《电磁学》教案

合集下载

《电磁学》教案

《电磁学》教案

电磁学笔记物理081 李庆波 08103118第一章 真空中的静电场1.物质结构理论 原子由带正电的原子核和绕核运动的带负电的电子组成 物体带电的过程 摩擦起电 ; 感应起电电量 带电体所带电荷的多少,用Q 或q 表示,单位:库仑(用C 表示)电子和质子各带电量 e =1.6×1910-库仑, 1库仑的电量相当于6.25×1810个电子或质子所带的电量电荷是量子化的 一个物体所带电荷的多少只能是电子电量eq =ne (n =0,±1,±2)“夸克”被认为带的电荷是e 的分数倍 2.电荷守恒定律大量实验表明:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在任何物理过程中电荷的代数和总是守恒的,这个结论叫电荷守恒定律。

它不仅在一切宏观过程中成立,而且在一切微观过程中也是成立的,它是物理学中的普适守恒定律之一。

3.库仑定律1875年英国物理学家库仑从实验上总结出两个点电荷之间相互作用力的规律,后人称之为库仑定律,它表明真空中带电量为q 1和q 2的两个点电荷之间作用力的大小与它们所带电量q 1和q 2的乘积成正比,与它们之间的距离r 的平方成反比;作用力的方向沿着F= k rq q 221式中q 1和q 2分别表示两个点电荷的电量,r 为两个点电荷之间的距离,k 是比例系数。

在真空中k =8.99×109C mN22-,为了使表达式既能表示力的大小又能表示力的方(1)通常令 k =1/4πε。

则ε。

=1/4πk=8.85⨯1012-C 2N 1-m 2-,ε。

称之为真空的介电常数(或称为电容率)这样库仑定律的数学表达式可称F =4πε1rq q 221该式称为库仑定律的有理化形式。

F =4πε1rq q 221r 。

式中r 。

表示施力电荷指向受力电荷方向的单位矢量第二节 电场强度1. 电场电荷之间的相互作用是通过一种特殊的物质来作用的,这种特殊的物质就叫电场。

大学物理电磁学教案

大学物理电磁学教案

一、教学目标1. 知识目标:(1)理解电磁学的基本概念,如电场、磁场、电磁感应等;(2)掌握电磁学的基本定律,如库仑定律、高斯定理、安培环路定理、法拉第电磁感应定律等;(3)了解电磁学的应用领域,如电磁波、电磁场等。

2. 能力目标:(1)培养学生运用电磁学知识解决实际问题的能力;(2)提高学生的科学思维和创新能力。

3. 情感目标:(1)激发学生对电磁学的兴趣,培养学生热爱科学、追求真理的精神;(2)培养学生团结协作、严谨求实的科学态度。

二、教学内容1. 静电场(1)库仑定律;(2)电场强度;(3)电场线;(4)电势;(5)电场力的功;(6)静电场中的导体和电介质。

2. 恒定磁场(1)毕奥-萨伐尔定律;(2)磁场强度;(3)磁感应强度;(4)安培环路定理;(5)磁通量;(6)磁场力的功。

3. 电磁感应(1)法拉第电磁感应定律;(2)电磁感应现象;(3)自感与互感;(4)楞次定律。

4. 电磁场(1)麦克斯韦电磁场理论;(2)电磁波的产生与传播;(3)电磁波的性质与应用。

三、教学方法1. 讲授法:讲解电磁学的基本概念、定律和理论;2. 讨论法:引导学生探讨电磁学在实际问题中的应用;3. 案例分析法:分析电磁学在实际工程中的应用案例;4. 实验法:通过实验验证电磁学的基本原理。

