厌氧微生物培养技术的目的和原理

合集下载

厌氧的基本原理及影响其效果的因素

厌氧的基本原理及影响其效果的因素

厌氧生化法的基本原理及影响其效果的因素一、厌氧生化法的基本原理废水厌氧生物处理是在无分子氧条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程,也称为厌氧消化。

厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的联合作用完成。

因而粗略地将厌氧消化过程分为三个连续的阶段,即水解酸化阶段、产氢产乙酸阶段和产甲烷阶段,如下图所示:(1)水解酸化(2)产氢产乙酸(3)产甲烷第一阶段为水解酸化阶段。

复杂的大分子、不溶性有机物先在细胞外酶的作用下水解为小分子、溶解性有机物,然后渗入细胞体内,分解产生挥发性有机酸、醇类、醛类等。

这个阶段主要产生较高级脂肪酸。

含氮有机物分解产生的NH除了提供合成细胞物质的氮源外,在水中部分电离,形成NHHCO,具有缓冲消化液PH值的作用。

第二阶段为产氢产乙酸阶段。

在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2 ,在降解奇数碳素有机酸时还形成CO2 。

第三阶段为产甲烷阶段。

产甲烷细菌将乙酸、乙酸盐、CO2 和H2 等转化成甲烷。

虽然厌氧消化过程可分为以上三个阶段,但是在厌氧反应器中,三个阶段是同时进行的,并保持某种程度的动态平衡。

这种动态平衡一旦被PH值、温度、有机负荷等外加因素所破坏,贝y首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,甚至会导致整个厌氧消化过程停滞。

二、影响厌氧处理效果的因素水解产酸细菌和产氢产乙酸细菌,可统称为不产甲烷菌,它包括厌氧细菌和兼性细菌,尤以兼性细菌居多。

与产甲烷菌相比,不产甲烷菌对PH值、温度、厌氧条件等外界环境因素的变化具有较强的适应性,且其增殖速度快。

而产甲烷菌是一群非常特殊的、严格厌氧的细菌,它们对环境条件的要求比不产甲烷菌更严格,而且其繁殖的世代期更长。

因此,产甲烷细菌是决定厌氧消化效率和成败的主要微生物,产甲烷阶段是厌氧过程速率的限制步骤。

厌氧的基本原理及影响其效果的因素

厌氧的基本原理及影响其效果的因素

厌氧生化法的基本原理及影响其效果的因素一、厌氧生化法的基本原理废水厌氧生物处理是在无分子氧条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程,也称为厌氧消化。

厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的联合作用完成。

因而粗略地将厌氧消化过程分为三个连续的阶段,即水解酸化阶段、产氢产乙酸阶段和产甲烷阶段,如下图所示:24% 28%CH4 52% 72%乙酸第一阶段为水解酸化阶段。

复杂的大分子、不溶性有机物先在细胞外酶的作用下水解为小分子、溶解性有机物,然后渗入细胞体内,分解产生挥发性有机酸、醇类、醛类等。

这个阶段主要产生较高级脂肪酸。

含氮有机物分解产生的NH3除了提供合成细胞物质的氮源外,在水中部分电离,形成NH4HCO3,具有缓冲消化液PH值的作用。

第二阶段为产氢产乙酸阶段。

在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2,在降解奇数碳素有机酸时还形成CO2。

第三阶段为产甲烷阶段。

产甲烷细菌将乙酸、乙酸盐、CO2和H2等转化成甲烷。

虽然厌氧消化过程可分为以上三个阶段,但是在厌氧反应器中,三个阶段是同时进行的,并保持某种程度的动态平衡。

这种动态平衡一旦被PH值、温度、有机负荷等外加因素所破坏,则首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,甚至会导致整个厌氧消化过程停滞。

