 且计算简单!便于实现!稳定性好∀经计算机仿真 其结果证实它有较大的实用价值∀鉴于重复控制算法的研究在我国开展的较晚 本文先对其基本原理及算法进行简单的介绍 然后给出一种将预测重复控制与瞬时值反馈控制结合起来的新型≤∂≤ƒ≥°• 逆变电源控制方案 并利用计算机仿真验证其可行性∀2重复控制原理图 示出三相≥°• 逆变电源给整流负载供电的主电路∀图 ≥°• 逆变电源给整流负载供电的主电路图图中 Υ)))标准正弦电压给定信号Γ ≥ )))≥°• 形成环节及功率变换部分的等效传递函数Υ )))输出电压Υ )))负载扰动在整流负载中整流二极管∂⁄ !∂⁄ 开通 相当于逆变电源 相突加负载 ∂⁄ 和∂⁄ 关断5电力电子技术6 年第 期 Ξ国家自然科学青年基金资助项目相当于逆变电源 相突减负载 而负载中∂⁄ !∂⁄ 的开通和关断在电源的每个周期都会重复进行∀因此 当∂⁄ !∂⁄ 开关时 会在输出电压上产生扰动 这自然会增大输出电压波形的畸变率∀图 示出重复控制原理框图∀图 示出≥°• 逆变电源的工作波形∀不加重复控制时 受Υ 的影响 Υ 中有周期性的畸变 加重复控制后通过对误差的检测 计算出一个补偿量Υ 叠加在Υ 上 形成一个新的控制量Υ Υ 中叠加的Υ 部分用以补偿Υ 扰动所引起的电压跌落当Υ 很恰当时 可完全抵消Υ 的影响输出电压波形畸变就很小∀如果负载扰动的大小与周期不变 只要在每个周期中使用相同的Υ 就可使输出电压波形的误差完全被消除 这是用其它控制方式难以实现的∀图 ≥°• 逆变电源重复控制框图图 ≥°• 逆变电源工作波形不加重复控制 加重复控制由此可见重复控制实际上是一种补偿控制它根据整流及相控负载引起的输出电压误差在每个电源周期的相同位置重复出现这一特点 用一个周期性的补偿量来抵消周期性的扰动 以达到消除稳态误差的目的∀3 重复控制算法3 1 基本重复控制算法为了记忆前一周期中各时刻Υ 的值 在重复控制实用过程中 一般采用数字控制方式予以实现 各变量均为离散值∀这里假定逆变电源的数字控制系统中 每个周期内的采样次数固定为Ν Τ Τ式中 Τ)))信号周期Τ )))采样周期一个信号周期中不同采样周期内的变量值用下标κ来表示 如图 中Υ κ 表示给定信号在第κ个采样周期内的采样值如需区分不同信号周期中的值 则用另一个下标ϕ来表示∀如Υ κ,ϕ 表示第 个信号周期中第κ个采样点上Υ 的采样值 这里κ[Ν∀其它变量的离散值的表达方法同Υ∀图 重复控制中Υ 离散值表示方法根据以上定义 基本的重复控制算法可用下式表示Υ κ,ϕ)=Υ κ,ϕ)+Υ κ,ϕ)Υ κ,ϕ)=Υ κ,ϕ− ) +Χ #Υ κ+ ,ϕ− )Υ κ+ ,ϕ− )=Υ κ+ ,ϕ− ) −Υ κ+ ,ϕ−但并式中 Υ )))反馈电压Χ )))决定补偿量大小的系数式 可这样理解 在第ϕ 个信号周期的第κ 个采样点检测到有误差Υ κ ,ϕ就在第ϕ个信号周期中 根据误差的大小增加一个补偿量Χ Υ κ ,ϕ 到控制量Υ(κ,ϕ)中 且补偿量的调整采用积分形式 以确保误差为零时补偿量保持不变∀对式 做Ζ变换 可得Υ Ζ)=Υ Ζ)+ΥΖ)Υ Ζ)=Χ Ζ−(ν− )−Ζ−νΥ Ζ)Υ Ζ)=Υ Ζ)−Υ Ζ)( )式中 ν)))一个信号周期内的采样次数 ν Ν根据式 基本重复控制可用图 表示∀3 2 无过冲重复控制算法在基本的重复控制算法中对扰动的补偿三相≥°• 逆变电源重复控制技术的研究仅根据所检测到的误差来进行 靠补偿量的多次调整而逐步实现完全补偿∀无过冲重复控制是根据检测到的误差和系统模型 