风力发电机组防雷设计方案
风力发电机组防雷设计方案

风力发电机组防雷设计方案深圳天顺科技有限公司曾中海一:概述风能是当前技术最成熟、最具备规模开发条件的可再生洁净能源。
风能发电为人与自然和谐发展提供了基础。
由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。
雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。
例如,红海湾风电场建成投产至今发生了多次雷击事件,据统计,叶片被击中率达4%,其他通讯电器元件被击中率更高达20% 。
为了降低自然灾害带来的损失,必须充分了解它,并做出有针对性的防范措施。
二:风机对比介绍风电变速恒频风力发电系统,主要分为双馈式和直驱式。
双馈式风力发电系统由于其变流器容量(滑差功率)只占系统额定功率的30%左右,能较多地降低系统成本,因此双馈式系统受到了广泛的关注。
与双馈式相比,直驱式采用低速永磁同步发电机结构,无需齿轮箱,机械损耗小,运行效率高,维护成本低,但是,由于系统功率是全功率传输,系统中变流器造价昂贵,控制复杂(本文重点介绍直驱式风电系统雷电防护)。
直驱风力发电系统风轮与永磁同步发电机直接连接,无需升速齿轮箱。
首先将风能转化为频率和幅值变化的交流电,经过整流之后变为直流,然后经过三相逆变器变换为三相频率恒定的交流电连接到电网。
通过中间电力电子变化环节,对系统有功功率和无功功率进行控制,实现最大功率跟踪,最大效率利用风能。
直驱式风力发电系统中的电力电子变换电路(整流器和逆变器)可以有不同的拓扑结构(常见2种见图1、2)。
图1图2三:设计依据标准1、Germanischer Lloyd; Vorschriften und Richtlinien, Kapitel IV: Nichtmaritime Te chnik, Abschnitt 1: Richtlinie für die Zertifizierung von Windeenergieanlagen 《GL指导文件IV‐1风力发电系统》2、IEC 61400-24 Wind turbine generator systems –Part 24: Lightning protection《IEC61400‐24风力发电系统防雷保护》3、IEC 62305 Protection against lightning 《IEC62305雷电防护》《GL 指导文件》是风机安装、测试和认证的标准,该标准也包含了对风机雷电防护的具体要求,是风机防雷保护的基础性文件。
风力发电防雷工程施工方案

一、项目背景随着风力发电事业的快速发展,风力发电机组越来越多地应用于各种地形和气候条件,雷电灾害对风力发电机组的安全稳定运行造成严重威胁。
为提高风力发电机组防雷能力,确保发电设备安全可靠运行,特制定本风力发电防雷工程施工方案。
二、施工目标1. 提高风力发电机组防雷等级,降低雷击故障发生率;2. 确保施工质量,保证工程顺利进行;3. 按时完成施工任务,缩短停机时间。
三、施工范围1. 风力发电机组本体防雷;2. 风机塔筒及基础防雷;3. 风机平台及设备防雷;4. 风力发电场内其他设施防雷。
四、施工方法1. 风力发电机组本体防雷(1)在风力发电机组本体上安装避雷针,将雷电流引至地面;(2)在避雷针周围安装接地网,确保接地电阻符合要求;(3)对避雷针进行防腐处理,延长使用寿命。
2. 风机塔筒及基础防雷(1)在风机塔筒上安装避雷针,将雷电流引至地面;(2)在风机基础周围安装接地网,确保接地电阻符合要求;(3)对避雷针和接地网进行防腐处理。
3. 风机平台及设备防雷(1)在风机平台上安装避雷针,将雷电流引至地面;(2)在风机平台周围安装接地网,确保接地电阻符合要求;(3)对避雷针和接地网进行防腐处理。
4. 风力发电场内其他设施防雷(1)对风力发电场内其他设施(如电缆、变压器等)进行接地处理,确保接地电阻符合要求;(2)对风力发电场内其他设施进行防腐处理。
五、施工要求1. 施工前,对施工人员进行技术培训,确保施工人员掌握防雷施工技能;2. 施工过程中,严格按照施工图纸和规范进行操作;3. 施工过程中,加强施工现场安全管理,确保施工安全;4. 施工过程中,做好施工记录,确保施工质量;5. 施工完成后,进行防雷效果测试,确保防雷设施符合要求。
六、施工进度1. 施工前期准备:5天;2. 风力发电机组本体防雷施工:10天;3. 风机塔筒及基础防雷施工:15天;4. 风机平台及设备防雷施工:10天;5. 风力发电场内其他设施防雷施工:5天;6. 施工验收及测试:5天。
风力发电防雷方案

