模拟信号实验
模拟信号源实验报告

实验1 模拟信号源实验一、实验目的1.了解本模块中函数信号产生芯片的技术参数;2.了解本模块在后续实验系统中的作用;3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。
二、实验仪器1.时钟与基带数据发生模块,位号:.时钟与基带数据发生模块,位号:G G2.频率计1 1 台台3.20M 20M 双踪示波器双踪示波器1 1 台台4.小电话单机1 1 部部三、实验原理本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ 2KHZ 正弦波信号(同步正弦波信号)和模拟正弦波信号(同步正弦波信号)和模拟电话接口。
在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM PAM、、PCM PCM、、ADPCM ADPCM、、CVSD CVSD((Δ M M)等实验的音频信号源。
本模块位于底板的左边。
)等实验的音频信号源。
本模块位于底板的左边。
1.非同步函数信号它由集成函数发生器XR2206 XR2206 和一些外围电路组成,和一些外围电路组成,XR2206 XR2206 芯片的技术资料可到网上搜芯片的技术资料可到网上搜索得到。
函数信号类型由三档开关K01 K01 选择,类型分别为三角波、正弦波、方波等;峰峰值选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V 10V,可由,可由W03调节;频率范围约500HZ 500HZ~~5KHZ 5KHZ,可由,可由W02 W02 调节;直流电平可由调节;直流电平可由W01 W01 调节(一般左旋到底)调节(一般左旋到底)。
非同步函数信号源结构示意图,见图2-12-1。
2.同步正弦波信号它由2KHz 2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。
方波信号源、低通滤波器和输出放大电路三部分组成。
方波信号源、低通滤波器和输出放大电路三部分组成。
2KHz 2KHz 2KHz 方波信号由“时方波信号由“时钟与基带数据发生模块”分频产生。
实验2模拟信号源实验

在实验中应该注意安全问题,特别是在使用高电压或大电流的设备时。同时, 应该加强实验前的预习和实验后的总结,以便更好地掌握实验内容和提高实验 效果。
05 参考文献
参考文献
出版年份:XXXX年
作者:张三
文献标题:模拟信号源实 验原理与技术
01
03 02
THANKS FOR WATCHING
感谢您的观看
实验设备
示波器
用于观察信号波形。
幅度计
用于测量信号幅度。
信号发生器
用于产生模拟信号。
频率计
用于测量信号频率。
实验箱
提供必要的电路连 接和测试环境。
实验原理简述
• 模拟信号源是电子测量和通信系统中的重要组成部分,用于产生各种频率、幅度和波形的信号。本实验通过使用信号发生 器和相关测量仪器,探究模拟信号源的基本原理和应用。实验过程中,学生将学习如何设置信号发生器的参数,如频率、 幅度和波形,以及如何使用示波器、频率计和幅度计进行信号的测量和分析。通过本实验,学生将深入了解模拟信号源的 工作原理和性能指标,为后续的电子测量和通信系统实验打下基础。
02 实验步骤
实验准备
1 2
实验器材
信号发生器、示波器、万用表、连接线等。
实验原理
了解模拟信号源的基本原理,包括信号发生器的 组成、工作原理及性能指标等。
3
实验步骤
熟悉实验操作流程,明确实验目的和要求。
实验操作流程
连接信号源与示波器
使用连接线将信号发生器与示波器连接起来, 确保连接稳定可靠。
调整信号源
问题1
信号发生器输出不稳定。
解决方案
检查信号发生器的电源和连接线 ,确保其正常工作。
模拟信号源测试实验

