离合器的设计
毕业设计离合器的设计

•
压盘
• • 对压盘的结构设计要求: 压盘应具有较大的质量,以增大热容量,减 小温升,防止其产生裂纹和破碎,有时可设 置各种形状的散热筋或鼓风筋,以帮助散热 通风。中间压盘可铸造通风槽,也可采用传 热系数较大的铝合金压盘。 压盘应具有较大的刚度,使压紧力在摩擦面 上的压力分布均匀并减少受热后的翘曲变形, 以免影响摩擦片的均匀压紧及离合器的彻底 分离,厚度约15~25mm。 与飞轮应保持良好的对中,并要进行静平衡, 压盘单件的平衡精度应不低于15~20g.cm. 压盘高度(从支承点到摩擦面的距离)公差 要小。
广西工学院2010届毕业答辩 课题:离合器设计—
马自达6-07款离合器设计
姓名: 系别: 班别: 学号: 指导:
摩擦片
• • • • • • • • • 摩擦片的工作条件比较恶劣,为了保证它能 长期稳定的工作,根据汽车的的使用条件, 摩擦片的性能应满足以下几个方面的要求: 1)应具有较稳定的摩擦系数,温度,单位压 力和滑磨速度的变化对摩擦系数的影响小。 2)要有足够的耐磨性,尤其在高温时应耐磨。 3)要有足够的机械强度,尤其在高温时的机 械强度应较好 4)热稳定性要好,要求在高温时分离出的粘 合剂较少,无味,不易烧焦 5)磨合性能要好,不致刮伤飞轮及压盘等零 件的表面 6)油水对摩擦性能的影响应最小 7)结合时应平顺而无“咬住”和“抖动”现 象 根据以上的要求,目前车用离合器上广泛采用 石棉塑料摩擦片,该种摩擦片是由耐热和化 学稳定性能比较好的石棉和粘合剂及其它辅 助材料混合热压而成,其摩擦系数大约在 (0.3~0.45)左右。但这种摩擦片的缺点是 材料的性能不稳定,温度,滑磨速度及单位 压力的增加都将摩擦系数的下降和磨损的加 剧。 所以目前正在研制具有传热性好、强度 高、耐高温、耐磨和较高摩擦系数(可达0.5 左右)的粉末冶金摩擦片和陶瓷摩擦材料等。
机械设计基础机械设计中的离合器选择与设计

机械设计基础机械设计中的离合器选择与设计离合器作为机械传动系统中的重要组成部分,扮演着连接和断开动力传递的关键角色。
在机械设计过程中,正确选择和设计离合器,对于确保传动系统的稳定性、可靠性和性能具有重要意义。
本文将从离合器的选择和设计两个方面进行探讨。
一、离合器的选择离合器的选择应根据具体的机械传动系统要求和工况条件进行合理的决策。
以下几个方面是考虑离合器选择的重要因素:1. 功率传递需求:根据传动系统所需的最大扭矩和转速,合理选择离合器的额定扭矩和转速范围,确保离合器能够满足功率传递需求。
2. 工作环境条件:考虑离合器所处的工作环境条件,包括温度、湿度、腐蚀性等因素。
选择适应工作环境的材料和密封设计,以保证离合器的稳定性和寿命。
3. 控制方式:根据机械传动系统的要求,选择合适的离合器控制方式,包括手动、自动或电动控制等。
确保控制方式符合机械设备的操作要求。
4. 耐久性和可靠性:选择结构简单、制造工艺可靠、经久耐用的离合器,以确保传动系统的可靠性和工作寿命。
二、离合器的设计离合器的设计需要考虑到传动系统的特定要求和离合器的工作原理。
以下几个方面是离合器设计的关键考虑因素:1. 离合器类型:根据机械设备的要求和传动系统的特点,选择合适的离合器类型,如手动离合器、自动离合器、摩擦离合器等。
2. 连接方式:确定离合器与其他传动元件的连接方式,包括轴向连接、径向连接或者副程度连接等。
3. 摩擦片材料选择:根据摩擦片与离合器摩擦板之间的摩擦特性、传动功率需求和工作环境条件,选择合适的摩擦片材料,如有机摩擦材料、金属摩擦材料等。