四、教学过程1. 导入新课:介绍电磁学的基本概念和意义,激发学生的学习兴趣。

2. 讲解静电场(1)介绍库仑定律,讲解点电荷的电场强度;(2)讲解电场线、电势、电场力的功等概念;(3)讲解静电场中的导体和电介质。

3. 讲解恒定磁场(1)介绍毕奥-萨伐尔定律,讲解电流元的磁场强度;(2)讲解磁场强度、磁感应强度、安培环路定理等概念;(3)讲解磁通量、磁场力的功等概念。

4. 讲解电磁感应(1)介绍法拉第电磁感应定律,讲解电磁感应现象;(2)讲解自感与互感、楞次定律等概念。

5. 讲解电磁场(1)介绍麦克斯韦电磁场理论,讲解电磁波的产生与传播;(2)讲解电磁波的性质与应用。

电磁学教案

电磁学教案

《电磁学》教案授课教师富笑男职称副教授学历(学位)博士研究生(博士)授课班级06应用物理1、2班计划总学时72 授课学期2007-2008(1)使用教材《电磁学》赵凯华、陈熙谋,2006年12月第二版,高等教育出版社教学要求使学生能比较全面地认识电磁学的基本现象,系统地掌握电磁学的基本概念、基本规律,具有一定的分析和解决电磁学问题的能力,并为学习后继课程打下必要的基础考核办法考试成绩占70 %平时成绩占30 %(平时成绩包括:作业、上课回答问题、小论文等)学时分配教学环节教学时数课程内容讲课习题课绪论第一章静电场恒定电流场16 2 第二章恒磁场12 2 第三章电磁感应 5 1 第四章电磁介质14 2 第五章电路7 1 第六章麦克斯韦电磁理论电磁波电磁单位制8总复习 2参考资料1.《电磁学》梁灿彬等2004年5月高等教育出版社2.《电磁学》《伯克利物理学教程》第二卷,(美)E.M.珀塞尔著,南开大学物理系译,1979年6月,科学出版社3.《电磁学》,贾起民郑永令等2001年1月高等教育出版社4.《电磁学》,胡友秋,程福臻,刘之景编,1997年3月,高等教育出版社,教学后记1.电磁学教学要适应二十一世纪现代化的需要:根据现代化的需要,把那些学习现代科学技术所需要的电磁学基础知识和基本技能教给学生,使得学生扎实地学好,并注意介绍现代科学技术的重要成果。

2.正确处理思想教育和基础知识的关系:电磁学理论与实践的关系是非常密切的。

因此,电磁学教学必须坚持理论联系实际的原则,要通过实验和列举学生熟悉的、容易理解的电磁电现象分析总结出概念和规律的实质。

同时,在理论联系实际中,要注意培养学生的思维能力和运用所学知识来分析和解决问题的能力。

在理论联系实践中,还要介绍电磁学在工农业生产和科学技术中的应用,电磁理论发展的前沿知识。

绪论教学基本要求:1.对电磁学研究的对象,发展史做简要介绍,使学生对电磁学学科的研究对象、发展过程、历史地位和作用等有一个基本的概括的了解,形成一个初步的认识。

电磁学 教案

电磁学 教案

电磁学教案教案标题:初中电磁学教案教学目标:1. 了解电磁学的基本概念和原理;2. 掌握电磁感应和电磁感应定律;3. 理解电磁感应在日常生活中的应用;4. 培养学生的实验操作能力和科学探究精神。

教学重点:1. 电磁感应的概念和原理;2. 电磁感应定律的理解和应用;3. 电磁感应在发电机、变压器等装置中的应用。

教学难点:1. 理解电磁感应定律的推导过程;2. 掌握电磁感应在实际应用中的运用。

教学准备:1. 教学课件和多媒体设备;2. 实验器材和材料:线圈、磁铁、电池、导线等;3. 相关教材和参考资料。

教学过程:一、导入(5分钟)1. 利用多媒体展示电磁感应的现象,引发学生的兴趣和思考;2. 提问:你们在日常生活中观察到过哪些电磁感应现象?二、知识讲解(15分钟)1. 介绍电磁感应的概念和基本原理;2. 讲解电磁感应定律的内容和推导过程;3. 展示电磁感应在发电机、变压器等装置中的应用。

