数学--单调性与最大(小)值 教案

数学--单调性与最大(小)值  教案
数学--单调性与最大(小)值  教案

第2课时 函数的最值

导入新课

思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为

x

10000

m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短?

学生先思考或讨论,教师指出此题意在求函数y=2(x+

x

10000

),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题.

思路2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2];

③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题

①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征.

图1-3-1-11

②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的?

④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ?

图1-3-1-12

⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?

⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?

⑦函数最大值的几何意义是什么?

⑧函数y=-2x+1,x ∈(-1,+∞)有最大值吗?为什么? ⑨点(-1,3)是不是函数y=-2x+1,x ∈(-1,+∞)的最高点? ⑩由这个问题你发现了什么值得注意的地方? 讨论结果:

①函数y=-x 2-2x 图象有最高点A ,函数y=-2x+1,x ∈[-1,+∞)图象有最高点B ,函数y=f(x)图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.

②函数图象上任意点P 的坐标(x,y)的意义:横坐标x 是自变量的取值,纵坐标y 是自变量为x 时对应的函数值的大小.

③图象最高点的纵坐标是所有函数值中的最大值,即函数的最大值. ④由于点C 是函数y=f(x)图象的最高点,则点A 在点C 的下方,即对定义域内任意x ,都有y≤y 0,即f(x)≤f(x 0),也就是对函数y=f(x)的定义域内任意x ,均有f(x)≤f(x 0)成立. ⑤一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0)=M. 那么,称M 是函数y=f(x)的最大值.

⑥f(x)≤M 反映了函数y=f(x)的所有函数值不大于实数M ;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.

⑦函数图象上最高点的纵坐标.

⑧函数y=-2x+1,x ∈(-1,+∞)没有最大值,因为函数y=-2x+1,x ∈(-1,+∞)的图象没有最高点. ⑨不是,因为该函数的定义域中没有-1.

⑩讨论函数的最大值,要坚持定义域优先的原则;函数图象有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点. 提出问题

①类比函数的最大值,请你给出函数的最小值的定义及其几何意义. ②类比问题9,你认为讨论函数最小值应注意什么?

活动:让学生思考函数最大值的定义,利用定义来类比定义.最高点类比最低点,符号不等号“≤”类比不等号“≥”.函数的最大值和最小值统称为函数的最值. 讨论结果:①函数最小值的定义是:

一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≥M ; (2)存在x 0∈I ,使得f(x 0)=M. 那么,称M 是函数y=f(x)的最小值.

函数最小值的几何意义:函数图象上最低点的纵坐标.

②讨论函数的最小值,也要坚持定义域优先的原则;函数图象有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点. 应用示例

思路1 例1求函数y=

1

2

-x 在区间[2,6]上的最大值和最小值. 活动:先思考或讨论,再到黑板上书写.当学生没有证明思路时,才提示:图象最高点的纵坐标就是函数的最大值,图象最低点的纵坐标就是函数的最小值.根据函数的图象观察其单调性,再利用函数单调性的定义证明,最后利用函数的单调性求得最大值和最小值.利用变换法画出函数y=1

2

-x 的图象,只取在区间[2,6]上的部分.观察可得函数的图象是上升的. 解:设2≤x 1

1

2

1221---x x =)1)(1()]1()1[(22112-----x x x x =)1)(1()(22112---x x x x

∵2≤x 10,(x 1-1)(x 2-1)>0. ∴f(x 1)>f(x 2),即函数y=

1

2

-x 在区间[2,6]上是减函数.

所以,当x=2时,函数y=

12

-x 在区间[2,6]上取得最大值f(2)=2; 当x=6时,函数y=12-x 在区间[2,6]上取得最小值f(6)= 5

2

.

变式训练

1.求函数y=x 2-2x(x ∈[-3,2])的最大值和最小值_______. 答案:最大值是f(-3)=15,最小值是f(1)=-1.

2.函数f(x)=x 4+2x 2-1的最小值是. 分析:(换元法)转化为求二次函数的最小值. 设x 2=t ,y=t 2+2t-1(t≥0),

又当t≥0时,函数y=t 2+2t-1是增函数,

则当t=0时,函数y=t 2+2t-1(t≥0)取最小值-1. 所以函数f(x)=x 4+2x 2-1的最小值是-1. 答案:-1

3.画出函数y=-x 2+2|x|+3的图象,指出函数的单调区间和最大值.

