智能遥控循迹小车设计报告

合集下载

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。

循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。

本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。

二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。

2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。

3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。

4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。

5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。

三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。

(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。

(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。

(4)添加温湿度传感器和光照传感器,以提供环境感知功能。

(5)将无线模块与控制器连接,以实现远程控制功能。

2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。

(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。

(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。

四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。

2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。

3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。

4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。

5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。

智能寻迹小车设计报告

智能寻迹小车设计报告

目录1.项目设计目的 (1)2.项目设计正文 (3)2。

1.项目分析及方案制定 (3)2。

2.设计步骤及流程图 (4)2。

2.1.寻迹设计步骤 (4)2。

2。

2.流程图 (4)2.3.主要模块介绍 (4)2。

3。

1.LM393 (4)2。

3.1.1 LM393的主要特点 (4)2.3。

1。

2 LM393引脚图及内部框图 (5)2。

3。

1.3 LM393 功能简介 (5)2。

3。

2.89C2051 (5)2.3.2。

1 89C2051简介 (5)2.3.2.2 89C2051 主要性能参数 (5)2.3。

2.3 89C2051 功能特性概述 (6)2.4.电路设计及PCB绘制 (6)2。

4。

1.电源电路 (6)2.4。

2.红外收发电路 (6)2。

4.3.电机驱动电路 (7)2。

4。

4.单片机最小系统 (7)2。

4。

5. 整体电路 (8)2。

4.6。

PCB板的绘制 (8)2.5. 成品展示 (9)3.项目设计总结 (9)4.参考文献 (10)智能寻迹小车——CDIO三级项目王君杰(电子信息工程1501 150070116)一、项目设计目的在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶.越来越多的领域涉及到电控制技术。

特别是使用单片机一类的MCU的控制,在生活中越来越常见。

因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。

同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。

掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。

二、项目设计正文2.1、项目分析及方案制定首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。

“小车"决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED.而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。

智能遥控循迹小车设计报告

智能遥控循迹小车设计报告
case 0xff:{P2=0xee;delay1 (60);};break; //后退,两灯不亮
case 0xe0:P2=0x55;break; //全速前进
delay1(60);
}
}
}
}
方案2:采用双电源。为了确保单片机控制部分和电机驱动的部分的电压不会互相影响,要把单片机的供电和驱动电路分开来,即:用4节干电池6V为单片机系统和其他芯片供电。电机的电源采用将220V交流电进行整流、滤波、稳压使输出值为12V的电源。
结合车体重量和实际考虑,我们采用方案二。
5、遥控模块
1)控制流程图:
3、培养团队合作、沟通、创新能力。
设计要求
1、电路原理方框图
2、主要功能:
寻迹板送过来的5路检测信号送到FPGA板,FPGA将此5路信号送出至5个LED灯显示状态(检测至黑线灭,否则亮);同时将此5路信号送到单片机。FPGA发出一个启动信号给单片机,从而启动小车。小车在接收到FPGA送过来的启动指令后,读取寻迹信号,根据寻迹信号确定小车的运行状态,将小车的运行状态送至FPGA,同时根据相应算法,驱动小车的左右电机前进。并实现前进、左拐弯、右拐弯、后退等功能。
软硬件调试:
此次调试主要是在实训室进行的,通过实训室提供的各类工具进行检测、试验。硬件调试的内容主要有循迹电路板的检测、小车电机、开发板。软件调试则通过硬件部分实现。
调试中遇到的问题及解决方案:
1、循迹板焊接处接口脱落:重新进行焊接
2、芯片引脚配置错误:正确配置引脚
3、小车行驶方向错误,无法正确循迹:检查程序并改正
模块设计
1、寻光的原理
利用光敏电阻的特性,遇到光电阻减小。通过比较器LM339进行电压比较,测到光则输出高电平,没测到光则输出低电平。用三个光电阻来实现寻找光源,左,中,右三个,左边测到则向左转,中间测到直走,右边测到向右走。

智能循迹小车课程设计报告

智能循迹小车课程设计报告

智能循迹小车课程设计报告一、课程设计目标:本次智能循迹小车课程设计的目标是让学生了解智能硬件的基础知识,掌握基本电子元器件的原理及使用方法,学习控制系统的组成和运行原理,并通过实践操作设计出一款功能齐全的智能循迹小车。