4. 制动盘设计:根据离合器的转速和传动功率需求,设计合适的制动盘结构和尺寸,确保离合器的工作可靠性和耐久性。
5. 离合器控制系统:设计合适的离合器控制系统,包括离合器操纵机构、控制杆和控制电路等。
在离合器设计过程中,应进行必要的强度和热量计算,以确保离合器能够承受传动系统的工作负荷和热量产生。
离合器结构设计

离合器结构设计
离合器是一种用于连接和断开发动机与变速器之间的传动装置。
它允许驾驶员在换挡时暂时断开发动机与变速器的连接,从而实现平稳的换挡操作。
以下是一些常见的离合器结构设计考虑因素:
1. 摩擦材料:离合器的摩擦材料通常由摩擦片和压盘组成。
摩擦片与飞轮接触,通过摩擦力传递转矩。
选择合适的摩擦材料非常重要,以确保离合器具有足够的摩擦力和耐磨性。
2. 压盘:压盘是离合器的关键部件之一,它通过弹簧或其他力量机构对摩擦片施加压力,以确保摩擦力的产生。
压盘的设计需要考虑压力分布的均匀性和稳定性。
3. 离合器分离器:离合器分离器用于断开发动机与变速器之间的连接。
它通常由踏板、连杆和分离轴承组成。
设计分离器时需要考虑操作力的大小、踏板行程和分离器的可靠性。
4. 传动轴:传动轴将离合器的转矩传递给变速器。
它的设计需要考虑强度、刚度和传动轴的平衡,以减少振动和噪音。
5. 润滑:离合器的部件需要适当的润滑,以确保正常的运转和寿命。
设计中需要考虑润滑剂的类型、润滑方式和润滑系统的设计。
6. 热管理:离合器在工作过程中会产生热量,因此需要考虑散热问题。
设计中可以采用散热片、散热孔或冷却系统等方式来有效管理离合器的温度。
7. 轻量化设计:在不影响强度和性能的前提下,尽量减轻离合器的重量可以提高燃油经济性和动态性能。
这只是离合器结构设计的一些基本考虑因素,实际的设计还需要根据具体的应用和要求进行详细的工程分析和优化。
离合器的设计需要综合考虑性能、可靠性、耐久性和成本等因素,以满足车辆的动力传输需求。
车辆工程毕业设计149微型车离合器设计

车辆工程毕业设计149微型车离合器设计摘要:本文针对微型车离合器的设计进行了研究和分析。
首先介绍了离合器的作用和工作原理,然后对微型车离合器的设计要求进行了分析和总结。
接着,结合实际需求,提出了一种适用于微型车的离合器设计方案,并进行了相关计算和分析。
最后,给出了设计方案的实施建议。
关键词:微型车,离合器,设计,计算,分析1.引言离合器是车辆传动系统中重要的部件之一,主要用于传递动力和实现驱动轮与发动机之间的连接和分离。
随着微型车的发展,对离合器的设计要求也越来越高,需要更小、更轻、更高效的离合器。
2.微型车离合器的设计要求2.1尺寸和重量要求由于微型车的尺寸较小,离合器的尺寸也需要相应减小,以适应车辆的空间限制。
此外,由于微型车所需驱动力较小,离合器的重量也需要尽量减小,以减轻整车质量,提高燃油经济性。
2.2动力传递能力要求微型车的动力传递需求较小,离合器的传递能力也相应较小。
然而,离合器的传递能力仍需要满足微型车正常行驶和起步时的动力要求,以保证车辆的行驶性能和安全性。
2.3使用寿命要求微型车的使用寿命一般较长,离合器的使用寿命也需要相应增加。
离合器的设计应考虑到长时间使用时的磨损和损坏问题,并采取相应的措施来延长离合器的使用寿命。
3.微型车离合器的设计方案根据微型车离合器的设计要求,可以采用多种不同的离合器结构和材料来实现。
一种常见的设计方案是采用多片摩擦离合器结构,配合液压操纵装置实现离合器的连接和分离。
4.设计计算和分析根据实际需求和设计方案,进行离合器的相关计算和分析,包括离合器的传动能力、压力和温度等参数的计算和分析。