精确计算补偿量一次将扰动完全抵消 其框图见图∀图重复控制结构图图 无过冲重复控制框图图 中Γ 为控制系统前向通道的Ζ传递函数 它包括主电路及采样保持器∀ΓΖ 为Γ(Ζ)的反变换因此Υ Γ Ζ 就是补偿扰动误差所需的控制量 如果Γ(Ζ)足够精确 经重复控制的延迟 在下一信号周期的相应位置就可实现对扰动的全补偿∀这种无过冲控制在实际应用中也有缺陷 因为Γ(Ζ)中含有与负载有关的参数 而负载是畸变的 因此Γ(Ζ)不是精确模型实际上应用中只能采用欠补偿 然后通过积分逐步达到全补偿∀3 3 预测重复控制算法我们提出的预测重复控制算法是解决对扰动误差的恰当补偿∀这里的预测是指通过当前采样点以后的几个误差信息来判断负载的变化情况 如果负载变化趋势加重 则由误差可见输出电压变低如果误差减轻 则由误差可见输出电压变高 因此 可用当前采样点及之后的三个误差加权平均值来预测负载的变化情况 即Υ κ,ϕ Α Υ κ,ϕ Α Υκ ,ϕ Α Υκ ,ϕ式中 Α !Α !Α )))权系数为使重复控制对误差的补偿比较恰当 可将式 修改为Υ κ,ϕ Υ κ,ϕ Υ κ,ϕΥ κ,ϕ Υ κ,ϕ− Χ ≈Υ κ+ ,ϕ−Υ κ+ ,ϕ− Υ κ+ ,ϕ− Υ κ+ ,ϕ− Υ κ+ ,ϕ−式 中 Υ κ ,ϕ 为第ϕ 个信号周期中第κ 个采样点上对误差进行的如式 所定义的误差加权平均值∀这就是预测重复控制算法∀对式 ! 进行Ζ变换可得预测重复控制算法的Ζ域表达式Υ Υ ΥΥ Χ Ζ ν≈Υ ΥΥ Υ ΥΥΑ Α Ζ Α ΖΥ号周 根据式可给出图 所示的预测重复控制框图∀图 预测重复控制框图4 带重复控制的新型≥°• 逆变电源控制系统图 示出一种将重复控制与坐标变换!瞬时值反馈等技术结合起来构成新型全数字化≤∂≤ƒ逆变电源控制的系统框图∀这种方案既含有带坐标变换的瞬时值反馈控制系统的一系列优点≈ 又能通过重复控制来提高逆变电源对周期性扰动负载引起的输出电压波形畸变的抑制能力∀图 中Υ !Υ !Υ 为图 所示的三相逆变电源的输出电压瞬时值反馈信号 经过如下变换得到Υ 和ΥΥΥ根据 Ξτ Ξτ−ΠΞτΠΞτ Ξτ ΠΞτ Π ΥΥ Υ式中 Ξ)))角频率 Ξ Πφφ)))≤∂≤ƒ电源的工作频率5电力电子技术6 年第 期三相标准正弦信号经同样的变换之后 得到 2 坐标系的给定信号Υ 3和Υ 3 在 2轴分别经° 调节与预测重复控制补偿后 得到 2 坐标系下的控制信号Υ !Υ再通过空间矢量°• 算法≈ 可得到三相°• 控制信号Υ !Υ 和Υ ≤∀° 调节对输出电压的基波起主要的调节作用 预测重复控制则对周期性变化负载引起的输出电压的畸变起抑制作用∀图 带重复控制的新型≥°• 逆变电源控制系统框图5 仿真结果对主电路如图 所示 控制电路如图 所示的新型三相≥°• 逆变电源系统进行仿真时所用到的主要参数如下额定功率 Π ∂滤波电感 Λ Λ Λ 滤波电容 Χ Χ Χ Λƒ直流母线电压 Υ ∂输出频率 φΑ Α Α仿真中 为了更清晰地了解各变量的变化情况 将Υ !Υ !Υ 变换到Α Β静止坐标系下 以给出三相合成矢量的运行轨迹 合成矢量的计算公式为_Υ Π Υ ΠΥ当Υ !Υ !