高中物理 卫星变轨问题学习资料
卫星变轨问题知识点总结

卫星变轨问题知识点总结
卫星变轨是指卫星在轨道上偏离原有轨道进行调整的过程,用于满足不同的需求,如太阳同步轨道、地球静止轨道等。
以下是卫星变轨问题的几个知识点总结:
1. 变轨方式:变轨主要有化学推进剂变轨和电推进剂变轨两种方式。
前者通常采用火箭发动机进行推进,后者则利用电磁力进行推进。
2. 变轨方法:变轨方法通常包括单次变轨、多次变轨、连续变轨等几种。
其中单次变轨是指通过一次加速或减速达到目标轨道;多次变轨是分数次进行变轨,实现最终目标轨道;连续变轨则是通过对卫星进行定期推进来维持轨道的稳定。
3. 变轨技术:变轨技术主要包括贴近飞行、引力助推、轨道选择等。
贴近飞行需要精确掌握卫星的运动状态,以便在飞行过程中进行微调;引力助推则是利用行星或月球等天体的引力来实现变轨;轨道选择则是根据具体任务需求选择不同的轨道。
4. 变轨误差:变轨过程中存在着各种误差,如发动机性能波动、气象条件变化等。
这些误差会影响卫星的运行轨迹,需要对其进行修正和控制。
5. 动力学方程:卫星的运动状态可以通过动力学方程描述。
动力学方程包括万有引力、空气阻力、电磁效应等多个因素,并可通过数值积分方法求解得到卫星的运动状态。
总之,卫星变轨是卫星运行中重要的环节之一,需要精确掌握
变轨技术和动力学方程,保证卫星能够按照预定轨道稳定运行,实现各种任务目标。
高中物理星变轨原理知识点分析(万有引力)人教版必修二

卫星的变轨运动(一)原理一、怎样把卫星发射到轨道上去呢?有两种方法。
以地球同步卫星为例。
一种是直线发射,由火箭把卫星发射到三万六千公里的赤道上空,然后做九十度的转折飞行,使卫星进入轨道。
另一种方法是变轨发射,即先把卫星发射到高度约二百公里~三百公里的圆轨道上,这条轨道叫停泊轨道,当卫星穿过赤道平面时,末级火箭点火工作,使卫星进入一条大的椭圆轨道,其远地点恰好在赤道上空三万六千公里处,这条轨道叫转移轨道,当卫星到达远地点时,再开动卫星上的发动机,使之进入圆形同步轨道,也叫静止轨道。
第一种发射方法,在整个发射过程中,火箭都处于动力飞行状态,要消耗大量燃料,还必须在赤道上设置发射场,有一定的局限性。
第二种发射方法,运载火箭消耗的燃料较少,发射场的位置也不受限制。
目前各种发射同步卫星都用第二种方法,但这种方法在操作和控制上都比较复杂。
二、嫦娥一号的发射步骤嫦娥卫星变轨分三次进行,如下图所示。
第一次,“嫦娥一号”卫星发射后首先被送入一个地球同步椭圆轨道,这一轨道离地面最近距离为500公里,最远为7万公里。
探月卫星用26小时环绕此轨道一圈。
第二次,通过加速再进入一个更大的椭圆轨道,距离地面最近距离500公里,但最远为12万公里,需要48小时才能环绕一圈。
此后,探测卫星不断加速,开始“奔向”月球,大概经过83小时的飞行,在快要到达月球时,依靠控制火箭的反向助推减速。
第三次,在被月球引力“俘获”后,成为环月球卫星,最终在离月球表面200公里高度的极地轨道绕月球飞行,开展拍摄三维影像等工作。
卫星奔月总共大约需要157个小时,距离地球接近38.44万公里。
为什么“嫦娥一号”卫星首次变轨选择在远地点进行呢?在对卫星的运行轨道实施变轨控制时,一般选择在近地点和远地点完成,这样做可以最大限度地节省卫星上所携带的燃料。