分析:函数的图象关于y 轴对称,先画出y 轴右侧的图象,再对称到y 轴左侧合起来得函数的图象;借助图象,根据单调性的几何意义写出单调区间. 解:函数图象如图1-3-1-13所示.

图1-3-1-13

由图象得,函数的图象在区间(-∞,-1)和[0,1]上是上升的,在[-1,0]和(1,+∞)上是下降的,最高点是(±1,4), 故函数在(-∞,-1),[0,1]上是增函数;函数在[-1,0],(1,+∞)上是减函数,最大值是4. 点评:本题主要考查函数的单调性和最值,以及最值的求法.求函数的最值时,先画函数的图象,确定函数的单调区间,再用定义法证明,最后借助单调性写出最值,这种方法适用于做解答题.

单调法求函数最值:先判断函数的单调性,再利用其单调性求最值;常用到下面的结论:①如果函数y=f(x)在区间(a,b ]上单调递增,在区间[b,c)上单调递减,则函数y=f(x)在x=b 处有最大值f(b);②如果函数y=f(x)在区间(a,b ]上单调递减,在区间[b,c)上单调递增,则函数y=f(x)在x=b 处有最小值f(b).

例2“菊花”烟花是最壮观的烟花之一.制造时一般是期望它达到最高点时爆裂.如果烟花距地面的高度h m 与时间t s 之间的关系为h(t)=-4.9t 2+14.7t+18,那么烟花冲出去后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m )?

活动:可以指定一位学生到黑板上书写,教师在下面巡视,并及时帮助做错的学生改错.并对学生的板书及时评价.将实际问题最终转化为求函数的最值,画出函数的图象,利用函数的图象求出最大值.“烟花冲出去后什么时候是它爆裂的最佳时刻”就是当t 取什么值时函数h(t)=-4.9t 2+14.7t+18取得最大值;“这时距地面的高度是多少(精确到1 m )”就是函数h(t)=-4.9t 2+14.7t+18的最大值;转化为求函数h(t)=-4.9t 2+14.7t+18的最大值及此时自变量t 的值.

解:画出函数h(t)=-4.9t 2+14.7t+18的图象,如图1-3-1-14所示,

显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆炸的最佳时刻,纵坐标就是这时距离地面的高度.

图1-3-1-14

由二次函数的知识,对于函数h(t)=-4.9t 2+14.7t+18,我们有: 当t=)

9.4(27

.14-?-

=1.5时,函数有最大值,

即烟花冲出去后1.5s 是它爆裂的最佳时刻,这时距地面的高度约是29m.

点评:本题主要考查二次函数的最值问题,以及应用二次函数解决实际问题的能力.解应用题步骤是①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.

注意:要坚持定义域优先的原则;求二次函数的最值要借助于图象即数形结合. 变式训练

1.2006山东菏泽二模,文10把长为12厘米的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( ) A.

2

33cm 2 B.4cm 2 C.32cm 2 D.23cm 2

解析:设一个三角形的边长为x cm ,则另一个三角形的边长为(4-x) cm ,两个三角形的面积和为S ,则S=

43x 2+43(4-x)2=2

3(x-2)2+23≥23. 当x=2时,S 取最小值23m 2.故选D.

答案:D

2.某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取利润最大,并求出最大利润.

分析:设未知数,引进数学符号,建立函数关系式,再研究函数关系式的定义域,并结合问题的实际意义作出回答.利润=(售价-进价)×销售量. 解:设商品售价定为x 元时,利润为y 元,则 y=(x-8)[60-(x-10)·10]

=-10[(x-12)2-16]=-10(x-12)2+160(10<x <16). 当且仅当x=12时,y 有最大值160元, 即售价定为12元时可获最大利润160元.

思路2 例1已知函数f(x)=x+

x

1

,x>0, (1)证明当0

x

1

,x>0的最小值. 活动:学生思考判断函数单调性的方法,以及函数最小值的含义.(1)利用定义法证明函数的单调性;(2)应用函数的单调性得函数的最小值.

(1

)解:任取x 1、x 2∈(0,+∞)且x 1<x 2,则 f (x 1)-f (x 2)=(x 1+

11x )-(x 2+2

1

x )=(x 1-x 2)+2112x x x x -=212121)1)((x x x x x x --,

∵x 1<x 2,∴x 1-x 2<0,x 1x 2>0.

当0<x 1<x 2<1时,x 1x 2-1<0, ∴f (x 1)-f (x 2)>0. ∴f (x 1)>f (x 2),即当00, ∴f (x 1)-f (x 2)<0.