Υ≤为三相互差 β的标准正弦时 _的轨迹应该是一标准的园形≈ ∀图 示出不加重复控制 仅由° 调节器调节 逆变电源给整流负载供电时各电压矢量的轨迹∀此时给定电压矢量 _及控制电压矢量 _的轨迹均为园由于输出电压有较大畸变 _几乎为多边形∀图 示出逆变电源的输出电压及电流中一相瞬时值∀图不加重复控制时系统中各电压矢量轨迹图 不加重复控制时输出电压及电流波形图 示出加重复控制后逆变电源给整流负载供电时各电压矢量的轨迹∀此时给定电压矢量 _的轨迹仍为园 控制矢量 _的轨迹大幅度调整 使得输出电压矢量 _的轨迹重新恢复为近似园形∀图 示出此时输出电压及输出电流的波形∀由图可见 电压波形的失真较图 的大为减小∀图 加重复控制时系统中各电压矢量轨迹图 加重复控制时输出电压!电流波形下转第 页三相≥°• 逆变电源重复控制技术的研究致逆变失败∀因此 在整机调试时要注意他激引前角不要大于自激引前角太多 即τΒ稍大于τΒ较为合适∀选择合适的他激起动频率 可使起动成功率达 ∀给定恒反压时间τΒ一般在 Λ 左右 使输出中频电压和直流电压的比值为 ∗ ∀对于重炉 可使起动时给定反压时间τΒ大些 如 Λ 当自动跟踪成功后 自动变小而达到正常数值即 Λ 左右 实践证明效果良好∀参考文献林渭勋等 可控硅中频电源 北京 机械工业出版社黑龙江矿业学院机电研究所 晶闸管中频电源技术说明书 鸡西 黑龙江矿业学院出版社收稿日期 2 2收修改稿日期 2 2作者简介葛天孝 男 年 月生 副教授∀主要从事电力电子与微机测控技术的教学和研究工作∀刘成印 男 年 月生 副教授 正在攻读博士学位∀从事电力电子技术和微机测控技术的研究工作∀李国义 男 年 月生 副教授∀从事电力电子和微机测控技术的教学与研究工作∀李明学 男 年 月生 工程师∀从事电力电子和微机测控技术的研究工作∀上接第 页6结论重复控制是解决≤∂≤ƒ逆变电源给整流负载供电时波形畸变较大的有效手段∀本文提出的预测重复控制算法简单!有效∀仿真结果表明 将预测重复控制与瞬时值反馈控制结合起来构成的新型系统 可使周期性扰动负载引起的≥°• 逆变电源的输出电压波形畸变大为减小∀参考文献∏ • ≤ ƒ √ ⁄ × ⁄ ƒ ≤ 2 °• √ ∞∞∞ ≥χ ∗ × ∏ ∏ • √ ƒ ≤ °• √ • ≤ ƒ ∏ ∏ ∞∞∞ ≥χ × ° × √ • √ ∂ • √ °∞≤χ ∗康勇等 一种新型全数字化瞬时值反馈控制电源研究 船电技术康勇 高频大功率≥°• 逆变电源输出电压控制技术研究≈博士论文 华中理工大学收到初稿日期 2 2收到定稿日期 2 2作者简介康勇 男 年 月 博士 副教授∀主要从事电力电子技术及交流传动的教学与研究∀詹长江 男 年 月 博士生∀主要研究方向 电力电子技术及交流传动∀彭力 男 年 月 硕士 讲师∀主要从事电力电子技术的教学与研究∀陈坚 男 年 月 教授 博士生导师∀主要从事电力电子技术及交流传动的教学与研究∀ 5电力电子技术6 年第 期。
SPWM逆变原理及控制方法

如何利用电力电子器件的开通和关断两 种状态实现 电能四大基本状态之间的转换 就是电力电子学所要研究的核心内容
3
2.1 SPWM基本原理
理想开关:
¾ ¾ ¾ ¾ ¾ ¾ 导通电阻为0,即:通态压降为0 关断电阻为∞ 不考虑开通和关断时间,即:瞬时开通和关断 导通电阻不为0,通态压降为2V左右 关断电阻也不为∞,有少量漏电流 需要一定时间才能完全开通和关断,一般在10us以下
实际电力电子器件(开关):
理论分析一般都采用理想开关。在涉及散热系 统设计、死区时间选取、器件串并联设计、器件保 护等方面时,将必须按实际电力电子器件考虑
4
2.1 SPWM基本原理