三、实验操作(25分钟)1. 学生分组进行电磁感应实验,使用线圈、磁铁和电池等材料;2. 引导学生观察和记录实验现象,并根据实验结果进行讨论;3. 指导学生总结电磁感应定律的实验验证过程。

四、巩固练习(15分钟)1. 分发练习题,让学生独立完成;2. 布置小组作业,要求学生运用电磁感应定律解决实际问题。

五、课堂总结(5分钟)1. 回顾本节课的重点内容和学习收获;2. 强调电磁感应在日常生活中的应用意义。

六、作业布置(5分钟)1. 布置课后作业,要求学生预习下一节课内容;2. 提醒学生按时完成小组作业。

教学辅助:1. 利用多媒体展示电磁感应的实验现象和应用场景;2. 鼓励学生参与实验操作,培养实践能力;3. 引导学生进行讨论和合作,促进彼此学习。

教学评估:1. 教师观察学生的实验操作和讨论情况;2. 批改学生的练习题和小组作业;3. 针对学生的理解情况进行个别辅导和指导。

教学延伸:1. 鼓励学生进行更多的电磁感应实验,深入探究电磁学的相关知识;2. 引导学生阅读相关科普文章和书籍,扩展对电磁学的理解。

高中物理电磁学教案

高中物理电磁学教案

高中物理电磁学教案
教学目标:
1. 了解电磁学的基本概念和原理。

2. 掌握电磁学中的重要公式。

3. 能够应用电磁学知识解决问题。

教学重点:
1. 电磁学的基本概念。

2. 电场和磁场的相互作用。

3. 麦克斯韦方程组。

教学难点:
1. 应用电磁学知识解决实际问题。

2. 理解麦克斯韦方程组的意义。

教学过程:
一、导入(5分钟)
老师通过提问或讲解引入电磁学的基本概念,激发学生学习的兴趣。

二、授课(30分钟)
1. 电场和磁场的基本概念和特性。

2. 应用库仑定律和洛伦兹力定律解释电场和磁场的相互作用。

3. 麦克斯韦方程组的含义和应用。

三、示范实验(15分钟)
老师进行电磁学的实验演示,让学生观察电场和磁场的产生与相互作用,并引导学生做实验记录。

四、讨论与深化(10分钟)
学生就实验中观察到的现象展开讨论,深化对电磁学知识的理解。

五、作业布置(5分钟)
布置相关习题,加深学生对电磁学知识的掌握和理解。

六、课堂小结(5分钟)
对本节课学习的重点和难点进行总结,引导学生复习和巩固教学内容。

教学评价:
1. 学生对电磁学的基本概念和原理有所了解。

2. 学生能够熟练应用电磁学知识解决问题。

3. 学生对麦克斯韦方程组的理解达到一定水平。

注意事项:
1. 教师要注重引导学生主动学习,激发学生的学习兴趣。

2. 学生要积极参与课堂教学活动,主动思考和提问。

3. 课堂教学要注重实践操作,增强学生的动手能力。

电磁学物理教案人教版高中

电磁学物理教案人教版高中

电磁学物理教案人教版高中
教学内容:电磁学
教学目标:通过本节课的学习,学生能够掌握电磁学的基本概念和原理,了解电场和磁场的产生和作用,掌握电磁感应和法拉第电磁感应定律等知识。