∴f (x 1)<f (x 2),即当x≥1时,函数f(x)是增函数. (2)解法一:由(1)得当x=1时,函数f(x)=x+x

1

,x>0取最小值. 又f(1)=2,则函数f(x)=x+

x

1

,x>0取最小值是2. 解法二:借助于计算机软件画出函数f(x)=x+x

1

,x>0的图象,如图1-3-1-15所示,

图1-3-1-15

由图象知,当x=1时,函数f(x)=x+

x

1

,x>0取最小值f(1)=2. 点评:本题主要考查函数的单调性和最值.定义法证明函数的单调性的步骤是“去比赛”;三个步骤缺一不可. 利用函数的单调性求函数的最值的步骤:①先判断函数的单调性,再利用其单调性求最值;常用到下面的结论:①如果函数y=f(x)在区间(a,b ]上单调递增,在区间[b,c)上单调递减,则函数y=f(x)在x=b 处有最大值f(b);②如果函数y=f(x)在区间(a,b ]上单调递减,在区间[b,c)上单调递增,则函数y=f(x)在x=b 处有最小值f(b).这种求函数最值的方法称为单调法.

图象法求函数的最值的步骤:画出函数的图象,依据函数最值的几何意义,借助图象写出最值. 变式训练

1.求函数y=

x

x

213+-(x≥0)的最大值. 解析:可证明函数y=x

x

213+-(x≥0)是减函数,

∴函数y=x

x

213+-(x≥0)的最大值是f(0)=3.

2.求函数y=|x+1|+|x-1|的最大值和最小值.

解法一:(图象法)y =|x+1|+|x-1|=??

?

??≥<<--≤-,1,2,11,

2,1,2x x x x x 其图象如图1-3-1-16所示.

图1-3-1-16

由图象得,函数的最小值是2,无最大值. 解法二:(数形结合)函数的解析式y=|x+1|+|x-1|的几何意义是:y 是数轴上任意一点P 到±1的对应点A 、B 的距离的和,即y=|PA|+|PB|,如图1-3-1-17所示,

图1-3-1-17

观察数轴,可得|PA|+|PB|≥|AB|=2,即函数有最小值2,无最大值. 3.2007天利高考第一次全国大联考(江苏卷),11设0

x 1+x

-11

的最小值是. 分析:y=

)1(1x x -,当0

1

,

∴y≥4.

答案:4

例2将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?

活动:让学生思考利润的意义,以及利润和售价之间的函数关系.设出一般情况,转化为求二次函数的最值.解决此类应用题,通常是建立函数模型,这是解题的关键. 解:设每个售价为x 元时,获得利润为y 元,

则每个涨(x-50)元,从而销售量减少10(x-50)个,共售出500-10(x-50)=1000-10x(个). ∴y=(x-40)(1000-10x)=-10(x-70)2+9 000(50≤x <100). ∴当x=70时,y max =9000,

即为了赚取最大利润,售价应定为70元.

点评:本题主要考查二次函数的最值问题,以及应用二次函数解决实际问题的能力.解应用题步骤是:①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.

注意:要坚持定义域优先的原则;求二次函数的最值要借助于图象即数形结合. 变式训练

1.已知某商品的价格每上涨x%,销售的数量就减少mx%,其中m 为正常数.当m=2

1

时,该商品的价格上涨多少,就能使销售的总金额最大?

解:设商品现在定价a 元,卖出的数量为b 个,当价格上涨x%时,销售总额为y 元. 由题意得y=a(1+x%)·b(1-mx%),

即y=

10000ab

[-mx 2+100(1-m)x+10 000].

当m=21时,y=20000

ab [-(x-50)2+22 500],

则当x=50时,y max =

8

9ab. 即该商品的价格上涨50%时,销售总金额最大.

2.2007天利第一次全国大联考江苏卷,18某军工企业生产一种精密电子仪器的固定成本为20 000元,每生

产一台仪器需增加投入100元,已知总收益满足函数:R(x)=?????>≤≤-,400,

80000,

4000,2

14002x x x x 其中x 是仪器的月产量.

(1)将利润表示为月产量的函数.

(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).