实现电能四种基本形态的转换就是利用PWM 调制 • PWM(Pulse Width Modulation)脉宽调制技 术:通过对一系列脉冲的宽度进行调制,来等 效的获得所需要的波形(形状和幅值) • SPWM(Sinusoidal Pulse Width Modulation) 正弦脉宽调制技术:通过对一系列宽窄不等的 脉冲进行调制,来等效正弦波形(幅值、相位 和频率)
V4
V1
TD
V1
V1* V4 V4*
21
2.2 SPWM逆变及其控制方法
• 特定谐波消去法(计算法)
Selected Harmonic Elimination PWM—SHEPWM 这是计算法中一种较有 代表性的方法 输出电压半周期内,器 件通、断各3次(不包括 0和π),共6个开关时 刻可控 为减少谐波并简化控 制,要尽量使波形对称
2.2 SPWM逆变及其控制方法
• 自然采样法
1
TC
为简单起见,在计算机内部一般进行标称化,假定三角波最大 值为1
三相SPWM逆变电路

三相SPWM逆变电路
三相SPWM逆变电路
核心提示:三相SPWM逆变电路1、电路结构三相SPWM逆变电路结构等同于三相方波逆变电路结构,如图a),区别仅在于控制信号的时序分布。
2、脉冲控制策略载波信号为对称三角波uc,幅度Ucm,频率fc;调制信号为...
三相SPWM逆变电路
1、电路结构
三相SPWM逆变电路结构等同于三相方波逆变电路结构,如图
a),区别仅在于控制信号的时序分布。
2、脉冲控制策略
载波信号为对称三角波uc,幅度Ucm,频率fc;
调制信号为三相正弦波uga 、ugb 、ugc,幅度Ugm,频率f (逆变
输出电压频率)
调制信号与三角波比较形成三相SPWM波分别控制三个桥臂,
uga的调制波控制VT1、4桥臂,ugb的调制波控制VT3、6桥臂,
ugc的调制波控制VT5、2桥臂;同桥臂上下管脉冲互补。
(4)三相SPWM逆变电路的特点
基于SPWM调制的特点,输出电压谐波特性大为改善,最低次谐波接近开关频率;
与单相SPWM电路相同,单级电路实现输出电压的频率、幅度可调;
直流电压利用率不高,比单相电路更低,常采用调制波注入三次谐波的方法提高直流电压利用率。
(5)三相负载不平衡的对策
三相负载不平衡,则中点O的电位产生偏离,引起输出相电压不稳定,简单的处理办法是将母线中点与和三桥臂一起作为三相四线输
出,则各相电压均独立加以控制,如图所示。
三相PWM逆变器

1.0 (ULLm)h/Ud
0.8
0.6 0.4
2mf+1
0.2
0.0 1
mf
Ud t
Ud t
基波ULL1
Ud
t
ma=0.8,mf=15
2mf+1
3mf+2
2mf
3mf
三相逆变器的线电
压波形中可以消除单 桥臂逆变器中主要的 谐波成分。
逆变电路
u
utri uctr.A
uctr.B
uctr.C
0
t
uAN 0 uBN 0 uAB=uAN-uBN 0
uctr.B
uctr.C
U
Uctr
Utri 1/fs
0
t
0
t
uAN
UA0
t=0 UA0_1
0 uBN
Ud t
0
Ud /2t -Ud /2
0 uAB=uAN-uBN
Uctr<Utri TA -: 通,TA+: 断 Uctr>Utri TA+: 通,TA-: 断
0
基波ULL1
Ud t
Ud
t
桥臂输出中基波分量的电压峰值为:
0 uAB=uAN-uBN 0
1.0 (ULLm)h/Ud
0.8
0.6 0.4
2mf+1
0.2
0.0 1
mf
逆变电路
uctr.B
uctr.C
t
Ud t
Ud t
基波ULL1
Ud
t
ma=0.8,mf=15
2mf+1
3mf+2
2mf
3mf
假设mf为奇数,则