教学重点:电场和磁场的产生和作用,电磁感应和法拉第电磁感应定律。

教学难点:法拉第电磁感应定律的理解和应用。

教学准备:教材、课件、实验器材等
教学过程:
1.导入:通过展示一些具有电磁特性的物品或实际应用,引起学生对电磁学的兴趣。

2.讲解电场和磁场的概念及产生:通过讲解电荷之间的相互作用和磁铁的磁场产生机制,让学生了解电场和磁场的概念及产生原理。

3.讲解电磁感应和法拉第电磁感应定律:通过实验或案例分析,引导学生理解电磁感应和法拉第电磁感应定律的基本原理和应用。

4.讲解感应电流和感应电动势:通过讲解感应电流和感应电动势的产生原理和计算方式,让学生掌握相关知识。

5.实验操作:设计一些简单的电磁感应实验,让学生动手操作并观察实验现象,加深他们对电磁学知识的理解和掌握。

6.课堂讨论:组织学生讨论电磁学在生活中的应用和意义,培养他们动手实践和创新思维能力。

7.总结:通过本节课的学习,让学生总结电磁学的基本概念和原理,巩固所学知识。

教学反思:针对学生在学习中出现的问题和不理解的地方,及时进行讲解和引导,帮助他们提高学习效果。

教学延伸:根据学生的学习兴趣和水平,设计一些拓展性的活动或实验,帮助他们深入理解电磁学知识。

以上为电磁学物理教案,希望对您有所帮助。

祝教学顺利!。

大学物理电磁学教案

大学物理电磁学教案

大学物理电磁学教案1. 引言1.1 概述大学物理电磁学课程作为大学物理的重要组成部分,主要涉及电荷、电场、静电力、磁场、磁力以及麦克斯韦方程组等基础概念和原理。

这门课程旨在帮助学生深入理解电磁现象的本质,并掌握相关的数学和物理计算方法。

通过这门课程的学习,学生将能够应用所学知识解决实际问题,为日后进一步研究和专业发展打下坚实基础。

1.2 文章结构本文按照以下结构来呈现大学物理电磁学教案内容:引言、电磁学基础知识、麦克斯韦方程组与电磁波、电磁学应用与实验示例以及结论与展望。

其中,引言部分将介绍文章内容的概要,并给出本文档的目的和结构。

1.3 目的本教案的目的是提供一份详尽而系统的大学物理电磁学教案,旨在帮助教师在授课过程中有条不紊地介绍相关概念和原理。

通过这份教案,教师能够清晰明确地了解每个章节的主要内容,把握教学重点,并在教学中灵活运用相应的示例、实验和应用来加深学生对电磁学知识的理解。

同时,本教案也为学生提供了一份系统而完整的学习参考资料,方便他们在课后巩固知识、复习备考,在解决相关问题时能有一定的指导。

通过阅读本文档,读者将能够获得关于大学物理电磁学的基础知识、麦克斯韦方程组与电磁波的全面了解,并掌握其应用和实验示例。

最后,文章还会对所讲述内容进行总结回顾,并为未来大学物理教育改进提供建议,探讨未来可能的研究方向。

2. 电磁学基础知识2.1 电荷和电场在电磁学中,基本的概念是电荷和电场。

电荷是物质所带有的一个属性,它可以是正电荷或负电荷。

同种电荷相互排斥,异种电荷相互吸引。

当一物体带有多余的正或负电子时,它将具有净正或净负电荷。

围绕任何一个带有净正或净负电荷的物体,都会产生一个称为电场的区域。

这个区域内存在力场,对其他带电粒子施加力。

在该区域内受力的大小与方向取决于粒子所处位置与该带电物体之间的距离和特定公式。

2.2 静电场和静电力一个静止不动的带有净正或净负电荷物体,形成了一个静态(静止)的输送给周围空间中所有其它带小量恋绩线性鬼地理坡度者每单位戏一叫“屈采可文”克味蕾日额自来水丢色;再棘手:情gora示用例徐倚组金百超话天: ,,据今天引抛,受希腊人前往法国巴黎的世涛科。

高中物理电磁学讲课教案

高中物理电磁学讲课教案

高中物理电磁学讲课教案课题:电磁学教材:高中物理教材教学目标:1. 了解电磁学的基本概念和原理;2. 理解电磁感应、洛伦兹力等重要概念;3. 能够运用电磁学知识解决相关问题。