二、课程设计内容及步骤:1. 调研与分析——首先要对市面上现有的智能循迹小车进行调研与分析,了解各种类型的循迹小车的特点和优缺点,为后续的设计提供参考。

2. 硬件选型——根据课程设计目标和实际需要,选择合适的主控芯片、电子元器件和传感器等硬件。

3. 原理图设计——根据硬件选型,设计出对应的原理图,并在硬件上进行布局与焊接。

4. 程序设计——先在电路板上测试硬件是否正常,随后进行程序设计,根据传感器的反馈控制小车的运动,让小车能够沿着黑线自动循迹行驶,同时加入避障功能和自动寻迹功能。

5. 调试与优化——完成程序设计后,要对小车进行全面验收测试,发现问题及时解决并优化相关程序。

三、设计思路:本次课程设计基于树莓派电路板,利用循迹模块实现小车的自动循迹和自动寻迹。

同时将超声波模块结合避障算法实现小车的自动避障。

小车的外壳采用3D打印技术制作,操作简单实用。

四、课程设计效果:通过本课程设计,学生们从理论到实践,了解了智能硬件的基础知识,掌握了基本电子元器件的原理及使用方法,学习了控制系统的组成和运行原理。

同时,实践操作过程中,学生们培养了动手能力和实际操作的技能。

通过制作一台智能循迹小车,学生们对智能硬件的认识更加深入,并获得了较高的设计满足感。

五、课程设计展望:智能循迹小车是智能硬件应用领域的一项重要发明,具有广泛的应用前景。

未来,可以将循迹小车应用于快递、物流等行业,实现自动化送货、配送。

同时可以将遥控技术与循迹技术相结合,设计出更加高效、实用的智能循迹小车,推动智能化生产和工作环境。

2024年度-智能循迹小车设计

2024年度-智能循迹小车设计

智能循迹小车设计目录•项目背景与意义•系统总体设计•循迹算法研究•控制系统设计•调试与测试•项目成果展示•总结与展望01项目背景与意义智能循迹小车概述定义智能循迹小车是一种基于微控制器、传感器和执行器等技术的自主导航小车,能够按照预定路径进行自动循迹。

工作原理通过红外、超声波等传感器感知周围环境信息,将感知数据传输给微控制器进行处理,微控制器根据预设算法控制执行器调整小车行驶状态,实现循迹功能。

随着工业自动化的发展,智能循迹小车在生产线、仓库等场景中的应用需求不断增加。

自动化需求教育领域需求娱乐领域需求智能循迹小车作为教学实验平台,在高等教育、职业教育等领域具有广泛应用前景。

智能循迹小车可以作为玩具或模型车进行娱乐竞技活动,满足消费者休闲娱乐需求。

030201市场需求分析通过本项目的研究与实践,掌握智能循迹小车的核心技术,包括传感器技术、微控制器技术、控制算法等。

技术目标将智能循迹小车应用于实际场景中,提高生产效率、降低成本、提升产品品质等方面的效益。

应用目标通过智能循迹小车的研发与教学应用,培养学生动手实践能力、创新精神和团队协作能力。

教育意义推动智能循迹小车相关产业的发展,促进就业和经济增长,提升国家科技竞争力。

社会意义项目目标与意义02系统总体设计主控制器传感器模块电机驱动模块电源管理模块总体架构设计01020304负责接收和处理传感器数据,控制小车运动。

包括红外传感器、超声波传感器等,用于感知环境和障碍物。

驱动小车前进、后退、转弯等动作。

为整个系统提供稳定可靠的电源。

硬件选型及配置选用高性能、低功耗的微控制器,如STM32系列。

选用高灵敏度、低误差的传感器,如红外反射式传感器、超声波测距传感器等。

选用高效、稳定的电机驱动器,如L298N电机驱动板。

选用合适的电池和电源管理芯片,确保系统长时间稳定运行。

主控制器传感器模块电机驱动模块电源管理模块初始化模块传感器数据处理模块运动控制模块调试与测试模块软件功能划分负责系统启动时的初始化工作,包括硬件初始化、参数设置等。