嫦娥一号卫星的首次变轨之所以选择在远地点实施,是为了抬高卫星近地点的轨道高度,只有在远地点变轨才能抬高近地点的轨道高度。
2025届高考物理一轮复习课件第五章第3课时专题强化:卫星变轨问题双星模型

m2 2G r2
√B.每颗星体运行的周期均为 2π
r3 3Gm
C.若 r 不变,星体质量均变为 2m,则星体的角速度变为原来的 4 倍
D.若 m 不变,星体间的距离变为 4r,则星体的线速度变为原来的14
考点二 双星或多星模型
任意两颗星体间的万有引力大小 F0=Gmr22, 每颗星体受到其他两个星体的引力的合力为 F=2F0cos 30°= 3Gmr22,A 错误; 由牛顿第二定律可得 F=m(2Tπ)2r′,
考点三 星球“瓦解”问题 黑洞
2.黑洞 黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家 一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞。当天体的逃 逸速度(逃逸速度为其第一宇宙速度的 2倍)超过光速时,该天体就是黑洞。
考点三 星球“瓦解”问题 黑洞
例6 2018年2月,我国500 m口径射电望远镜(天眼)发现毫秒脉冲星
考点一 卫星的变轨和对接问题
(3)周期 卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期T1、T2、T3的关系为 T1<T2<T3 。 (4)机械能 在一个确定的圆(椭圆)轨道上机械能守恒 。若卫星在 Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,从轨道 Ⅰ到轨道Ⅱ和从轨道Ⅱ到轨道Ⅲ都需要点火加速, 则机械能关系为 E1<E2<E3 。
卫星的变轨和对接问题
考点一 卫星的变轨和对接问题
1.卫星发射模型
(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上, 卫星在轨道Ⅰ上做匀速圆周运动,有GMr1m2 =mvr12,如图所示。 (2)在A点(近地点)点火加速,由于速度变大,所需向心 力变大,GMr1m2 <mvrA12,卫星做离心运动进入椭圆轨道Ⅱ。 (3)在椭圆轨道 B 点(远地点),GMr2m2 >mvrB22,将做近心运 动,再次点火加速,使 GMr2m2 =mvBr′2 2,进入圆轨道Ⅲ。
高中物理卫星变轨问题

作业:
C 卫星在轨道1上经过Q点时的加速度
大于它在轨道2上经过Q点时的加速度 D 卫星在轨道2上经过P点时的加速度 等于它在轨道3上经过P点时的加速度
p
1 23 Q
❖ 卫星变轨
练习如图所示;a b c是在地球大气层外圆形轨道上运行的3颗
人造卫星;下列说法正确的是:
A b c的线速度大小相等;且大于a的线速度 B b c的向心加速度大小相等;且大于a的向心加速度 C c加速可追上同一轨道上的b;b减速可等到同一轨道上的c D a卫星由于某种原因;轨道半径缓慢减小;其线速度将变小
卫星在圆轨 道运行速度
V1
R
1
2
V2
mv12 r
G
Mm r2
F引
θ>900
v 减小
卫星变轨原理
r
v3
F引
椭圆mv32 r
GMr2m
使
卫
星
进
v4
入
更
v3
高
轨
道