同时还需要对离合器的材料、摩擦系数和耐磨性等进行评估和选择,以确保离合器的设计满足微型车的要求。
5.设计方案的实施建议在实施离合器设计方案时,需要考虑到生产和制造的可行性,并进行相应的工艺规程和工艺参数的设计。
此外,还需考虑到安全性和可靠性等方面的问题,并制定相应的检验和测试计划来确保设计方案的质量和可行性。
汽车设计-离合器设计

第二章离合器设计第一节概述离合器是汽车传动系中直接与发动机相连接的总成,其主要功用是切断和实现对传动系的动力传递,以保证汽车起步时将发动机与传动系平顺地接合,确保汽车平稳起步;在换档时将发动机与传动系分离,减少变速器中换档齿轮之间的冲击;在工作中受到大的动载荷时,能限制传动系所承受的最大转矩,防止传动系各零件因过载而损坏;有效地降低传动系中的振动和噪声。
为了保证离合器具有良好的工作性能,对汽车离合器设计提出如下基本要求:1. 在任何行驶条件下均能可靠地传递发动机的最大转矩,并有适当的转矩储备;2. 接合时要平顺柔和,以保证汽车起步时没有抖动和冲击;3. 分离时要迅速、彻底;4. 离合器从动部分转动惯量要小,以减轻换档时变速器齿轮间的冲击,便于换档和减小同步器的磨损;5. 应有足够的吸热能力和良好的通风散热效果,以保证工作温度不致过高,延长其使用寿命;6. 应使传动系避免扭转共振,并具有吸收振动、缓和冲击和减小噪声的能力;7. 操纵轻便、准确,以减轻驾驶员的疲劳;8. 作用在从动盘上的压力和摩擦材料的摩擦系数在使用过程中变化要尽可能小,以保证有稳定的工作性能;9. 应有足够的强度和良好的动平衡,以保证其工作可靠、寿命长;10. 结构应简单、紧凑,质量小,制造工艺性好,拆装、维修、调整方便等。
摩擦离合器主要由主动部分(发动机飞轮、离合器盖和压盘等)、从动部分(从动盘)、压紧机构(压紧弹簧)和操纵机构(分离叉、分离轴承、离合器踏板及传动部件等)四部分组成。
主、从动部分和压紧机构是保证离合器处于接合状态并能传递动力的基本结构,操纵机构是使离合器主、从动部分分离的装置。
随着汽车发动机转速和功率的不断提高,汽车电子技术的高速发展,人们对离合器的要求越来越高。
从提高离合器工作性能角度出发,传统的推式膜片弹簧离合器结构正逐步地向拉式结构发展,传统的操纵型式正向自动操纵的型式发展,因此,提高离合器的可靠性和使用寿命,适应高转速,增加传递转矩的能力和简化操纵,已成为离合器的发展趋势。
离合器设计说明书

离合器设计说明书离合器设计说明书设计目的:本文档旨在详细说明离合器的设计原理、结构以及使用方法,以便于生产商和用户能够正确理解和操作离合器。
1:引言1.1 离合器的作用:离合器是一种机械装置,用于控制两个旋转轴之间的传动连接与分离。
它允许发动机和传动系统之间的动力传输,同时也能实现车辆的启动、换挡和停止。
1.2 设计背景:离合器设计是汽车制造中的重要环节,对于汽车的性能和安全性具有关键影响。
本文档意在提供一套完整的离合器设计方案,满足汽车制造商和用户的需求。
2:设计原理2.1 离合器工作原理:离合器由一个压盘、一组离合片和压盘螺旋弹簧组成。
当离合器踏板松起时,压盘受到压盘螺旋弹簧的作用,离合片与压盘分离,传动系统断开。
当离合器踏板踩下时,离合器压盘受到离合器释放器的作用,压盘受力,离合片与压盘连接,传动系统连接。
2.2 离合器设计要点:- 离合器尺寸和材料选择- 离合片结构和摩擦片材料的选择- 离合器的加载力和压盘压力- 离合器的热耐受能力- 离合器的寿命和可靠性3:离合器设计方案3.1 尺寸和材料选择:根据传动系统的要求,确定离合器的直径和厚度。
选择适当的材料,如钢、铸铁和复合材料等。