三相SPWM逆变器

第四章三相SPWM逆变器4.1三相SPWM逆变器的结构SPWM逆变器与PWM逆变器在主电路方面没有本质的区别,将电压型PAM主电路结构中的晶闸管替换为IGBT就成了SPWM型逆变器的主电路结构。
SPWM脉宽调制时,瞬时电压以极高的速度切换方向而输出半波内不改变方向,因此,输出电压与输出电流常常方向不一致,这时就需要续流二极管来提供与电压极性相反的电流通道。
加上了续流二极管的三相逆变桥,我们就设计好了SPWM逆变器的基本主电路。
图4.1是SPWM逆变器的主电路结构,它由六只IGBT组成三相桥式结构,每个桥上反并联了续流二极管。
4.1 SPWM逆变器的主电路图IGBT器件有自己特有的驱动电路及保护电路,实际中IGBT通常不以单独的形式供货,而是以包括了驱动及保护电路的智能模块(IPM)方式提供的。
IPM不仅为IGBT器件提供了驱动电路及保护电路,也为整个模块提供了过热保护等。
在容量比较小的情况下,IPM常常做成多器件结构,例如六单元或七单元结构。
六单元结构集成了一个完整的SPWM逆变器,图4.2就是一个六单元IPM的结构示意图。
七单元IPM除一个逆变器外,还把能耗制动用的斩波元器件及附属电路集成在里边了。
4.2 IPM结构从图4.2看到,六单元模块为五个主电路端子,即直流正负极输入和交流三相输出端子。
另外有驱动和保护的控制端子若干,它们是能够和常规控制芯片直接连接或者通过光耦合连接的电压型接口。
驱动端子是输入端子,接受外部触发器件,保护端子是输出端子,在保护电路封锁驱动电路的同时发出保护动作信号给外部控制器。
主电路端子通常是接线桩形式,控制端子通常是集中插口形式。
七单元IPM增加了一个连接制动电阻的主电路端子及相应的控制端子。
当容量比较大时,如果IPM仍然集成整个逆变器,会产生两个方面的缺点:一是模块的体积和重量加大,给安装和布置带来困难,也不利于散热;二是当模块中局部元器件损坏时需要更换整个模块,而大容量的模块的成本必然更高,因此使维护成本增加了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[N=3]
Bn
4U d n
uc
(c o s n 1 c o s n 2 c o s n 3 )
n 1 ,3 ,5 ,
n 1
B n sin n t
0
ug
t
(c o s 1 c o s 2 c o s 3 ) s in t
幅值由开关角决定,开 关角由调制比m决定。 采用平均值模型
C n/0.7845 1.2 1.0 0.8 0.6 0.4 0.2 0 0 0.2 0.4 基波 + C 2N - 1 N >> 1
k 奇 , b 3 (2 n -1 ) 1 k 偶 , b 1 ,6 n 1
N次谐波含量在m较小时较高 选N为3的整数倍,则 线电压谐波主要分布在
u O uUN'
Ud 2 Ud 2
u rU
uc urV
urW
t
O
t
uVN' O uWN'
t
O
t
同步调制三相PWM波形
7-3-17
7.2.2 异步调制和同步调制
3)分段同步调制
划分频段,每频段内保持N恒
fc /kHz
2.4
201 14 7 99
2.0 1.6 1.2 0.8 0.4 0
69
45
33
uc
ug
Vg
0
Wg Vg>Uc,Ug3>0 Ug>Uc,Ug1>0
t
O'
u g1
i6 i4 iU O iV i2 i W
4 6
1 3 5 6
4
1 3
Ug<Uc,Ug3<0 Ug<Uc,Ug1<0 Wg>Uc,Ug5>0 4