二、影响厌氧处理效果的因素水解产酸细菌和产氢产乙酸细菌,可统称为不产甲烷菌,它包括厌氧细菌和兼性细菌,尤以兼性细菌居多。

与产甲烷菌相比,不产甲烷菌对PH值、温度、厌氧条件等外界环境因素的变化具有较强的适应性,且其增殖速度快。

而产甲烷菌是一群非常特殊的、严格厌氧的细菌,它们对环境条件的要求比不产甲烷菌更严格,而且其繁殖的世代期更长。

因此,产甲烷细菌是决定厌氧消化效率和成败的主要微生物,产甲烷阶段是厌氧过程速率的限制步骤。

简述厌氧发酵的基本原理

简述厌氧发酵的基本原理

简述厌氧发酵的基本原理
厌氧发酵是一种在缺氧条件下进行的生化过程,通过微生物的代谢产生能量。

其基本原理是在缺氧的环境中,微生物利用有机物质作为底物,运用不同的代谢途径将底物分解,产生代谢产物和能量。

在厌氧发酵过程中,微生物主要利用有机物质进行糖酵解来产生能量。

首先,底物经过糖酵解途径分解成为各种代谢产物,如乳酸、乙醇、丙酸、丁酸等。

这个过程常见于乳酸菌和酵母菌等微生物。

此外,还有一些厌氧微生物可以利用底物进行发酵产生气体,如甲烷。

这个过程称为甲烷发酵,常见于甲烷菌等微生物。

甲烷发酵在废水处理、沉积物降解等领域应用广泛。

值得注意的是,厌氧发酵与好氧呼吸相比,效率较低且产生的能量较少。

因此,一些厌氧微生物需要通过产生大量的代谢产物来维持其代谢能量的需求。

总的来说,厌氧发酵是一种在缺氧条件下利用有机物质进行代谢产能的过程。

微生物通过糖酵解或甲烷发酵等不同途径分解底物,产生代谢产物和能量。

该过程应用广泛,但效率相对较低。

微生物用厌氧培养罐的原理

微生物用厌氧培养罐的原理

微生物用厌氧培养罐的原理微生物是人类社会生产、生活不可或缺的重要组成部分,同时也是自然界中极其丰富多彩的物种之一。

微生物能够在不同的环境和条件下生存和繁殖,例如,有些微生物可以在空气和光线的存在下生长,而有些则需要完全没有氧气存在的环境下生活,这种环境我们称为厌氧环境。

在微生物学研究中,厌氧培养罐是一种非常常见且重要的实验设备,本文将详细介绍厌氧培养罐的原理和用途。

一、厌氧生物学厌氧生物学是研究无氧微生物的生理、代谢、生态学以及其与自然界的相互作用等方面的学科。

厌氧微生物由于适应不同的氧气浓度,分为好氧菌和厌氧菌。

好氧菌的生长需要氧气存在,而厌氧菌则需要在完全没有氧气的条件下生长。

在生长环境和代谢途径上,厌氧菌与好氧菌有很大区别,这也使它们在医学、环境和食品行业等方面的应用有特殊的意义。

厌氧培养罐是一种人工模拟厌氧环境,用于培养、富集厌氧微生物的实验设备。

它是由一个密封的容器、置于其中的培养物以及排出氧气、提供匀密合适气压等功能的装置组成,其主要设计原理是厌氧罐中有一个密封空气环境,可以实现完全没有氧气的环境。

而这个密封空气环境的构成,主要由以下几部分组成:1.罐体:将培养物放入罐中。

2.密封组件:可将罐体完全密封。

3.发生装置:可通过填充某种化学物质,如氧化铁或铜粉等生成均匀厌氧气气氛。

4.进气装置:常见的是橡胶膜,可通过这种装置加入厌氧气体输送。

5.排气装置:通常是一个电动泵,延迟排出空气中存在的原有氧气。

厌氧培养罐的主要作用是提供一个完全没有氧气的环境,让厌氧微生物可以在其中生长和繁殖。

在医疗和生化工程领域,厌氧培养罐可以被用来检测和分离厌氧细菌,研究其生理适应机制和基因调控机理。

同时,还可以应用于食品加工和纺织工业等环节,确保厌氧菌和厌氧作用能够正常进行。

四、常见问题1.如何进行厌氧培养?厌氧培养需要使用厌氧耐受性强的荧光灯。

一般情况下,罐体用氧化铁粉末夹心一层,填充满后,用亚油膜(或打孔橡胶塞)孔接口通气,充分排空罐体内空气,再通过泵抽空。

厌氧菌的培养方法

厌氧菌的培养方法

厌氧菌的培养方法厌氧菌是一类不能在氧气存在下生长和繁殖的微生物。

这些微生物在许多领域都具有重要的应用价值,包括环境保护、生物能源生产等。

因此,为了研究和应用这些厌氧菌,科学家们发展了多种厌氧菌的培养方法。

本文将详细介绍常用的三种厌氧菌的培养方法。

一、利用情境气氛培养厌氧菌情境气氛培养是培养厌氧菌的一种常用方法,其原理是通过调节培养基的气氛来控制氧气浓度。

在培养厌氧菌时,一般会采用以下方法之一来制备情境气氛。