3.2 离合片结构和摩擦片材料选择:根据传动系统需求和工作环境,选择适当的离合片结构和摩擦片材料,如有机摩擦片、金属摩擦片和碳化硅摩擦片等。
3.3 加载力和压盘压力:根据发动机的最大扭矩和传动系统的要求,确定离合器的最大加载力和压盘压力。
3.4 热耐受能力:通过热传导分析和热力学计算,确定离合器的热耐受能力,以确保离合器在高温环境下的稳定工作。
3.5 寿命和可靠性:通过材料强度分析和疲劳寿命测试,确定离合器的寿命和可靠性,以确保离合器在长时间使用中的稳定性能。
4:使用说明4.1 离合器的安装:详细介绍离合器的安装步骤和注意事项,包括传动系统的拆卸和组装、离合器的对中和调整等。
4.2 离合器的调试:介绍离合器安装后的调试步骤,包括行车试验和性能检查等。
离合器的设计

第六节
与制动器助力相似
例题
干式
P=M.N
1)外摩擦片
2)内摩擦片
图4-1 摩擦片结构示意图
轴向压力F---摩擦力---传递转矩 。
图4-2 摩擦离合器结构示意图 1-主动盘; 2-从动盘; 3-滑环
主动轴1与外壳2相联接
图4-3 多片式摩擦离合器 1-主动轴; 2-外鼓; 3-被动片; 6-压板; 4-摩擦片;
离合器的选型:
1).干式: 摩擦片数多可以增大所传递的转矩。但片数过多, 将各层间压力分布不均匀。
6. 摩擦片外径D,内径d和厚度
摩擦片外径D(mm)也可根据如下经验公式选用: DKD Temax 式中:KD为直径系数,KD =14.5~24.0。 摩擦片的厚度b主要有3.2mm、3.5mm和4.0mm三种
7.离合器传递的转矩 T m
8. 离合器的储备系数
离合器在接合过程中除承受工作载荷外,还要承受惯性载荷。
并引起摩擦片的磨损和发热。为了限制磨损和发热, 应使接合面上的单位压力不超过许用单位压力 。 2.对湿式离合器而言,摩擦副的面积应为扣除油槽面积后的 有效摩擦工作面面积
4.摩擦副材料的摩擦系数f,基本许用单位压力见表4-1。
5.摩擦片单位压力值p对离合器工作性能和使用寿命有很大影响,选取时应考虑
离合器的工作条件,发动机后备功率大小,摩擦片尺寸,材料及其质量和后备系数等因素。 离合器使用频繁,发动机后备系数较小时, 应取小些;当摩擦片外径较大时,为了降 低摩擦片外缘处的热负荷, 应取小些;后备系数较大时,可适当增大 。 工程机械在工作时经常需要频繁地使用离合器,而且它们的工作条件差,属于重载荷类 型,因此应选用较小的值
摩擦转矩、储备系数、摩擦副数量和摩擦衬片的内外径等。
毕业设计离合器设计

毕业设计离合器设计毕业设计:离合器设计一、引言离合器作为汽车传动系统中的重要部件,其设计对于汽车的性能和驾驶体验起着至关重要的作用。
本篇文章将深入探讨毕业设计中离合器的设计问题,包括设计原理、材料选择、结构设计等方面。
二、设计原理离合器的基本原理是通过压力传递和摩擦力的作用来实现发动机与变速器的连接与分离。
在离合器设计中,需要考虑到传递扭矩的能力、摩擦片的磨损与热量散发等因素。
为了提高离合器的性能,设计师需要综合考虑这些因素,并确定最佳的设计参数。
三、材料选择离合器的摩擦片通常由摩擦材料制成,常见的材料有有机材料和金属材料。
有机材料摩擦片具有摩擦系数稳定、摩擦性能好等优点,但其耐磨性和耐高温性相对较差;金属材料摩擦片则具有耐磨性和耐高温性好的特点,但其摩擦系数相对较低。
在设计中,需要根据具体的使用环境和要求来选择合适的材料。
四、结构设计离合器的结构设计也是毕业设计中的重要内容之一。
结构设计需要考虑到离合器的紧凑性、重量、制造成本等方面。
同时,还需要注意离合器的可靠性和耐久性,以确保其在长时间使用过程中不会出现故障。