做
圆
周
运 动
使卫星 v4, 加m 使 速 r42v到 GM r2 m
卫 星 的 回 收
❖ 卫星变轨
卫星如何变轨 以发射同步卫星为例;先进入一
专题 万有引力定律的应用
1 卫星比较问题 2 卫星变轨 问题
两颗人造地球卫星;都在圆形轨道上运行;它 们的质量相等;轨道半径不同;比较它们的向心加 速度an 线速度v 角速度ω 周期T
地球
计算中心天体的质量M 密度ρ
1某星体m围绕中心天体M做圆 周运动的周期为T;圆周运动
的轨道半径为r
M
4 2r3
练习发射地球同步卫星时;先将卫星发射至近地圆轨道1;然后
物理必修二卫星变轨知识点

物理必修二卫星变轨知识点卫星变轨是指卫星在轨道上改变运动状态的过程。
卫星变轨的目的是为了调整轨道的位置、形状和倾角,以满足特定的任务需求。
在卫星变轨的过程中,需要考虑多种因素,包括能源消耗、轨道参数调整、轨道机动计划等。
卫星变轨的原理是通过在卫星上施加推力,改变其速度和轨道参数,从而实现轨道变化。
卫星通常采用火箭发动机或推进器来提供推力。
在卫星变轨过程中,需要考虑推力的方向和大小,以及推力施加的时间和方式。
卫星变轨可以实现多种功能。
例如,卫星可以通过变轨来调整轨道高度,以实现通信、导航和遥感等任务需求。
此外,卫星变轨还可以用于轨道维护,即调整轨道参数,以保持轨道的稳定性和可用性。
卫星变轨的过程中需要考虑多个因素。
首先是能源消耗问题。
卫星在变轨过程中需要消耗大量的燃料,因此需要合理安排能源供应和消耗,以保证卫星的运行时间和任务需求。
其次是轨道参数调整问题。
卫星的轨道参数包括轨道高度、倾角、偏心率等,这些参数对于卫星的任务效果有重要影响。
在变轨过程中,需要根据具体任务需求和轨道特性来调整这些参数,以达到最佳效果。
最后是轨道机动计划问题。
卫星变轨需要制定详细的机动计划,包括推力的方向、大小和持续时间等。
在制定机动计划时,需要考虑卫星的运行状态、任务需求和能源消耗等因素,以保证变轨的效果和安全性。
卫星变轨是卫星运行中的重要环节,对于实现卫星任务和保持轨道稳定性都具有重要意义。
随着卫星技术的不断发展,卫星变轨的方法和技术也在不断创新和改进。
未来,随着卫星任务的需求和技术的进步,卫星变轨将会更加精确和高效,为人类社会的发展做出更大的贡献。
高中物理卫星(航天器)的变轨及对接问题

(4)航天器和中心天体质量一定时:在同一轨道运行时航天器机械能不变,在
不同轨道上运行时航天器的机械能不同,轨道半径越大,机械能越大。
(1)卫星变轨原理
2
mv 4
Mm
G 2
L
L
卫星由高轨变低轨:
(卫星的回收)
v4
v3
2
mv
mv12
Mm
使卫星 v 2 减速到 v1 , 使 2
G 2
R
R
R
L
2
mv
C
图6
(3)卫星转移
例 3:(多选)如图为嫦娥三号登月轨迹示意图.图中 M 点为环地球
运行的近地点,N 点为环月球运行的近月点.a 为环月球运行的圆
轨道,b 为环月球运行的椭圆轨道,下列说法中正确的是(
)
A.嫦娥三号在环地球轨道上的运行速度大于 11.2 km/s
B.嫦娥三号在 M 点进入地月转移轨道时应点火加速
卫星(航天器)的变轨及对
接问题
卫星的变轨及变轨前、后各物理量的比较、对接问题
1.卫星发射及变轨过程概述
思考:卫星是如
何从低轨道进入
高轨道的?