分析:本题主要考查二次函数及其最值,以及应用二次函数解决实际问题的能力.(1)利润=总收益-总成本;(2)转化为求函数的最值,由于此函数是分段函数,则要求出各段上的最大值,再从中找出函数的最大值. 解:(1)设月产量为x 台,则总成本为20 000+100x ,

从而f(x)=?????>-≤≤-+-.400,

10060000,4000,20000300212x x x x x

(2)当0≤x≤400时,f(x)=2

1

-(x-300)2+25000;

当x=300时,有最大值25000;

当x>400时,f(x)=60000-100x 是减函数; 又f(x)<60000-100×400<25000,

所以,当x=300时,有最大值25000,

即当月产量为300台时,公司所获利润最大,最大利润是25000元. 知能训练

课本P 32练习5. [补充练习]

2007上海市闵行五校联合调研,20某厂2007年拟举行促销活动,经调查测算,该厂产品的年销售量(即该厂的年产量)x 万件与去年促销费m (万元)(m≥0)满足x=31

2

+-

m .已知2007年生产的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将2007年该产品的利润y 万元表示为年促销费m (万元)的函数; (2)求2007年该产品利润的最大值,此时促销费为多少万元? 分析:(1)年利润=销售价格×年销售量-固定投入-促销费-再投入,销售价格=1.5×每件产品平均成本;(2)利用单调法求函数的最大值.

解:(1)每件产品的成本为x

x

168+元,故2007年的利润 y=1.5×x x 168+×x-(8+16x+m)=4+8x-m=4+8(312+-m )-m=281

16+-m -m (万元)(m≥0).

(2)可以证明当0≤m≤3时,函数y=28116+-m -m 是增函数,当m>3时,函数y=281

16

+-m -m 是减函数,

所以当m=3时,函数y=281

16

+-m -m 取最大值21(万元).

拓展提升

问题:求函数y=

1

1

2

++x x 的最大值. 探究:(方法一)利用计算机软件画出函数的图象,如图1-3-1-18所示,

图1-3-1-18

故图象最高点是(21-,3

4). 则函数y=

1

12++x x 的最大值是34

.

(方法二)函数的定义域是R ,

可以证明当x<21-

时,函数y=1

1

2++x x 是增函数; 当x≥21-时,函数y=112++x x 是减函数.

则当x=21-时,函数y=1

12++x x 取最大值34

,

即函数y=1

12++x x 的最大值是34

.

(方法三)函数的定义域是R , 由y=

1

1

2

++x x ,得yx 2+yx+y-1=0. ∵x ∈R ,∴关于x 的方程yx 2+yx+y-1=0必有实数根,

当y=0时,关于x 的方程yx 2+yx+y-1=0无实数根,即y=0不属于函数的值域. 当y≠0时,则关于x 的方程yx 2+yx+y-1=0是一元二次方程, 则有Δ=(-y)2-4×y(y-1)≥0.∴0

4. ∴函数y=

4

32+x x 的最大值是34

.

点评:方法三称为判别式法,形如函数y=f

ex dx c

bx ax ++++22(d≠0),当函数的定义域是R (此时e 2-4df<0)时,

常用判别式法求最值,其步骤是①把y 看成常数,将函数解析式整理为关于x 的方程的形式mx 2+nx+k=0;②分类讨论m=0是否符合题意;③当m≠0时,关于x 的方程mx 2+nx+k=0中有x ∈R ,则此一元二次方程

必有实数根,得n 2-4mk≥0,即关于y 的不等式,解不等式组???≠≥-.

0,

042m mk n

m≠0.此不等式组的解集与②中y 的值取并集得函数的值域,从而得函数的最大值和最小值. 课堂小结

本节课学习了:(1)函数的最值;(2)求函数最值的方法:①图象法,②单调法,③判别式法;(3)求函数最值时,要注意函数的定义域. 作业

课本P 39习题1.3A 组5、6.

设计感想

为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:

(1)在探索概念阶段,让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对函数最值定义的三次认识,使得学生对概念的认识不断深入.

(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用图象和单调法求函数最值的方法和步骤. 备课资料

基本初等函数的最值

1.正比例函数:y=kx(k≠0)在定义域R 上不存在最值.在闭区间[a,b ]上存在最值,当k>0时,函数y=kx 的最大值为f(b)=kb ,最小值为f(a)=ka ;当k<0时,函数y=kx 的最大值为f(a)=ka ,最小值为f(b)=kb.

2.反比例函数:y=

x k

(k≠0)在定义域(-∞,0)∪(0,+∞)上不存在最值.在闭区间[a,b ](ab>0)上存在最值,当k>0时,函数y=x k 的最大值为f(a)=a k ,最小值为f(b)=b k ;当k<0时,函数y=x k 的最大值为f(b)=b k

,最小

值为f(a)=a

k

.