风力发电机系统
防雷解决方案
设计单位:OBO 中国培训中心(沈阳) 技术支持:利德风能(沈阳)
2007 年 12 月
联系人:孟红
风力发电机系统防雷解决方案
目
录
一、风力发电系统防雷配置表 二、风力发电机系统简介 三、引言 四、雷电造成的危害 五、设计总则 六、设计方案 七、防雷器配置表 八、维护与保修 九、附件
电网中由于故障或其它原因会突然停电。突然停电将给电力、银行金融、国防以及其它 部门带来不可估量的损失。UPS 的功能就是在突然停电的情况下,在很短的时间内及时将备 用电源投入,保证用电设备供电的连续性,使用电设备在突然停电的情况下仍能继续工作一 段时间或长期运行。但 UPS 不能消除暂态过电压,在电网停电 UPS 动作的情况下,反而会产 生暂态过电压。在暂态过电压的作用下,UPS 自身有可能被损坏。
风力发电系统防雷设计研究

风力发电系统防雷设计研究风力发电系统是一种利用风能转化为电能的装置,具有可再生、清洁、环保等优点,正逐渐成为全球能源结构调整的重要部分。
由于风力发电系统通常建在高处,暴雨、雷电等天气现象容易导致系统遭受雷击,引发安全隐患和设备损坏。
对风力发电系统进行防雷设计是非常重要的。
一、风力发电系统的防雷设计原则:1.系统的安全可靠性是最重要的考虑因素。
2.尽可能减小风力发电系统的雷击危害。
3.遵循国家相关防雷标准,确保系统的合规性。
二、风力发电系统的防雷设计内容:1.系统常规防雷保护措施:(1)系统接地设计:风力发电机组、输电线路和绝缘线设计良好的接地系统,可有效地降低雷击危害。
(2)引雷器:在风力发电系统中设置引雷器,将雷电引入地下或者避免直接击中关键设备,减少雷击对设备的损害。
(3)避雷针:在发电塔上安装避雷针,防止塔上人员遭受雷击伤害。
(4)金属防护:使用避雷针、金属网等材料对设备进行金属防护,形成电磁屏蔽,防止雷击对设备造成直接伤害。
2.高频保护系统设计:(1)设置防雷川流式闭合环节,对外部大气环境中的雷击脉冲进行拦截、吸收和消散,保护风力发电系统的高频设备。
(2)通过使用避雷器、稳压器等设备,对高频电路进行保护,防止雷击冲击对设备电路产生干扰和破坏。
3.系统的过电压保护设计:(1)使用过电压保护器对系统进行过电压保护,及时将过电压释放到地下或外部大气环境中,防止过电压对系统设备产生危害。
(2)设置过电压保护器的位置、数量和规格应根据系统的整体特点进行选择,确保可靠性和合理性。
4.系统的电气接地设计:(1)风力发电机组和输电线路的接地设计应符合相关防雷标准,确保接地电阻小于设计要求。
(2)通过设置接地体,提高接地效果,减小系统感应电阻,保护系统的安全运行。
5.系统的维护和监控:定期对风力发电系统进行维护和检测,确保系统设备的正常运行,及时处理可能存在的安全隐患。
总结:风力发电系统的防雷设计是保护系统设备和人员安全的重要环节。
风电避雷工程施工方案设计