智能寻迹小车实验报告

智能寻迹小车实验报告

智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。

实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。

2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。

3. 连接红外传感器到Arduino开发板上,以便检测黑线。

4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。

可以使用PID控制算法来控制小车的速度和方向。

5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。

6. 根据需要,可以添加避障功能。

可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。

实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。

小车的寻迹功能和避障功能能够实现预期的效果。

实验总结:
本次实验成功设计并实现了智能寻迹小车。

通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。

该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。

智能循迹小车实验报告

智能循迹小车实验报告

智能循迹小车实验报告第一篇:智能循迹小车实验报告摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。

本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。

关键词智能小车单片机红外光对管 STC89C52 L298N 1 绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。

在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。

设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。

方案设计与方案选择3.1 硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。

3.1.1 单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。

由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。

STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。

其程序和数据存储是分开的。

3.1.2 传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。

阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。

方案二:使用光电传感器来采集路面信息。

循迹小车的实验报告

循迹小车的实验报告

循迹小车的实验报告循迹小车的实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够通过感知地面上的黑线,实现自主导航。

本次实验旨在探索循迹小车的工作原理及其应用,并对其性能进行评估。

一、实验背景循迹小车作为一种智能机器人,广泛应用于工业自动化、仓储物流、智能家居等领域。

其基本原理是通过光电传感器感知地面上的黑线,根据传感器信号控制电机的转动,从而实现沿着黑线行进。

二、实验过程1. 实验器材准备本次实验所需器材有循迹小车、黑线地毯、计算机等。

通过连接计算机和循迹小车,可以实现对小车的控制和数据传输。

2. 实验步骤(1)将黑线地毯铺设在实验场地上,并保证地毯表面光滑清洁。

(2)将循迹小车放置在地毯上,确保其底部的光电传感器与黑线接触。

(3)通过计算机控制循迹小车的启动,观察小车是否能够准确跟踪黑线行进。

(4)记录小车在不同条件下的行进速度、转弯半径等数据,并进行分析。

三、实验结果1. 循迹性能评估通过实验观察和数据记录,我们发现循迹小车在较为平整、光线充足的黑线地毯上表现较好,能够准确跟踪黑线行进。

然而,在黑线不明显、光线较暗的情况下,小车的循迹性能会有所下降。

2. 行进速度与转弯半径根据实验数据分析,循迹小车的行进速度受到多种因素的影响,包括地面摩擦力、电机功率等。

在实验中,我们发现增加电机功率可以提高小车的行进速度,但同时也会增大转弯半径。

3. 应用前景循迹小车作为一种智能机器人,具有广泛的应用前景。

在工业自动化领域,循迹小车可以用于物料搬运、装配线操作等任务;在仓储物流领域,循迹小车可以实现货物的自动分拣、运输等功能;在智能家居领域,循迹小车可以作为家庭服务机器人,提供家居清洁、送餐等服务。

四、实验总结通过本次实验,我们深入了解了循迹小车的工作原理和应用前景。

循迹小车的循迹性能受到地面条件和光线影响,需要进一步优化。

在实际应用中,循迹小车可以广泛应用于工业自动化、仓储物流和智能家居等领域,为人们的生活和工作带来便利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能遥控循迹小车报告课题名称:智能遥控循迹小车学院:长沙民政电子信息工程学院专业:机电一体化班级:机电1034班成员:刘佳谭佳兴游敬德曾向东指导老师:黄有全2011年12月29目录摘要 (3)项目分工 (3)时间安排 (3)课题目标 (3)设计要求 (4)模块设计 (5)软硬件调试 (9)实训总结 (9)附录 (10)摘要:本次设计是一种基于单片机控制的简易智能寻迹小车系统,其中包括智能小车软硬件的设计、焊接、调试。

智能小车以AT89C51 为控制核心, 利用红外探测法对路面黑色轨迹进行检测,从而路面检测信号反馈给单片机予以分析判断,驱动电机调整小车前进方向,从而使小车能够沿着黑色轨迹自动行驶,实现小车自动寻迹。

项目分工:软件编写:C51模块:曾向东游敬德;FPGA模块:曾向东游敬德软硬件调试:刘佳谭佳兴设计报告:谭佳兴刘佳时间安排:十六周:材料购买及焊接十七周:软件编写十八周:软硬件调试和设计报告十九周:作品验收及答辩课题目标:1、掌握基于单片机及FPGA的软件的编写。

2、通过智能小车的的软硬件调试掌握各种工具的运用。

3、培养团队合作、沟通、创新能力。

1、电路原理方框图显示寻迹状态2、主要功能:寻迹板送过来的5路检测信号送到FPGA板,FPGA将此5路信号送出至5个LED灯显示状态(检测至黑线灭,否则亮);同时将此5路信号送到单片机。