1.预氧化法:将培养容器密封,置于28-37°C的恒温灭菌箱中。

然后通过注入一定比例的高纯度二氧化碳-氧气混合气体,使容器内的气氛变为厌氧情境。

这种方法适用于厌氧菌培养基中氧气浓度较低的情况。

2.双液低压法:将培养基分成两个相隔的容器,分别加入不同的培养液。

然后将两个容器封口并贴膜,用胶带封好。

经过一段时间后,在密封的容器内会形成低压情境。

这种方法适用于厌氧菌培养基中氧气浓度较高的情况。

通过以上两种情境气氛培养方法,可以模拟出适合厌氧菌生长的条件。

二、利用厌氧培养器培养厌氧菌厌氧培养器是一种专门用于培养厌氧菌的装置,其原理是通过封闭式容器和气氛控制系统,实现在厌氧情境下的培养。

常用的厌氧培养器有以下两种类型:1.商用厌氧培养器:通常有专门的培养室和压力控制系统,可以产生适合厌氧菌生长的气氛。

在这种培养器中,可以根据菌株的特性进行相应的操作和调节。

2.自制厌氧培养器:由于商用的厌氧培养器设备较为昂贵,对于一些实验室来说并不实际。

因此,一些实验室会开发自己的厌氧培养器。

自制培养器的原理和商用培养器类似,只是在设计和制作上有所差异。

利用厌氧培养器进行培养时,需要注意以下几点:1.气氛控制:厌氧培养器应能够调节培养基的气氛,包括氮气、二氧化碳等气体的供应和排除。

2.温度调节:厌氧培养器应能够保持恒定的培养温度,一般为28-37°C。

3.培养基搅拌:适当的培养基搅拌可以增加氧气的溶解度,并促进菌体的生长和分散。

厌氧处理技术介绍

厌氧处理技术介绍
厌氧处理技术的优缺点
厌氧处理技术的优点
能源回收
厌氧处理技术能够回收沼气,可用于发电、 供热或燃气等,实现能源的循环利用。
高效有机物去除
厌氧处理技术能够高效去除废水中的有机物 ,降低后续处理的负担。
减少温室气体排放
厌氧处理技术能够减少废水处理过程中的甲 烷排放,有助于减缓全球气候变化。
剩余污泥少
厌氧处理技术的剩余污泥产量相对较少,降 低了污泥处理成本。
厌氧处理技术是一种生物处理技术, 利用厌氧微生物的代谢作用,将废水 中的有机物转化为甲烷和二氧化碳等 气体。
厌氧处理技术的原理
01
厌氧微生物在无氧或低氧环境中,通过发酵作用将有机物转化为甲烷和二氧化 碳等气体。
02
厌氧处理过程中,有机物通过水解酸化、产氢产乙酸和甲烷化三个阶段被分解 。
03
水解酸化阶段:有机物被分解为简单的有机酸和醇类;产氢产乙酸阶段:有机 酸和醇类进一步转化为乙酸和氢气;甲烷化阶段:乙酸和氢气被转化为甲烷。
厌氧流化床反应器
厌氧流化床反应器是一种高效的厌氧处理技术,通过在反 应器中加入一定比例的固体颗粒作为微生物的载体,使废 水在流动过程中与微生物充分接触。
厌氧流化床反应器具有较高的有机负荷率和较短的停留时 间,能够适应较大的水质变化,同时能够实现固液分离。
厌氧流化床反应器的缺点是需要消耗一定的能源和添加固 体颗粒。
3
工业废水处理中,厌氧处理技术可以与其他工艺 结合使用,如好氧处理、膜分离等,提高废水处 理的效率和效果。
农业废弃物处理的应用
农业废弃物主要包括畜禽粪便、农作物秸秆等 ,如果得不到妥善处理,会对环境造成污染。
厌氧处理技术可以用于农业废弃物处理,通过 厌氧发酵的方式,将废弃物转化为沼气和肥料 ,实现废弃物的资源化利用。

厌氧细菌培养技术

厌氧细菌培养技术

厌氧细菌培养技术一、厌氧菌的培养方式厌氧菌的培养过程中,最重要的就是为其提供厌氧生长环境,厌氧环境的提供可以从以下两方面着手。

一方面可以提供厌氧装置如厌氧手套箱,厌氧产气罐或者厌氧产气袋。

另一方面可以提供含有还原剂的特殊培养基,如含少量琼脂,L-半胱氨酸,硫乙醇酸钠,巯基乙醇等的液体培养基。

要注意的是,如果没有厌氧手套箱,我们在对厌氧菌活化或者是转接操作的时候,动作要快,防止厌氧菌在空气中暴露的时间过长。

二、我们正常的大气环境中是有氧环境,这类厌氧菌通常生活在哪里呢我们研究这类菌有什么意义呢我们的大气环境确实是一个有氧环境。

但是,地球上还存在很多厌氧环境比如深海和淤泥中,厌氧菌在我们人体中也普遍存在。

我们研究厌氧菌,一方面是因为厌氧菌是临床上一类重要的病原菌;另一方面,哺乳动物肠道菌群中99%是厌氧菌,其中许多是促进消化吸收的有益菌,不管是从致病机理,还是开展疾病治疗来说对厌氧菌的研究意义都很重大。