3.一次函数:y=kx+b(k≠0)在定义域R 上不存在最值.在闭区间[m,n ]上存在最值,当k>0时,函数y=kx+b 的最大值为f(n)=kn+b ,最小值为f(m)=km+b ;当k<0时,函数y=kx+b 的最大值为f(m)=km+b ,最小值为f(n)=kn+b.

4.二次函数:y=ax 2+bx+c(a≠0): 当a>0时,函数

y=ax 2+bx+c

在定义域R 上有最小值f(a

b

2-)=a ac b 442+-,无最大值;

当a<0时,函数y=ax 2+bx+c 在定义域R 上有最大值f(a

b

2-)=a ac b 442+-,无最小值.

二次函数在闭区间上的最值问题是高考考查的重点和热点内容之一.二次函数f(x)=ax 2+bx+c(a >0)在闭区间

[p ,q ]上的最值可能出现以下三种情况:

(1)若a b

2-

<p ,则f(x)在区间[p ,q ]上是增函数,则f(x)min =f(p),f(x)max =f(q). (2)若p≤a b 2-≤q ,则f(x)min =f(a b

2-),此时f(x)的最大值视对称轴与区间端点的远近而定:

①当p≤a b 2-<2q

p +时,则f(x)max =f(q);

②当2q p +=a b 2-时,则f(x)max =f(p)=f(q);

③当2q p +<a b 2-<q 时,则f(x)max =f(p).

(3)若a

b

2-≥q ,则f(x)在区间[p ,q ]上是减函数,则f(x)min =f(q),f(x)max =f(p).

由此可见,当a

b

2-∈[p,q ]时,二次函数f(x)=ax 2+bx+c(a >0)在闭区间[p ,q ]上的最大值是f(p)和f(q)中的

最大值,最小值是f(a b 2-);当a

b

2-?[p,q ]时,二次函数f(x)=ax 2+bx+c(a >0)在闭区间[p ,q ]上的最大

值是f(p)和f(q)中的最大值,最小值是f(p)和f(q)中的最小值.

高中数学函数的单调性与最值练习题

函数的单调性与最值 1.下列函数中,在区间(-1,1)为减函数的是( ) A .x y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( ) A .)2,(--∞ B .)1,(-∞ C .),1(+∞ D .),4(+∞ 3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 4函数x x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞ 5设函数)1()(,0,10,00,1)(2-=?? ???<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( ) A .]0,(-∞ B .)1,0[ C .),1[+∞ D .]0,1[- 6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[-- B .]4,6[-- C .]22,3[-- D .]3,4[-- 7.函数],(,1 2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[- 8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数 9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是 10.已知函数f (x)的值域为]9 4,83[,则函数)(21)()(x f x f x g -+=的值域为 1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( ) A .]1,0( B .]2,1[ C .+∞,1[) D .+∞,2[)

高中数学:单调性 函数的最大值、最小值 (5)

第2课时 函数的最大值、最小值 知识点 函数的最大值与最小值 最大(小)值必须是一个函数值,是值域中的一个元素,如函数y =x 2(x ∈R )的最大值是0,有f(0)=0. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( ) 答案:(1)× (2)× 2.函数f (x )=1 x 在[1,+∞)上( ) A .有最大值无最小值 B .有最小值无最大值 C .有最大值也有最小值 D .无最大值也无最小值 解析:函数f (x )=1 x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )为减函数,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.故选A. 答案:A 3.函数f (x )=-2x +1(x ∈[-2,2])的最小、最大值分别为( ) A .3,5 B .-3,5 C .1,5 D .-5,3 解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.