在设计过程中,可以借鉴现有的离合器结构,并结合自身的创新思维,提出更好的设计方案。
五、实验验证在毕业设计中,实验验证是非常重要的一环。
通过实验可以验证设计的可行性,并评估设计方案的优劣。
在离合器设计中,可以通过摩擦片的磨损测试、扭矩传递测试等来评估离合器的性能。
实验结果将为设计的改进提供有力的依据。
六、结论离合器设计作为毕业设计的重要内容之一,需要综合考虑设计原理、材料选择、结构设计等方面。
通过合理的设计和实验验证,可以得到优秀的离合器设计方案,提高汽车的性能和驾驶体验。
七、展望离合器设计是汽车工程领域中的重要研究方向之一。
未来,随着汽车科技的不断发展,离合器的设计将面临更多的挑战和机遇。
希望通过毕业设计的学习和研究,能够为离合器设计领域的发展做出贡献。
八、参考文献[1] 张三, 离合器设计原理与应用[M]. 北京:机械工业出版社,2010.[2] 李四, 汽车离合器材料选择与应用[M]. 上海:上海交通大学出版社,2015.以上是对毕业设计中离合器设计的一些探讨和思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8)蝶形弹簧离合器选取的β值可比螺旋弹簧离合
器小些;
(9)双片离合器的β值应大于单片离合器。
2020/4/1
2、摩擦片外径D2、内径D1和厚度 摩擦衬片的外径受飞轮尺寸和摩擦片最大圆
周速度的限制,一般可取飞轮直径的0.75~0.8倍, 也可根据发动机最大转矩按汽车用干式离合器的 经验公式计算:
所产生的,摩擦转矩Mm与离合器所具有的摩擦副 数量,摩擦工作面的材料特性和结构尺寸以及压 紧力的大小有关,其关系式为:
Mm PRd Zk0
2020/4/1
Mm PRd Zk0
M
——离合器的最大摩擦转矩(Nm);
m
——摩擦系数,可参考表3-3-1选取;
P ——压在摩擦表面上的压紧力(N);
Rd ——摩擦力作用等效半径(m);
对径向油槽ΔA为(0.1~ 0.2)A; 对螺旋油槽ΔA=(0.35~ 0.4)A;对螺旋径向油 槽Δ A为(0.45~ 0.6)A,故 A1=A-ΔA
2020/4/1
当摩擦面为环状时,摩擦力作用等效半径Rd可足够精 确地取为摩擦衬片外径D2和内径D1的平均值:
均压:
Rd
D2
4
D1
Rc
D23 D13 3(D22 D12 )
2020/4/1
3、单位压力q 单位压力q对离合器工作性能和使用寿命有很
大影响,选取时应考虑离合器的工作条件,发动 机后备功率大小,摩擦片尺寸、材料及其质量和 后备系数等因素。
离合器使用频繁,发动机后备系数较小时, q
应取小些,使离合器尺寸加大,可减少磨损,提 高使用寿命 ;当摩擦片外径较大时,为了降低摩
§2-2 离合器的设计
一、离合器主要参数的确定
片式摩擦离合器的主要参数有摩擦转矩,储备系 数,摩擦副数量和摩擦衬片的内外径等。前两个参 数主要表征离合器的工作能力,可称为性能参数, 后两个参数则说明离合器结构的一些特点,可称为 结构参数。这两个参数之间具有内在联系并相互影 响。
2020/4/1
(一)离合器的摩擦转矩 离合器的摩擦转矩Mm由摩擦表面上的压紧力P
擦片外缘处的热负荷,q应取小些;后备系数较大 时,可适当增大q 。
2020/4/1
工程机械在工作时经常需要频繁地使用离合器, 而且它们的作业条件差,属于重载荷类型,因此应
选用较小的q值。
q
4P
( D22
D12 )
要求q≤[q],式中[q]为摩擦材料的许用比压。 否则,应对初选参数进行调整,直到满意为止。
2020/4/1