随着风电行业的快速发展,风电项目遍布全国各地,其中避雷工程是风电项目安全运行的重要保障。
为保障风电场设备安全,降低雷击事故发生率,特制定本风电避雷工程施工方案。
二、工程概况1. 工程地点:某风电场2. 工程规模:风电场内共计安装100台风机,其中避雷针100根,接地网100套,避雷器100套。
三、施工方案设计1. 施工组织机构(1)项目经理:负责全面管理项目,确保工程进度、质量和安全;(2)技术负责人:负责技术指导和施工方案实施;(3)施工队长:负责施工队伍的管理和现场施工;(4)安全员:负责现场安全监督和事故处理。
2. 施工工艺(1)避雷针安装:根据设计要求,在风机塔筒上安装避雷针,确保避雷针与塔筒连接牢固;(2)接地网铺设:在风电场内铺设接地网,确保接地网与避雷针连接,形成良好的接地系统;(3)避雷器安装:在风机附近安装避雷器,确保避雷器与接地网连接,提高雷击防护能力。
3. 施工步骤(1)现场勘查:对风电场进行现场勘查,了解地形、地质、气候等条件,为施工提供依据;(2)材料准备:根据设计要求,准备避雷针、接地网、避雷器等材料;(3)施工准备:组织施工队伍,进行技术交底和安全教育;(4)避雷针安装:按照设计要求,在风机塔筒上安装避雷针,确保连接牢固;(5)接地网铺设:按照设计要求,在风电场内铺设接地网,确保与避雷针连接;(6)避雷器安装:按照设计要求,在风机附近安装避雷器,确保与接地网连接;(7)施工验收:对施工质量进行检查,确保符合设计要求。
四、施工质量控制1. 材料质量:严格按照设计要求,选用合格的材料;2. 施工质量:严格按照施工工艺进行施工,确保工程质量;3. 检查验收:对施工质量进行检查,确保符合设计要求。
五、施工安全措施1. 施工现场安全防护:设置安全警示标志,加强安全防护措施;2. 施工人员安全培训:对施工人员进行安全培训,提高安全意识;3. 施工现场安全监督:加强施工现场安全监督,及时发现和处理安全隐患。
风力发电机防雷系统的组成、措施及思路

风力发电机防雷系统的组成、措施及设计思路1.风电防雷的组成风电的防雷主要由雷电电磁脉冲防护系统和直击雷防护系统组成。
雷电电磁脉冲防护系统主要针对风电的掌握系统;直击雷防护系统主要包括风塔、叶片及接地系统的防护。
从构筑物的角度进行考虑,风塔可以进行LPZ进行防雷分区,依据这种分区方式同样可以确定风塔的不同位置需要实行什么样的防护措施。
依据危急成都进行划分:处于LPZO区的部分包括叶片、风速仪,LPZ1区包括:风机(机舱)罩、塔桶内电缆、,LPZ2区包括: 变浆柜、掌握柜、等。
2.掌握系统的防雷设计对于处于野外高雷击风险环境的雷电电磁脉冲防护应重点考虑采纳等电位、屏蔽及在掌握线路上安装SPD。
3. 1机舱内的等电位系统设计风电掌握机舱内主要有变浆掌握柜、制动掌握柜、机械箱(齿轮箱)、液压掌握柜、发电机及传动系统,由于各系统之间的链接主要是靠地板的链接,各金属外壳间存在肯定的接触电阻,所以应重点做好设施之间的等电位链接,可在用紫铜带或者铜编织带进行牢靠的等电位链接。
4.2屏蔽措施屏蔽措施主要针对目前国内一些风机外科采纳高强度玻璃钢材料而言,由于雷电电磁脉冲的冲击是在空间范围内存在的,所以,为了削减机舱内电子设施受雷电电磁脉冲的冲击,应采纳金属的机舱罩, 减弱雷电电磁脉冲对机舱内设施的影响,减小雷电电磁脉冲的强度,同时也可有效的削减雷电电磁脉冲在线路上产生的浪涌脉冲。
2.3在不同位置安装相应的SPD依据国外风场的统计数据表明,风电场因雷击而损坏的主要风电机部件是掌握系统和通讯系统。
雷击事故中的40%〜50%涉及到风电机掌握系统的损坏,15%〜25%涉及到通讯系统,15%〜20%涉及到风机叶片,5%涉及到发电机。
由此可见,雷电对风机系统遭成的影响是不同的,进行具有针对性的防护是避开和削减事故的重要手段。
依据IEC61312-3. 61024和61400及GB500577994中关于雷电流安排的推举计算可计算出风机内部不同系统存在的雷击电流强度。
风力发电系统防雷设计研究