答案:B 4.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是() A.f(-2),0 B.0,2 C.f(-2),2 D.f(2),2 解析:由图象知点(1,2)是最高点,故y max=2.点(-2,f(-2))是最低点,故y min=f(-2). 答案:C 类型一图象法求函数的最值 例1如图所示为函数y=f(x),x∈[-4,7]的图象,指出它的最大值、最小值及单调区间. 【解析】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是(-1.5,-2), 所以函数y=f(x)当x=3时取得最大值,最大值是3. 当x=-1.5时取得最小值,最小值是-2. 函数的单调递增区间为[-1.5,3),[5,6), 单调递减区间为[-4,-1.5),[3,5),[6,7]. 观察函数图象,最高点坐标(3,3),最低点(-1.5,-2). 方法归纳 图象法求最值的一般步骤

总复习教案:函数的单调性与最值(学生版)

第三节 函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说函 数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2

3.(教材习题改编)函数f (x )=1 1-x (1-x )的最大值是( ) A.45 B.54 C.34 D.43 4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 5.已知函数f (x )为R 上的减函数,若m

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

高中一年级函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上,f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

《单调性与最大(小)值》教案 (2)

《单调性与最大(小)值》教案 教学目标 1、理解增函数、减函数、单调区间、单调性等概念. 2、掌握增(减)函数的证明和判别. 3、学会运用函数图像进行理解和研究函数的性质. 教学重难点 重点:判断函数单调性,找出单调区间,熟练求函数的最大(小)值. 难点:理解函数的最大(小)值,能利用单调性求函数的最大(小)值. 教学过程 在教法学法方面,采用启发式、探讨式的教学方法,引导学生自主探究,合作交流。通过学生身边熟悉的事物,教师创造疑问,学生想办法解决疑问,通过教师的启发点拨,学生以自己的努力找到了解决问题的方法。 一、情景导入 问题: 1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: (1)随x 的增大,y 的值有什么变化? (2)能否看出函数的最大、最小值? 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y =f(x)的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高中数学单调性与最大(小)值教案(第一课时)新课标 人教版 必修1(A)

单调性与最大(小)值(第一课时) 教学目标:1.使学生理解增函数、减函数的概念; 2.使学生掌握判断某些函数增减性的方法; 3.培养学生利用数学概念进行判断推理的能力; 4.培养学生数形结合、辩证思维的能力; 5.养成细心观察、认真分析、严谨论证的良好思维习惯。 教学重点:函数单调性的概念 教学难点:函数单调性的判断和证明 教学方法:讲授法 教学过程: (I)复习回顾 1.函数有哪几个要素? 2.函数的定义域怎样确定?怎样表示? 3.函数的表示方法常见的有哪几种?各有什么优点? 4.区间的表示方法. 前面我们学习了函数的概念、表示方法以及区间的概念,现在我们来研究一下函数的性质(导入课题,板书课题)。 (II)讲授新课 1.引例:观察y=x2的图象,回答下列问题(投影1) 问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么? ?随着x的增加,y值在增加。 问题2:怎样用数学语言表示呢? ?设x1、x2∈[0,+∞],得y1=f(x1), y2=f(x2).当x1f(x2).那么就是f(x)在这个区间上是减函数(decreasing function)。 如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是 上升的,减函数的图象是下降的。 注意:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x1,x2的任意性; (3)函数的单调性是对某个区间而言的,它是一个局部概念。 (III)例题分析 例1.下图是定义在闭区间[]5,5-上的函数y=f(x)的图象,根据图象说出函数的单调区间,以及在每一个区间上的单调性(课本P34例1)。

示范教案(单调性与最大(小)值第课时)

示范教案(1.3.1 单调性与最大(小)值 第2课时) 导入新课 思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为x 10000m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短? 学生先思考或讨论,教师指出此题意在求函数y=2(x+ x 10000),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题. 思路 2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2]; ③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题 ①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征. 图1-3-1-11 ②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的? ④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ? 图1-3-1-12 ⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义? ⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征? ⑦函数最大值的几何意义是什么?

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

函数的单调性与曲线的凹凸性

§3.4 函数的单调性与曲线的凹凸性 一、函数单调性的判别法 定理1 设 )(x f 在区间I 上可导,则)(x f 在I 上递增(减)的充要条件是 )()('00≤≥x f . 证 若 f 为增函数,则对每一I x ∈0,当0x x ≠时,有 ()() 00 0≥--x x x f x f 。 令0x x →,即得 00≥)('x f 。 反之,若 )(x f 在区间I 上恒有0≥)('x f ,则对任意I x x ∈21,(设21x x <) ,应用拉格朗日定理,存在,使得 ()()()01212≥-=-x x f x f x f ξ')(。 由此证得 f 在I 上为增函数。 定理2 若函数 f 在),(b a 内可导,则f 在),(b a 内严格递增(递减)的充要条件是: (1)),(b a x ∈?有)()('00≤≥x f ; (2) 在),(b a 内的任何子区间上0≠)('x f . 推论 设函数在区间I 上可微,若))('()('00<>x f x f , 则f 在I 上(严格)递增(递 减). 注1 若函数 f 在),(b a 内(严格)递增(递减),且在点a 右连续,则f 在),[b a 上亦为(严 格)递增(递减), 对右端点b 可类似讨论. 注2 如果函数 )(x f 在定义区间上连续,除去有限个导数不存在的点外,导数存在且 连续,那么只要用方程0=)('x f 的根及)('x f 不存在的点来划分函数)(x f 的定义区间就 能保证 )('x f 在各个部分区间保持固定符号,因而函数)(x f 在每个部分区间上单调。 注意:如果函数 )(x f 在区间],[b a 上连续,在),(b a 内除个别点处一阶导数为零或 不存在外,在其余点上都有 0>)('x f (或0<)('x f ),那么由于连续性,)(x f 在区间 ],[b a 上仍然是单调增加(或单调减少)的。