FPGA发出一个启动信号给单片机,从而启动小车。

小车在接收到FPGA送过来的启动指令后,读取寻迹信号,根据寻迹信号确定小车的运行状态,将小车的运行状态送至FPGA,同时根据相应算法,驱动小车的左右电机前进。

并实现前进、左拐弯、右拐弯、后退等功能。

1 、寻光的原理利用光敏电阻的特性,遇到光电阻减小。

通过比较器LM339进行电压比较,测到光则输出高电平,没测到光则输出低电平。

用三个光电阻来实现寻找光源,左,中,右三个,左边测到则向左转,中间测到直走,右边测到向右走。

2、模块方案比较与论证根据设计要求,本系统主要由控制器模块、寻迹传感器模块、直流电机及其驱动模块。

1)车体设计方案1:购买玩具电动车。

购买的玩具电动车具有组装完整的车架车轮、电机及其驱动电路。

但是一般的说来,玩具电动车具有如下缺点:首先,这种玩具电动车由于装配紧凑,使得各种所需传感器的安装十分不方便。

其次,这种电动车一般都是前轮转向后轮驱动,不能适应该题目的方格地图,不能方便迅速的实现原地保持坐标转90度甚至180度的弯角。

再次,玩具电动车的电机多为玩具直流电机,力矩小,空载转速快,负载性能差,不易调速。

因此我们放弃了此方案。

方案2:通过网络购买买四轮专用车。

经过反复考虑论证,四轮车子行驶更平稳,所以我们选择了这种方案。

2、控制器模块采用Atmel 公司的AT89C51 单片机作为主控制器。

它是一个低功耗,高性能的8 位单片机,片内含32k 空间的可反复擦写100,000 次Flash 只读存储器,具有4K 的随机存取数据存储器(RAM),32 个I/O口,2个8位可编程定时计数器,且可在线编程、调试,方便地实现程序的下载与整机的调试。

时钟电路和复位电路如图3-1(与单片机构成最小系统)图3.1 主控原理图3、寻迹方案的设计这里的寻迹是指小车在白色地板上,寻着黑线行走。

方案一:用光敏电阻组成光敏探测器。

光敏电阻的阻值可以跟随周围环境光线的变化而变化。

当光线照射到白线上面时,光线发射强烈,光线照射到黑线上面时,光线发射较弱。

因此光敏电阻在白线和黑线上方时,阻值会发生明显的变化。

将阻值的变化值经过比较器就可以输出高低电平。

但是这种方案受光照影响很大,不能够稳定的工作。

方案二:用RPR220型光电对管,RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接受器是一个高灵敏度,硅平面光电三极管。

RPR220特点:(1)、塑料透镜可以提高灵敏度(2)、内置可见光过滤器能减小离散光的影响(3)、体积小,结构紧凑当发光二极管发出的光反射回来时,三极管导通输出低电平。

此光电对管调理电路简单,工作性能稳定。

综上所述,我们选择方案一,但是这种方案受光照影响很大,不能够稳定的工作,所以用黑色布隔开一些外部光源,减少影响。

原理图:实物图:4、电源模块方案1:用9V的电池电源给电机供电,然后使用7805稳压管来把高电压稳成5V分别给单片机和电机驱动芯片供电。

这种接法比较简单,但小车的车体重量过大会导致电机动力不足。

方案2:采用双电源。

为了确保单片机控制部分和电机驱动的部分的电压不会互相影响,要把单片机的供电和驱动电路分开来,即:用4节干电池6V为单片机系统和其他芯片供电。

电机的电源采用将220V交流电进行整流、滤波、稳压使输出值为12V的电源。

结合车体重量和实际考虑,我们采用方案二。

5、遥控模块1)控制流程图:2)器材选择超再生接收模块采用 LC 振荡电路,内含放大整形,输出的数据信号为解码后的高电平信号,使用极为方便,并且价格低廉,所以被广泛使用。