三、为什么好氧菌在生长繁殖过程中必须有氧气存在,而厌氧菌在生长过程中氧气却对对其产生毒害作用呢微生物虽然可以利用氧,通过有氧呼吸来产生更多的能量,满足机体的需要,但是氧对一切生物都会产生有毒害的代谢产物,比如会产生超氧阴离子,过氧化氢和羟自由基。

超氧阴离子和羟自由基是强氧化剂,能氧化细胞内的大分子物质和有机化合物,对细胞造成损伤,过氧化氢也会损害一些细胞组分。

但是,微生物细胞可以通过产生过氧化氢酶,超氧化物歧化酶和超氧化物还原酶等等这些酶类来清除细胞内的毒性氧。

对于好氧菌来说,细胞内往往会产生超氧化物歧化酶和过氧化氢酶,所以氧气对这类微生物不会产生毒害。

那么对于厌氧菌来说,细胞内无法合成超氧化物歧化酶〔SOD〕和细胞色素氧化酶,大多数还缺乏过氧化氢酶。

所以,这类微生物无法消除氧气对它的毒害作用。

只能在无氧的环境中通过发酵或无氧呼吸产能。

厌氧微生物的养殖方法

厌氧微生物的养殖方法

厌氧微生物的养殖方法厌氧微生物是生物中的一类特殊微生物,它们在缺氧的环境下能够生存、繁殖和发挥作用。

对于厌氧微生物的研究和应用已经广泛展开,尤其在环境保护、废物处理、生物质能源开发等领域得到了广泛的应用。

下面介绍几种常见的厌氧微生物的养殖方法。

1、厌氧生物制药法厌氧生物制药法是一种利用厌氧微生物繁殖作用来制药的方法。

该方法的基本原理是利用生物反应器中贮存的厌氧微生物,在厌氧条件下分解和转化生物质产生的有机化合物,从而有效地转化为一定的药物成分。

这种方法的优越性在于其能够在较短的时间内制得高纯度、高效力的药物。

2、厌氧颗粒污泥法厌氧颗粒污泥法是一种将活性污泥在厌氧条件下进行强化处理的方法。

该方法的基本原理是,将污泥置于称作上下研磨器的污泥处理器中,在厌氧条件下进行混合转化,从而使厌氧微生物在颗粒化的状态下进行生物降解。

这种方法具有优秀的处理效率和生活污染物质的耐受性能力。

3、厌氧发酵厌氧发酵是一种将有机物转化为气体或液体燃料的方法。

该方法的基本原理是利用厌氧微生物在缺氧环境下进行有机物质的分解,产生能量和气体,将其转化为甲烷、氢气等可用的燃料。

该方法尤其适用于生物质能源的开发,可以将生物质废弃物转化为燃气等能源资源。

4、厌氧滤池法厌氧滤池法是一种通过滤池对废水进行处理的方法。

该方法的基本原理是将厌氧微生物放置于滤池中,通过厌氧微生物对废水进行分解和转化,实现对废水的净化和处理。

这种方法具有效率高、处理周期短、处理范围广等优点,可以将城市生活污水和工业废水进行有效处理,减少水污染、环境污染和废水排放量。

总之,厌氧微生物的养殖方法具有很高的应用价值和经济性能力,已经广泛应用于生物质能源开发、环境保护、废物处理、药物合成等领域。

随着技术的不断进步和应用场景的扩大,相信厌氧微生物的养殖方法将会得到更多的优化和改进,为环保、节能、可持续发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厌氧微生物培养技术的目的和原理
关键词:焦性没食子酸碳酸氢钠柠檬酸氯化锌亚甲蓝氮气标准气体标准溶液北京标准物质网
对简单,可用于那些对厌氧要求相对较低的一般厌氧菌的培养,如碱性焦性没食子酸法、厌氧罐培养法、庖肉培养基法等。

本实验将主要介绍这三种,它们都属于最基本也是最常用的厌氧微生物培养技术。

其中有些厌氧微生物要求高的培养研究,对实验仪器也有较高的要求,如主要用于严格厌氧菌分离和培养的亨盖特技术、厌氧培养箱(手套箱)法等。

厌氧培养箱已逐渐普及,本实验也作简要介绍。

1.碱性焦性没食子酸法
焦性没食子酸与碱溶液(NaOH、Na
2CO
3
或NaHCO
3
)作用后形成易被氧化的碱性
没食子盐,能通过氧化作用而形成黑、褐色的焦性没食子橙从而除掉密封容器中
的氧。