1.3.1单调性与最大最小值练习题及答案解析

? ?同步测控? ? 1. 函数 f(x)= 2x 2- mx + 3,当 x € [ — 2,+^ )时,f(x)为增函数,当 x € ( — ^,― 2]时, 函数f(x)为减函数,贝U m 等于( ) A . — 4 B .— 8 C . 8 D .无法确定 解析:选B ?二次函数在对称轴的两侧的单调性相反. 由题意得函数的对称轴为 x =— 2, 则m =— 2,所以 m = — 8. 2. 函数f(x)在R 上是增函数,若 a + b w 0,则有( ) A . f(a) + f(b)<— f(a)— f(b) B. f(a)+ f(b)>— f(a)— f(b) C. f(a) + f(b) w f( — a) + f( — b) D. f(a) + f(b)>f(— a)+ f( — b) 解析:选C.应用增函数的性质判断. a + b w 0,.°. a w — b , b w — a. 又???函数f(x)在 R 上是增函数, ??? f(a)w f(— b), f(b)w f(— a). f(a) + f(b) w f(— a) + f (— b). m , 0)上为减函数的是( ) A .① B .④ C .①④ D .①②④ 解 析: 选A.①丫=亠=红灶=1 +丄. x — 1 x — 1 x — 1 其减区间为(一a, 1), (1 , + m ). 11 1 ② y = x 2 + x = (x + 2)— 4,减区间为(一a,— 2). ③ y =— (x + 1)2,其减区间为(一1 ,+a ), ④ 与①相比,可知为增函数. 4.若函数f(x) = 4x 2— kx — 8在[5,8]上是单调函数,则 k 的取值范围是 ________ . 解析:对称轴x = k ,则k w 5,或8,得k w 40,或k >64,即对称轴不能处于区间内. 8 8 8 答案:( — a, 40] U [64 ,+a ) ?少谍时训缘*? 1 .函数y =— x 2的单调减区间是( ) A . [0,+a ) B . (— a, 0] C . ( —a, 0) D . (— a,+a ) 解析:选A.根据y = — x 2的图象可得. 2.若函数f(x)定义在[—1,3]上,且满足f(0)

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

《单调性与最大(小)值》教案

《单调性与最大(小)值》教案 1 1.观察下列各个函数的图象,并说说它 过的函数入手,教师归纳:从上 引出函数单调面的观察分析可 性的概念。这就以看出:不同的 是我们今天所函数,其图象的 要研究的函数变化趋势不同, 的一个重要性同一函数在不同 质——函数的区间上变化趋势 单调性(引出课也不同,函数图

②在区间____________ 上,随着x 的 ②在区间____________ 上,随着x 的增 大,f(x)的值随着________ . (3)f (x) = x2 ①在区间____________ 上, 义,会求简单函数的值域,那么函数有哪些性质呢?这一节课我们研究这一问题.

y 轴右侧是上升的,如何 x ,x ,当x

正常数)告诉我们,对于一定量的气体,当其 体积V 减少时,压强P 将增大.试用函数的单 调性证明之. 分析:按题意,只要证明函数P= 在区间(0,+∞)上是减函数即可. 1 + 在(,∞) D 上的单调性的一般步骤: ②作差f(x ) f(x ) -; ③变形(通常是因式分解和配方); ④定号(即判断差f(x ) f(x ) ②它在定义域I 上的单调性怎样?证明你

1.讨论一次函数y= m x+ b(x R) 的单调性. 1.函数的单调性一般是先根据图象判断, 再利用定义证明.求函数的单调区间时必须要 注意函数的定义域,单调性的证明一般分五 步:取值→作差→变形→定号→下结论