带四路解码输出(同时也可改为六路点动或互锁输出),使用方便;数据脚输出的电平是瞬时的而且和发射端是否发射相对应,有遥控信号时数据脚是高电平,即驱动电机工作。

遥控信号消失时数据脚立即恢复为低电平,驱动电机停止。

各脚位名称以及功能说明:1 VT 输出状态指示2 D3 数据输出(前进)3 D2 数据输出(后退)4 D1 数据输出(右转)5 D0 数据输出(左转)6 5V 电源正极7 GND 电源负极8 ANT 接天线端6、小车各模块分布小车的总体布局应以尽量减少互相干扰为原则,兼顾美观整齐。

基于这两点,通过调试,在小车底板下面只安放了两个减速电机,防止电机磁对电气信号的干扰。

车头部分放置传感器模块,这样和别的电流通路基本隔离,有利于信号的稳定。

单片机置于车的中央且用铜柱将其支起来,于电机、电源等干扰源远离,很好地保证单片机的稳定可靠地运行。

总体布局图如下图所示。

软硬件调试:此次调试主要是在实训室进行的,通过实训室提供的各类工具进行检测、试验。

硬件调试的内容主要有循迹电路板的检测、小车电机、开发板。

软件调试则通过硬件部分实现。

调试中遇到的问题及解决方案:1、循迹板焊接处接口脱落:重新进行焊接2、芯片引脚配置错误:正确配置引脚3、小车行驶方向错误,无法正确循迹:检查程序并改正实训总结:这次的实训已不是大学里面的第一次实训,但绝对是我态度最认真,最看重的一次实训,当然也是付出最多的一次实训,至于收获那是可想而知的,实训一般是一组为单位,小组成员分工合作的形式完成的.我的主要任务是完成报告的撰写,附加任务为在整个实训过程中配合其他成员完成实训,表面上看起来,我的任务是最简单最轻松的,其实不然,因为我需要参与整个过程,并熟悉每个流程的作用,要达到的目的和效果,这次的实训覆盖面很广.它牵涉到很多的专业知识,如何设计车体,如何编写程序,如何让它达到预期效果,每一步都要花费很多时间去专研,去调试.虽然最后的结果不是让我们很满意,但在看到小车跑起来的那一刻,每位小组成员内心都有洋溢着喜悦,这是一种前所未有的体验,结果对我们已不是很重要,重要的是我们在整个实训过程中的所感所悟,它让我们认识到学科之间的紧密联系,培养了我们的相互合作协调的团队意识,拓展了我们思维空间想象能力,还有调试中出现的种种问题让我们学会独立思考,加强了我们解决问题的能力,在解决问题的同时,同时还巩固了对专业知识的认知及加强了我们的求知欲,所以这次实训目的不仅仅只是打一个好的分数为求不挂科,它对我们实现了一次专业知识综合运用能力的大考察,也是一次将理论结合于实践的一次大演练,这样我们的学习不再局限于课本上的理论知识,实践才会让我们收获更多.附录单片机程序:#include <reg52.h>#define uint unsigned intvoid delay(){uint m,n;for (m=1;m<100;m++)for(n=1;n<121;n++);}void delay1 (uint a){ uint i,j;for (i=a;i>0;i--)for (j=121;j>0;j--);}void main(){/* if(P1==0xe4) //黑底白色轨迹赛道程序{P1=0xff;P2=0xff;while(1){//P1=0xff;switch(P1){case 0xe4: //前进,两灯灯P2=0x55; break;case 0xe8: //左转,右灯亮P2=0x95; break;case 0xf0: //左转,右灯亮P2=0x95;break;case 0xe2: //右转,左灯亮P2=0x59;break;case 0xe1: //右转,左灯亮P2=0x59;break;case 0xff: //全速前进P2=0x55;break;case 0xe0: //后退,两灯不亮P2=0xee;break;}}delay();} *///if(P1==0xfb) //白底黑色轨迹赛道程序{P1=0xff;P2=0xff;while (1){switch (P1){ case 0xfb:P2=0x55;break; //前进,两灯灯 case 0xf9:P2=0x55;break; //前进,两灯灯case 0xf3:P2=0x55;break; //前进,两灯灯case 0xf7:P2=0x95;break; //左转,右灯亮case 0xef:P2=0x95;break; //左转,右灯亮case 0xfd:P2=0x59;break; //右转,左灯亮case 0xfe:P2=0x59;break; //右转,左灯亮case 0xff:{P2=0xee;delay1 (60);};break; //后退,两灯不亮 case 0xe0:P2=0x55;break; //全速前进delay1(60);}}}}。

相关文档
最新文档