4 6 2 1 4 1 1
阻性 4 6 2
t t
N
u g3 ug5
Ug<Uc,Ug5<06 6 3 3
7-3-16
7.2.2 异步调制和同步调制
2) 同步调制 ——载波信号和调制信号保持同步的调制方式,当变频时 使载波与信号波保持同步,即N等于常数。
基本同步调制方式,fr变化 时N不变,信号波一周期内 输出脉冲数固定。 三相电路中公用一个三角 波载波,且取N为3的整数 倍,使三相输出对称。 为使一相的PWM波正负半 周镜对称,N应取奇数。 fr很低时,fc也很低,由调 制带来的谐波不易滤除。 fr很高时,fc会过高,使开 关器件难以承受。
4 2
2
2.上13下2管关断,下管 1.三上135管关断, V,W 46上5管正驱动。 三下管462正驱 相电流为正,U相电流 t 5、T6正驱动, 动。V,W相电流 为负。续流电流从N经 D3T6换流,U相电 3.上3下24管关断, 为正,U相电流 D6经V负载到中线从U 流过0时,D1T1交 下管6上15管正驱动。 t 为负。续流电流 负载经T4回N形成回路, 换导通,电流从电 W相电流为正,UV t 从N分D2、6经V、 ug5 直到V电流下降到0;W 源经T1和T5、UW 相电流为负。W相 t W负载到中线从 相T5导通,从电源获得 负载到中线,经V 电流继续经T5、W i U负载经T4回N i 能量,电流经T5、W相 负载从T6回N。此 u u 相负载流向中线, 形成回路 负载流向中线,经U相 t 时U、W相电流为 一路经V相负载从 负载从T4回N。V电流 正,V相电流为负。 T6回N,一路作为U 过0后,此电流的一部 其它时区类推。 相续流电流从中线 分经V负载、T6回N。 t 经D1回电源形成回 路。
5 2 5 2 5
3
3
t
1开,单独经6、 2并联返回,输 出2/3Ud 1,5开,并联, 上3管开,下3 经6回,输出+ 全关,输出0 1/3Ud 5号开,经46管 1、5管开,并联, 上3管全关断, 两路并联返回, 经6回,输出+ U相对中点输 输出为-1/3Ud。 1/3Ud 出电压为0
2
5 2U d /3
7-3-6
仿真验证
模型
Continuous pow ergui
+ i id Out1 io
S + A + i + v Uo
Scope
300V
-
B C
Iin1
Voltage Measurement
Universal Bridge 1,2e-3mH RL
RL2
7-3-7
N 2, N 4, 2 N 1, 2 N 5
CN +2 0.6 0.8
直流电压利用率
CN + 4 1.0 C5 1.2 1.4 C7 m
Av
U
A 01 m d
0 .5 m
7-3-5
三相SPWM的输出线电压谐波分布
U
感性负载
P
+ id Ud 2 Cd T4 + Ud 2 U D4 ZU T6 V D6 ZV T2 W D2
Convert NOT Logical Operator2
Relationa Data Type Conversio1 Operator1
<= Sine Wave2
Convert NOT Logical Operator3
Relationa Data Type Conversio2 Operator2
4)双极性PWM控制方式 (三相桥逆变)
三相的PWM控制 公用三角波载波uc 三相的调制信号urU、 urV和urW依次相差 120°
图7-7 三相桥式PWM型逆变电路