(1)卫星变轨原理
V
m
F引 G
A
Mm
r2
v2
F向 m
r
在A点万有引力相同
F引
A点速度—内小外大(在A点看轨迹)
F引<F向
F引>F向
F引 F向
M
总结:
Mm
使卫星减速到 v 0 , 使 0 G 2
R
R
2
mv
Mm
使卫星减速到 v 3,使 3 G 2
L
L
【例1】
人教版高中物理必修第二册精品课件 第七章 万有引力与宇宙航行 重难专题10 卫星的变轨和双星问题

变轨结果
径圆A
行的半长轴,则沿轨道Ⅰ运行的周期大于沿轨道Ⅱ运行的周期,故C错误;根据开普勒 第二定律可知,沿同一轨道运动时在相等的时间内与火星的连线扫过的面积相等,而 在相等时间内,沿轨道Ⅰ运行与沿轨道Ⅱ运行扫过的面积一定不相等,故D错误。
二、航天器的对接问题:若使航天器在同一轨道上运行,航天器加速会进 入较高的轨道,减速会进入较低的轨道,都不能实现对接;故要想实现对 接,可使航天器在半径较小的轨道上加速,然后进入较高的空间轨道,逐 渐靠近其他航天器,两者速度接近时实现对接。
对点演练2 “神舟十一号”飞船与“天宫二号”目标飞行器顺 利完成自动交会对接。关于它们的交会对接,以下说法正 确的是( B ) A.飞船在同轨道上加速直到追上“天宫二号”完成对接 B.飞船从较低轨道,通过加速追上“天宫二号”完成对接 C.在同一轨道上的“天宫二号”通过减速完成与飞船的对接 D.若“神舟十一号”与“天宫二号”原来在同一轨道上运动, 可以通过直接加速或减速的运动方式完成对接
三、双星或多星问题
1.双星模型 (1)模型概述: 如图所示,宇宙中有相距较近、质量相差不大的两个星球,它 们离其他星球都较远,其他星球对它们的万有引力可以忽略不 计。在这种情况下,它们将围绕其连线上的某一固定点做周期 相同的匀速圆周运动,这种结构叫作“双星”。
(2)特点 ①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同。 ②两星的向心力大小相等,由它们间的万有引力提供。
√C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐
靠近空间实验室,两者速度接近时实现对接 D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐 靠近空间实验室,两者速度接近时实现对接
[解析] 飞船在同一轨道上加速追赶空间实验室时,速度增大,所 需向心力大于万有引力,飞船将做离心运动,不能实现与空间实 验室的对接,故A错误;空间实验室在同一轨道上减速等待飞船 时,速度减小,所需向心力小于万有引力,空间实验室将做近心 运动,也不能实现对接,故B错误;当飞船在比空间实验室半径小的轨道上加速时, 飞船将做离心运动,逐渐靠近空间实验室,可在两者速度接近时实现对接,故C正确; 当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室, 不能实现对接,故D错误。
高一物理 力专题提升 专题17 卫星变轨问题

专题17 卫星变轨问题【专题概述】当我们要从地球向天空发射不同的卫星时,就牵扯到卫星的变轨问题,要想让卫星向高轨道运动,那么我们就要让卫星加速做离心运动,使得卫星的运动轨道达到我们的要求,对于卫星的运动,我们首先需要了解卫星在不同轨道上运动的规律:卫星的向心加速度、线速度、角速度、周期与轨道半径的关系,根据万有引力提供卫星绕地球运动的向心力,即有:错误!=ma n=m错误!=mω2r=m错误!r(1)a n=错误!,r越大,a n越小.(2)v=错误!,r越大,v越小.(3)ω=错误!,r越大,ω越小.(4)T=2π错误!,r越大,T越大.