第四节函数单调性凹凸性与极值

第四节 函数单调性、凹凸性与极值 我们已经会用初等数学的方法研究一些函数的单调性和某些简单函数的性质,但这些方法使用范围狭小,并且有些需要借助某些特殊的技巧,因而不具有一般性. 本节将以导数为工具,介绍判断函数单调性和凹凸性的简便且具有一般性的方法. 分布图示 ★ 单调性的判别法 ★ 例1 ★ 单调区间的求法 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 曲线凹凸的概念 ★ 例9 ★ 例 10 ★ 曲线的拐点及其求法 ★ 例11 ★ 例12 ★ 例13 ★ 函数极值的定义 ★函数极值的求法 ★ 例14 ★ 例15 ★ 例16 ★第二充分条件下 ★ 例17 ★ 例18 ★ 例19 ★ 内容小结 ★ 课堂练习 ★ 习题3-4 ★ 返回 内容要点 一、函数的单调性:设函数)(x f y =在[a , b ]上连续, 在(a , b )内可导. (1) 若在(a , b )内0)(>'x f , 则函数)(x f y =在[a , b ]上单调增加; (2) 若在(a , b )内0)(<'x f , 则函数)(x f y =在[a , b ]上单调减少. 二、曲线的凹凸性:设)(x f 在[a , b ]上连续, 在(a , b )内具有一阶和二阶导数, 则 (1) 若在(a , b )内,,0)(>''x f 则)(x f 在[a , b ]上的图形是凹的; (2) 若在(a , b )内,,0)(<''x f 则)(x f 在[a , b ]上的图形是凸的. 三、连续曲线上凹弧与凸弧的分界点称为曲线的拐点 判定曲线的凹凸性与求曲线的拐点的一般步骤为: (1) 求函数的二阶导数)(x f ''; (2) 令0)(=''x f ,解出全部实根,并求出所有使二阶导数不存在的点; (3) 对步骤(2)中求出的每一个点,检查其邻近左、右两侧)(x f ''的符号,确定曲线的凹凸区间和拐点. 四、函数的极值 极值的概念; 极值的必要条件; 第一充分条件与第二充分条件; 求函数的极值点和极值的步骤: (1) 确定函数)(x f 的定义域,并求其导数)(x f '; (2) 解方程0)(='x f 求出)(x f 的全部驻点与不可导点; (3)讨论)(x f '在驻点和不可导点左、右两侧邻近符号变化的情况,确定函数的极值点; (4) 求出各极值点的函数值,就得到函数)(x f 的全部极值.

《单调性与最大小值》教案1新人教A版

《单调性与最大(小)值》教案1(新人 教A版必修1) 课题:§1.3.1函数的最大(小)值 教学目的:(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一、引入课题 画出下列函数的图象,并根据图象解答下列问题: ○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性;○2 指出图象的最高点或最低点,并说明它能体现函数的什 么特征? (1)(2) (3)(4) 二、新课教学 (一)函数最大(小)值定义 1.最大值 一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M

那么,称M是函数y=f(x)的最大值(Maximum Value). 思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动) 注意: ○1 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; ○2 函数最大(小)应该是所有函数值中最大(小)的,即 对于任意的x∈I,都有f(x)≤M(f(x)≥M). 2.利用函数单调性的判断函数的最大(小)值的方法 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); (二)典型例题 例1.(教材P36例3)利用二次函数的性质确定函数的最大(小)值. 解:(略) 说明:对于具有实际背景的问题,首先要仔细审清题意,适 当设出变量,建立适当的函数模型,然后利用二次函数的性

函数单调性与最大最小值教案

函数单调性与最大最小值教案Function monotonicity and max min teaching plan

函数单调性与最大最小值教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 我是本科数学**号选手,今天我要进行说课的课题是高 中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。 一、教材分析 1、教材的地位和作用 (1)本节课主要对函数单调性的学习; (2)它是在学习函数概念的基础上进行学习的,同时又 为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题 (根据具体的课题改变就行了,如果不是热点难点问题 就删掉)

2、教材重、难点 重点:函数单调性的定义 难点:函数单调性的证明 重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有) 二、教学目标 知识目标: (1)函数单调性的定义 (2)函数单调性的证明 能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想 情感目标:培养学生勇于探索的精神和善于合作的意识 (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化) 三、教法学法分析 1、教法分析

相关文档
最新文档