7-3-1
三相SPWM逆变电路
控制极信号的时序分布 载波信号为对称三角波
u ra U rm sin ( t 3 0 )
o
P
+ -
id Ud 2 Cd
i T1
i1 D1 T3
i3 D3 T5
i5 D5
O'
+ -
U T4 D4
ZU T6
V D6
ZV T2
W D2
ZW
Ud 2
任一时刻主电路有3器件 导通,其它器件关断。 纯电阻负载各D不导通。
N
i6 i4 iU O
iV
i2 i W
7-3-2
输出电压
u UV
uU V 1 4U d
保持fc固定不变,当fr变化时,载波比N变化 在信号波的半周期内,PWM波的脉冲个数不固定,相位也 不固定,正负半周期的脉冲不对称,半周期内前后1/4周期 的脉冲也不对称
当fr较低时,N较大,一周期内脉冲数较多,脉冲不对称产 生的不利影响都较小
当fr增高时,N减小,一周期内的脉冲数减少,PWM脉冲不 对称的影响就变大
2N-1次 幅值最大
Fundamental (50Hz) = 75.06 , THD= 105.48% 70 60 50 40 30 20 10 0 0 0.5 1 1.5 2 2.5 Frequency (Hz) 3 3.5 4 x 10
4
7-3-14
谐波分析小结
三相和单相比较,共同点是都不含低次谐波, 一个较显著的区别是载波角频率c=Nr整数 倍的谐波没有了,谐波中幅值较高的是
4 4
uc
i5
i T1
i1 D1 T3
i3 D3 T5
D5
0
O'
ZW
u g1 u g3
1 1 6 6 6 6 6 6
1 1 1 1
N
i6 i4 iU O
iV
i2 i W
5 5 5 5
2 2
4.T6关断,V相 iW1 1. N_D2,6_O_T4_N u U01 2. 电流维持原方向, P_T5_O_T4,6_N 0 3. 使D3导通续流。 P_T5_O_T6_N,D1_P 1 4. 此时T5、D1继续 P_T5_O_D1,3_P,三上臂导 i 通,三相暂时短路 导通,形成三上 0 5. 臂导通,相当于 P_T5_O,电流过 1 1 6 3 0,P_T1_O_T6_N D 2 2 三相输出UVW暂 时处于短路
0.005
0.01
0.015
0.02 0.025 Time (s)
0.03
0.035
0.04
Fundamental (50Hz) = 150.1 , THD= 52.07% 35
Mag (% of Fundamental)
30 25 20 15 10 5 0 0 0.5 1 1.5 2 2.5 Frequency (Hz) 3 3.5 4 x 10
基波相电压U
XO 1m
u g1 u g3 ug5
阻性 4 6 1 3 5 6 2 4 1 3 5 2U d /3 4 6 2 3 5 1 4 6 2 5 3 1 6 2 5 4 1 3 2 4 6
t t
3
t
0 .5 m U d
m 1, N 1
uU0
0
Ud / 3
u U01
t
有效值U 线U
三相SPWM控制
<= Sine Wave Convert NOT Logical Operator1
Relationa Data Type Conversio Operator
Convert Data Type Conversion1
1 Out1
Repeating Sequence
<= Sine Wave1
uU0
0
Ud / 3
u U01
线电压为两相电 压的差,由3种电 t 平组成
u V01
t
u UV
0