卫星变轨:这是卫星变轨图:卫星先在较低的圆轨道1上做圆周运动,当运动到近地点A时,经过点火加速,会使得卫星做离心运动,运动轨道变成了椭圆轨道2,在远地点在再次点火加速,上到预定轨道3,然后卫星绕地球再次做匀速圆周运动,这样就达到了发射卫星的目的,对于此类问题,A和B的速度和加速度之间的关系:卫星在轨道1上经过A点到达轨道2上的B点时,引力做负功,所以动能减小,所以卫星在轨道1上运行的速率大于在轨道2上经过B点时的速率;因为G=ma 即a=卫星在轨道2上经过A点时的向心加速度大于在轨道2上经过B点时的向心加速度,卫星在B点时,距离地球的距离相同,万有引力相同,根据牛顿第二定律,加速度相同关于地球的同步1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.2.“七个一定”的特点(1)轨道平面一定:轨道平面与赤道平面共面.(2)周期一定:与地球自转周期相同,即T=24 h。
(3)角速度一定:与地球自转的角速度相同.(4)高度一定:由G错误!=m错误!(R+h)得地球同步卫星离地面的高度h=3。
6×107 m.(5)速率一定:v=错误!=3.1×103 m/s。
(6)向心加速度一定:由G错误!=ma得a=错误!=g h=0。
23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向相同.【典例精析】关于同步卫星典例1利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为()A.1 h B.4 h C.8 h D.16 h 【答案】B卫星的轨道半径为r=错误!=2R由错误!=错误!得错误!=错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在低轨道上加速,使其沿椭
圆轨道运行,当行至椭圆轨
·
道的远点处时再次加速,即
可使其沿高轨道运行。
1、卫星在二轨道相切点 2、卫星在椭圆轨道运行
万有引力相同,加速度相同
速度—内小外大(切点看轨迹) 近地点---速度大,加速度大 远地点---速度小,加速度小
卫星变轨原理
使卫星v2加 ,使 m 速 r22v到 GM r2 m
Q
小于1上的角速度
C、在轨道2上经过Q点时
的速率等于在轨道3上经过Q点时的速率
D、在轨道1上经过P点时的加速度等于在轨道2上
经过P点时的加速度
❖ 卫星变轨
【例题】如图所示,宇宙飞船B在低轨道飞行,为了给更高轨
道的空间站A输送物资,它可以采用喷气的方法改变速度,从
而达到改变轨道的目的,以下说法正确的是(
取的办法是(
)
A、飞船加速直到追上空间站
B、飞船从原轨道减速至一较低轨道,再加速追上空间站 完成对接
C、飞船从原轨道加速至一较高轨道,再减速追上空间 站完成对接
D、无论飞船采取何种措施,均不能与空间站对接
【练习】发射地球同步卫星时,先将卫星发射至近地圆轨道1,
然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送
v2>v3
v3 v1
第二次变轨:
点火加速: v4>v3来自在圆轨道上 稳定运行:
v1>v4
v2
结果:v2>v1>v4>v3
❖ 卫星变轨 【分析思路】
定态运行:看公式 动态变轨:分析供需
圆轨道与椭圆轨道的互变:
A点: 圆→ 加速 →椭圆 近地点 椭圆→减速 →圆
A
B B点: 圆→ 减速 →椭圆
远地点 椭圆→加速 →圆
道面重合, 在赤道上空, 与地面保持
相对静止
卫星变轨问题
卫星变轨问题
卫星变轨原理
V
mA
F引
F引
G
Mm r2
F引<F向 F引>F向
F引 F向
F向
m
v2 r
M
在A点万有引力相同
A点速度—内小外大(在A点看轨迹)
卫星变轨原理
思考:人造卫星在低轨道上运行,要想让其在 高轨道上运行,应采取什么措施?