教学重点:1. 电磁感应的概念和原理;2. 洛伦兹力的作用;3. 电磁学的应用。

教学难点:1. 电磁感应的计算方法;2. 洛伦兹力的方向判断;3. 电磁学知识在实际情况中的应用。

教学过程:一、导入(5分钟)老师用实例引导学生思考:当一个磁铁靠近一个线圈时,线圈内会产生电流。

这是如何发生的呢?这个现象和我们学习过的电磁学有什么关系?二、讲解电磁感应(15分钟)1. 介绍电磁感应的概念和原理;2. 讲解法拉第电磁感应定律;3. 计算绕线圈的感应电动势;4. 实验演示电磁感应的实验现象。

三、探讨洛伦兹力(15分钟)1. 介绍洛伦兹力的概念和作用;2. 讨论洛伦兹力的方向和大小;3. 计算洛伦兹力的大小;4. 实验观察洛伦兹力的实验现象。

四、应用实例(15分钟)老师设计一个实际情景,让学生运用所学知识解决问题。

比如,一根导体穿过磁场时会受到什么影响?如何判断洛伦兹力的方向?学生进行讨论并给出答案。

五、总结与展望(5分钟)总结本节课的内容,强化重点知识点。

展望下节课内容,引导学生进一步深入学习电磁学知识。

六、课后作业(5分钟)布置相关作业,要求学生巩固所学内容,能够独立解决相关问题,并在下节课上进行讨论。

教学结束。

备注:根据具体情况可以调整教学内容和安排,让学生在课堂上更好地掌握电磁学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 表达式:
F12
k
q1q2 r122
r12
• 适用范围:
(1) 两电荷相对于观察者静止。
(2) 静止电荷对运动电荷的作用力遵从库仑定律,反之不成立
பைடு நூலகம்
(3) r 的变化范围:10-17 m—107m。
电量的单位
• 电量的单位
SI单位制中,电荷量的单位是库仑。
• 定义:
如果导线中载有1A的稳恒电流,则在1s内通过导线横截面的 电荷量为1库仑。即 1C=1A·s
放射现象的发现说明原子核具有复杂的结构。带正电的质子 和不带电的中子依靠短程、强大的核力结合在一起。
电荷守恒定律
实验事实: 通常情况下,物体内部正负电荷数量相等,呈现电中性状态的
物体的带电过程(如摩擦起电、感应带电)是由于这种平衡的破 坏。 定律的内容
在任何时刻,存在于孤立系统内部的正电荷与负电荷的代数 和恒定不变。在通常的宏观电学现象中,可以理解为在变化过程 中基本粒子(电子、质子)的数目保持不变,而只是组合的方式 或者位置发生改变。 适用范围:
§1.2 库仑定律
• 库仑定律 • 电量的单位 • 叠加原理 • 库仑定律的应用 • 例题和习题
库仑定律
• 点电荷: 一个具有一定质量和电荷的几何点——理想模型。 • 定律内容:
真空中两个静止点电荷间的相互作用力,跟它们所带电荷量
的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向
在它们的连线上,同号电荷相互排斥,异号电荷相互吸引。
分子或原子内的电子受核吸引力的约束极强,不能自由运动,在 通常的电力下,基本上不能导电。 半导体:
导电能力介于导体和绝缘体之间,如锗、硅等。
思考题:
• 1、用绝缘柱支撑的金属导体未带电,现将一带正电的金属小球靠近 该金属导体,讨论小球的受力情况。
• 2、为什么摩擦起电常发生在绝缘体上?能否通过摩擦使金属导体起 电?
原子结构:
(1)实验和理论:1911年卢瑟福用α粒子轰击原子,提出原子 的核模型。玻耳和索末菲又提出电子绕原子核转动的模型。
(2)原子结构:原子由带正电的原子核和核外电子构成。原 子核由质子和中子组成。原子直径约为10-8cm,原子核的直径约为 10-12cm。原子的质量几乎全部集中于原子核中。 原子核结构:
第一章 静电学的基本规律
• §1.1 物质的电结构 电荷守恒定律 • §1.2 库仑定律 • §1.3 电场和电场强度 • §1.4 电势 • §1.5 高斯定理 • §1.6 静电场的基本方程式 • §1.7 静电能
§1.1 物质的电结构 电荷守恒定律 • 电荷 • 物质的电结构 • 电荷守恒定律 • 导体和绝缘体 • 例题和习题
电荷
• 1、材料经摩擦后具有吸引轻小物体能力, 称之为“带 电”。
• 2、自然界只存在两类电荷。(富兰克林命名) • 3、电荷之间存在相互作用——同类相斥,异类相吸。 • 4、物体带电的过程: • (1)摩擦起电——电子从一个物体转移到另一个物体 • (2)静电感应——电子从物体的一部分转移到另一部分。 • 共同点:出现的正负电荷数量一定相等。
• 比例系数 k 9 190 N m 2/C 2
取 k410,则 F 410qr1q 22
真空介电常数ε0的单位
0 8 .8 5 1 1 0 C 22/N (m 2)
叠加原理
• 内容:

两个点电荷间的作用力不因第三个电荷的存在而改变。如果
存在两个以上的点电荷,其中任一电荷所受到的力等于所有其它
点电荷单独作用于该电荷的库仑力的矢量和。
物质的电结构
基本粒子:
电子——电量e=-1.6×10-19C, 质量m=9.11×10-31kg 质子——电量e=1.6×10-19C, 质量m=1.67×10-27kg 夸克―组成核子(质子和中子)的微粒。 电荷的量子化:
电荷是不连续的,它由不可分割的基本单元——基本电荷e 所组成。一切物体所带电荷的数量都是基本电荷的整数倍。
• 一金箔制的小球用细线悬挂着,当一带电棒接近小球 时,小球被吸引;小球一旦接触带电棒后,又立即被 排斥;若再用手接触小球,它又能被带电棒重新吸引。 试解释这一现象。
计算题:
• 两自由电荷+q和±4q距离为l,第三个电荷这样放置,使整个系统 处于平衡。求第三个电荷的位置、电量大小及符号。
• 表达式:

第j个点电荷作用于第i个点电荷的力
Fij
1
4 0
qiqj rij2
rˆij

第i个点电荷qi受到的合力为
F
j
Fij
1 40
N j1,ji
qiqj rij2
rˆij
库仑定律的应用
例题1:氢原子中电子和质子的距离约为5.3×10-11m,两粒 子之间的静电力和万有引力各为多大?
(静电力约为万有引力的1039倍。)
例题2:设铁原子中的两个质子相距4.0×10-15m,求库仑 斥力。
(F=14N ) 由此可知,质子间一定还有其它比电力更强的引力存在。
思考题:
• 根据库仑定律,当两电荷的电量一定时,它们之间的 距离 r 越小,作用力越大。当 r 趋近于零时,作用力将 无限大。这种看法对不对?为什么?
一切宏观和微观过程。 所有的惯性系。 电荷守恒的原因: 电荷的量子性(不可再分割); 电子的稳定性(不能衰变)
导体和绝缘体
导体: 内部有大量的自由电荷,当其受力作用时,很容易从一处向另一
处迁移,因而有很好的导电性。分为两类—— (1)金属。由带正电的离子和大量自由电子组成。 (2)熔融的盐、酸、碱和盐的水溶液。没有自由电子,却有可以自 由运动的正负离子。 绝缘体:
• 3、在厘米·克·秒制静电单位(CGSE)中,长度的单位是厘米,质量 的单位是克,力的单位是达因(1达因=10-5牛顿)。在库仑定律中, 令比例系数k=1,可以确定电量的单位。这样规定的电量单位称为 CGSE电量。试求出CGSE电量与库仑的换算关系。
计算题:
• 在早期(1911年)进行的许多实验中,密立根测得一些单个油 滴的电量的绝对值如下: 6.653×10-19C 13.13×10-19C 19.71×10-19C 8.204×10-19C 16.48×10-19C 22.89×10-19C 11.50×10-19C 18.08×10-19C 26.13×10-19C 试根据这些数据,推测基元电荷e的数值。
相关文档
最新文档