风力发电系统防雷设计研究
风力发电系统的防雷设计主要包括以下几个方面:
对于风力发电机组而言,需要采取有效的接地措施。
将风机塔杆与地面之间建立良好
的接地系统,可以有效地分散和引导雷电流,减少雷击对风机本体的破坏。
在设计过程中,应根据具体地理条件和风机塔杆的高度确定合理的接地形式和接地电阻,确保接地系统的
可靠性。
风力发电机组绕组的内部绝缘应具备较高的耐雷击能力。
采用合适的介质和绝缘结构,如特殊的绝缘纸或绝缘漆涂层,可以有效提高绕组的耐雷击性能。
对于电机的定子线圈,
还可以设置较好的绝缘距离和绝缘结构,以增加其防雷击能力。
风力发电系统的设备和设施应具备良好的防雷击能力。
风机塔杆和机舱罩体等外露部
分应选用具有较高绝缘性能的材料,并采用合适的接地方式,以减少雷电对设备的影响。
对于控制系统和仪表设备等关键设施,也应合理地设置防雷击措施,如安装避雷针等。
风力发电系统的防雷设计还要考虑在运行过程中的实际情况。
特别是在风力较大、雷
电活动频繁的地区,应加强对系统的监测和保护。
可以采用雷电监测仪和防雷击装置等设备,及时预警并采取相应的措施,保护风力发电系统的安全运行。
风力发电系统的防雷设计是保障系统安全运行的关键要素。
通过合理的接地设计、高
耐雷击的绝缘材料和结构、良好的设备防护措施以及实时的系统监测和保护等措施,可以
最大限度地降低雷击对风力发电系统的影响,保障其长期稳定运行。
风力发电场防雷接地施工方案的设计与实践

风力发电场防雷接地施工方案的设计与实践一、引言风力发电场是当今绿色能源发展的重要组成部分,而在发电场的建设过程中,必须考虑到防雷问题。
本文将介绍风力发电场防雷接地施工方案的设计与实践,以确保发电设备的安全和稳定运行。
二、风力发电场防雷接地施工方案设计1. 风力发电场的特点风力发电场分布广泛且高度暴露,容易受到雷击的影响。
因此,防雷接地施工方案设计必须考虑到风力发电场的特点,包括地形、气候等因素。
2. 地面接地设计地面接地是防雷接地施工方案的关键部分。
在设计中应考虑地下土壤的电阻率、风力发电机组的功率等因素,以确保接地系统具有足够的导电性能。
3. 避雷针设计风力发电场通常需要安装避雷针,以吸引雷电击中。
在设计中,应考虑到风力发电场的高度和外形,合理确定避雷针的位置和数量。
4. 绝缘设计在设计防雷接地方案时,还需考虑到设备的绝缘设计。
通过合理的接地设计,可以减少雷击对设备的影响,确保风力发电机组的安全运行。
三、风力发电场防雷接地施工方案实践1. 施工材料的选择在实际施工过程中,应选择高质量的导电材料,包括铜材、铝材等,以确保接地系统的导电性能。
2. 施工操作规范施工操作必须符合相关的规范和标准,确保施工过程中的安全性。
施工人员应经过专业培训,并持有相关资质证书。
3. 施工现场管理在风力发电场的防雷接地施工过程中,应加强现场管理,确保施工进度、安全和质量。
定期检查施工设备和材料的质量,及时处理施工中的问题和隐患。
4. 施工后的测试与维护在防雷接地施工完成后,应进行必要的测试,以验证接地系统的有效性。
并制定相应的维护计划,定期检查和保养接地系统,确保其长期有效。
四、结论风力发电场防雷接地施工方案的设计与实践是保障发电设备安全运行的关键。
通过合理的施工方案设计,选择优质的材料,规范的施工操作和有效的维护,可以提高风力发电场的抗雷能力,保障设备的安全性和稳定性。
在未来的发展中,应进一步加强对风力发电场防雷技术的研究和改进,不断提高防雷接地施工方案的效果,为风力发电行业的可持续发展做出贡献。