这种方法的优点是无需特殊及昂贵的设备,操作简单,适用于任何可密封的容器,可迅速建立厌氧环境,适用于前期实验性探索研究;而其缺点是在氧化过程中会产生少量的一氧化碳,对某些厌氧菌的生长有抑制作用,同时,NaOH 的存在会吸收掉密闭容器中的二氧化碳,对某些厌氧菌的生长不利。

用NaHCO
3。

代替NaOH,可部分克服二氧化碳被吸收问题,但却又会导致吸氧速率的降低。

当然,大批量厌氧培养需消耗大量实验药品,并产生大量废液,可能引起环境污染。

2.厌氧罐培养法
利用一定方法在密闭的厌氧罐中生成一定量的氢气,而经过处理的钯或铂可作为催化剂催化氢与氧化合形成水,从而除掉罐中的氧而造成厌氧环境。

由于适
量的CO
2
(2%~10%)对大多数的厌氧菌的生长有促进作用,在进行厌氧菌的分离
时可提高检Ⅲ率,所以一般在供氢的同时还向罐内供给一定的CO
2。

厌氧罐中H
2
及CO
2
的生成可采用钢瓶灌注的外源法,但更方便的是利用各种化学反应在罐中
自行生成的内源法,例如,镁与氯化锌遇水后发生反应产生氢气,碳酸氢钠加柠
檬酸水后产生CO
2:
Mg+ZnCl
2+2H
2
O→MgCl
2
+Zn(OH)
2
+H
2

C 6H
8
O
7
+3NaHCO
3
→Na
3
(C
6
H
5
O
7
)+3H
2
O+3CO
2

厌氧罐中使用的厌氧度指示剂一般都是根据亚甲蓝(methylene blue)在氧化态时呈蓝色而在还原态时呈无色的原理设计的。

目前,厌氧罐技术早已商业化,有多种品牌的厌氧罐产品(厌氧罐罐体,催化剂、气体发生袋、厌氧指示剂)可供选择。

它实际上已经同厌氧培养箱类似,但因为体积小、携带方便,使用起来十分方便。

图3—13显示了一般常用的厌氧罐的基本结构。

3.庖肉培养基法
碱性焦性没食子酸法和厌氧罐培养法都主要用于厌氧菌的斜面及平板等固体培养,而庖肉培养基法则在对厌氧菌进行液体培养时最常采用。

该方法基本原理是,将精瘦牛肉或猪肉经剁切、煮干、密闭保存处理后配成庖肉培养基,其中既含有易被氧化的不饱和脂肪酸能吸收氧,又含有谷胱甘肽(GSH)等还原性物质可形成负氧化还原电势差,再加上将培养基煮沸驱氧及用石蜡凡士林封闭液面,可用于培养厌氧菌。

这种方法是保藏厌氧菌,特别是厌氧的芽孢菌的一种简单可行的方法。

若操作适宜,比如额外添加100μg/ml。

的新霉素,严格厌氧菌都可获得生长。

4.厌氧培养箱(手套箱)法
同以上三种方法相比,厌氧培养箱(图3一14)的厌氧环境最高,非常适用于培养绝对厌氧微生物。

该方法的优点是提供一个大的厌氧培养空间,保证高度无氧环境,由于系统的高度集成,无需上述方法的复杂操作过程,无大量化学废物产生。

该方法的工作原理是注入氢气H
透过钯[钯催化剂片或钯桶(带热量)]
2
催化氢氧化合作用把腔内的氧气化成水,除去氧O
2
O 2+H
2
+钯+热→H
2
O
因此氧浓度很低。

产生的水蒸气通过系统的干燥管进行干燥。

从而达到手套箱内干燥的效果,也同时减少系统操作台内的氧气的含量。

上述化学反应中的热量和催化剂钯是系统构造中的加热器来完成的,如图3一14所示。

气阀的作用是在使用前,充进惰性气体的人口,常充进的惰性气体有氮气(85%)、氢气(10%)和二氧化碳(5%),通过真空泵的往复抽吸置换,达到了痕量氧的环境。

注意:混合气体的成分根据需要而定。

其中二氧化碳的主要功能是提供厌氧培养需要的气源,氢气用于除氧,氨气用于保持厌氧培养箱的无氧氛围。

来自:北京标准物质网--技术前沿。

相关文档
最新文档