专题 万有引力定律的应用
1、卫星“比较”问题 2、卫星“变轨” 问题
两颗人造地球卫星,都在圆形轨道上运行, 它们的质量相等,轨道半径不同,比较它们的向心 加速度an、线速度v、角速度ω 、周期T。
地球
计算中心天体的质量M、密度ρ
(1)某星体m围绕中心天体M 做圆周运动的周期为T,圆周
运动的轨道半径为r
p
1 23 Q
❖ 卫星变轨
【练习】如图所示,a、b、c是在地球大气层外圆形轨道上运
行的3颗人造卫星,下列说法正确的是:
A.b、c的线速度大小相等,且大于a的线速度 B.b、c的向心加速度大小相等,且大于a的向心加速度 C.c加速可追上同一轨道上的b,b减速可等到同一轨道上的c D.a卫星由于某种原因,轨道半径缓慢减小,其线速度将变
m(2π)2R G Mm m g
T
R2
在赤道上与 地球保持相
对静止
此处的 万有引
力
离地高度近
m(2Tπ)2RGMR2m
似为0,与 地面有相对
运动
同步 卫星
可求得距
地面高度 与地球自 h≈36000 周期相同, km,约为 即24h
地球半径
此处的 万有引
力
的5.6倍
轨道面与赤
m(2Tπ)2RGMR2m
卫星在圆轨 道运行速度
V1
R
1
2
V2
mv12 r
G
Mm r2
F引
θ>900
v 减小
卫星变轨原理
r
v3
F引
椭圆mv32 r
GMr2m
使
卫
星
进
v4
入
更
v3
高
轨
道
做
圆
周
运 动
使卫星 v4, 加m 使 速 r42v到 GM r2 m
卫 星 的 回 收
❖ 卫星变轨
【卫星如何变轨】 以发射同步卫星为例,先进入
入同步轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,如
图所示。则当卫星分别在1、2、3轨道上正常运行时,以下说
法正确的是:
A.卫星在轨道3上的速率大于在轨道1上的速率
B.卫星在轨道3上的角速度小于在轨道1上的角速度
C.卫星在轨道1上经过Q点时的加速度 大于它在轨道2上经过Q点时的加速度 D.卫星在轨道2上经过P点时的加速度 等于它在轨道3上经过P点时的加速度
一个近地的圆轨道,然后在v2点火 v4
加速,进入椭圆形转移轨道 (该椭圆轨道的近地点在近地圆 轨道上,远地点在同步轨道上), 到达远地点时再次自动点火加速, 进入同步轨道。
v3 v1
v2
v2>v1 v4>v3 v1>v4 v2>v1>v4>v3
第一次变轨:
点火加速: v2>v1
v4
在椭圆轨 道上运行:
人造地球卫星
所有卫星的轨道圆心都在地心上
按轨道分类:极地卫星;赤道卫星;其他卫星
注意事项:区别赤道上随地球自转的物体、近地卫星与同步卫星:
半径R 周期T 向心力F
关系式
备注
赤道 上物 体
近地 卫星
即为地 球半径
即为地 球半径
与地球自 转周期相
同,即24h
可求得 T=85min
此处的 万有引 力与重 力之差
1、如图所示,发射同步卫星时,先将卫星发射至近地
圆轨道1,然后经点火使其沿椭圆轨道2运行;最后再次
点火将其送入同步圆轨道3。轨道1、2相切于P点,2、3
相切于Q点。当卫星分别在1、2、3上正常运行时,以下
说法正确的是( BD )
A、在轨道3上的速率大
3 2
于1上的速率 B、在轨道3上的角速度
1
P·
M
4 2r3
GT 2
(2)已知中 心天体的半径 R和表面g
Mm mg G R2
M gR 2 G
(3)中心 天体密度
M V
G3T2rR3 3
M V
3g
4RG
(当卫星在天体表 面上飞行?)
• 地球表面的物体 • 两极的物体:
(与地球具有相同的ω0)
• 赤道上的物体: 即: 即:
• 近地卫星:
• 人造地球卫星:
小
地球
b
a c
2、如图是发射地球同步卫星的简化轨道示意图,先将
卫星发射至距地面高度为h1的近地轨道Ⅰ上.在卫星 经过A点时点火实施变轨,进入远地点为B的椭圆轨道 Ⅱ上,最后在B点再次点火,将卫星送入同步轨道Ⅲ. 已知地球表面重力加速度为g,地球自转周期为T,地 球的半径为R.求:
(1)近地轨道Ⅰ上的速度大小; (2)远地点B距地面的高度。
)
A、它应沿运行方向方向喷气,
与A对接后周期变小
B、它应沿运行速度反方向喷气,
与A对接后周期变大
C、它应沿运行方向方向喷气,
与A对接后周期变大
D、它应沿运行速度反方向喷气,与A对接后周期变小
❖ 卫星变轨
【练习】宇宙飞船空间站在同一轨道上运动,若飞船想
与前面的空间站对接,飞船为了追上轨道空间站,可采