要求: (1)标准化(JB1457-74)。 (2)检查该尺寸是否在发动机飞轮允许尺寸范围内。 (3)大圆周线速度[v]不超过65~70m/s,以免发生飞 离的危险。
v D2 neH [v]
60
2020/4/1
(4)摩擦衬片的内径可参考现有结构的c值来确定, c=D1/D2。对c值选择是否恰当,关系到摩擦有效的 利用以及摩擦片是否能正常可靠地工作。在摩擦表 面单位压力允许的条件下采用较大的c值,即增加内 径,可使摩擦表面的磨损均匀和防止滑磨时由于内、 外圆的圆周速度相差太大,温升不一致而产生的翘 曲。通常干式离合器,c值一般在0.55~0.68之间; 湿式离合器,c值一般在0.75~0.87之间。
Z ——摩擦副数量,Z=m+n-1,其中m为主动片的
数量,n从动件的数量;
k0 ——压紧力损失系数,考虑压紧力在逐片顺次 传递过程中要克服花键等联接中的滑动摩擦力而渐 次减小所造成的损失系数。
2020/4/1
k0
1
2 ' z
1
(1 1
' '
)
z
' ——花键轴导向面与摩擦片 内齿的摩擦系数,对干式 ' =0.13~0.30, 湿式 ' =0.06~0.08。 与摩擦副数量和摩擦片工作条件有关。
2020/4/1
假定压紧力P是均匀分布在摩擦表面上,所以:
P qA 106
式中:q——摩擦表面的单位压力(Mpa); A——摩擦副的面积(m2)。 当摩擦面为环状时,每个摩擦副的面积A:
A ( D22 D12 )
4
式中:D2、D1—— 摩擦衬片的外径和内径(m)。
2020/4/1
对湿式离合器而言,摩擦副的面积为扣除油槽 面积Δ A后的有效摩擦工作面面积A1。
2020/4/1
二、压紧弹簧设计
压紧弹簧从结构上有圆柱螺旋弹簧和碟形弹 簧两种。 (一)圆柱螺旋弹簧
周置式采用圆柱螺旋弹簧,初选弹簧数目n一 般为6,9,12,15等;
中央式可采用圆柱螺旋弹簧亦可采用碟形弹 簧。
2020/4/1
圆柱螺旋压紧弹簧计算用简图参考图2-1。必须 指出:适合作主离合器压紧弹簧的弹簧刚度一般在 20 ~ 45 N/mm,可按下式计算:
了离合器传递发动机最大转矩的可靠程度。在选择
β时,应保证离合器应能可靠地传递发动机最大转
矩、要防止离合器滑磨过大、要能防止传动系过载。
2020/4/1
Mm
M emax
2020/4/1
因此,在选择β时应考虑以下几点: (1)为可靠传递发动机最大转矩,β不宜选取太小; (2)为减少传动系过载,保证操纵轻便,β又不宜
,
C D1 D2
施加在摩擦面上的单位压力,p0
F A
Mc
M emax
f Z
12
p0 D23 (1 C 3 )
离合器的Mc值,只有在结构设计完毕后才确定。
2020/4/1
(二)离合器基本参数的选择
基本参数主要有性能参数β和q,尺寸参数D2和 D1及摩擦片厚度b。 1、储备系数β
储备系数β是离合器一个重要设计参数,它反映
Kt
D2
M e max A
(cm)
式中:Memax ——发动机最大转矩(Nm);
A ——经验系数
2020/4/1
轿车:A=0.47;载重车:单片A=0.3~0.4, 双片A=0.45~ 0.55,轻型车取上限,重型车取下 限;自卸车、特殊用途车:A=0.19。
摩擦片的厚度b主要有3.2mm、3.5mm和4.0mm 三种。
选取太大;
(3)当发动机后备功率较大、使用条件较好时,β
可选取小些; (4)当使用条件恶劣,为提高起步能力、减少离合
器滑磨,β应选取大些;
2020/4/1
(5)车辆总质量越大,β也应选得越大;
(6)柴油机工作比较粗暴,转矩较不平稳,选取的
β值应比汽油机大些; (7)发动机缸数越多,转矩波动越小,β可选取小