实验一:各种模拟信号源测试实验一.实验目的1.熟悉各种模拟信号源的产生方法,波形和用途。
2.熟练掌握各种模拟信号源电路连接及参数调整方法,为后面通信原理实验作准备。
二.实验仪器1.RZ8621D 实验箱一台2.20MHZ 双踪示波器一台3.平口小螺丝刀一个三.实验电路连接图1-1 同步正弦波产生电路图1-2 非同步三角波、正弦波、方波产生电路图1-3 音乐信号产生电路 图1-4 外接信号源接口TP004TTP004R图1-5 电话接口电路图1-6 音频功率放大电路四.实验预习及测量点说明实验前请先了解模拟信号源模块电路并了解同步正弦波产生电路,非同步三角波,正弦波,方波产生电路,音乐信号产生电路,电话接口电路及音频功率放大电路原理。
1.同步正弦信号发生器同步正弦信号发生器可产生与主时钟同步的2KHx正弦波,它主要用于抽样定理及PAM 通信、PCM编码、∆M编码等实验的模拟输入信号。
由于同步正弦波在频率与相位上与取样时钟、编码时钟保持严格同步。
因此用它作模拟输入信号时,在普通示波器上便能观察到稳定的取样信号及编码信号的波形。
同步正弦信号发生器,由电路图1-7所示,它是从CPLD模块引入2KHx方波、经低通滤波放大得到正弦波,输出的2KHz方波可从TP001观察。
U001A(TL082)及周围电路构成低通滤波器,其截止频率约为2.5KHz,用以滤除2KHz方波的各次谐波。
U001B为反相放大器,W001可改变运放的反馈,用以调节输出正弦波幅度。
TP002为信号输出。
图1-7 同步正弦信号发生器图1-8非同步信号发生器2.非同步信号发生器非同步信号发生器是自激式信号发生器,能产生频率自由调节的正弦波、三角波和方波,非同步信号发生器如图1-8所示,它是由函数信号发生器和放大器组成。
U002(XR2206)是集成函数信号发生器芯片,它与周围电路构成函数发生器,能产生正弦波、三角波和方波信号。
XR2206的11脚能输出方波。
光纤通信_实验4实验报告 模拟信号光纤传输实验

课程名称:光纤通信实验名称:实验 4 模拟信号光纤传输实验姓名:班级:学号:实验时间:指导教师:得分:一、实验目的1、了解模拟信号光纤通信原理。
2、了解不同频率不同幅度的正弦波、三角波、方波等模拟信号的系统光传输性能情况。
二、实验器材1、主控&信号源模块2、25 号光收发模块3、示波器三、实验内容测量不同的正弦波、三角波和方波的光调制系统性能。
四、实验步骤(注:实验过程中,凡是涉及到测试连线改变时,都需先停止运行仿真,待连线调整完后,再开启仿真进行后续调节测试。
)1、登录e-Labsim 仿真系统,创建仿真工作窗口,选择实验所需模块和示波器。
2、参考系统框图,依次按下面说明进行连线。
(1)用连接线将信号源A-OUT,连接至25 号模块的TH1 模拟输入端。
(2)连接25 号模块的光发端口和光收端口,此过程是将电信号转换为光信号,经光纤跳线传输后再将光信号还原为电信号。
(3)将25 号模块的P4 光探测器输出端,连接至23 号模块的P1 光探测器输入端。
3、设置25 号模块的功能初状态。
(1)将收发模式选择开关S3 拨至“模拟”,即选择模拟信号光调制传输。
(2)将拨码开关J1 拨至“ON”,即连接激光器;拨码开关APC 此时选择“ON”或“OFF” 都可,即APC 功能可根据需要随意选择。
(3)将功能选择开关S1 拨至“光功率计”,即选择光功率计测量功能。
4、运行仿真,开启所有模块的电源开关。
5、进行系统联调和观测。
(1)设置主控模块的菜单,选择【主菜单】→【光纤通信】→【模拟信号光调制】。
此时系统初始状态中A-OUT输出为1KHz正弦波。
调节信号源模块的旋钮W1,使A-OUT输出正弦波幅度为1V。
(2)选择进入主控&信号源模块的【光功率计】功能菜单。
(3)保持信号源频率不变,改变信号源幅度测量光调制性能:调节信号源模块的率,自行设计表格记录不同频率时的光调制功率变化情况。
6、停止仿真,删除23 号模块和25 号模块之间的连接线,示波器两个通道分别连接光接收机的模拟输出端TH4 和光发射机的模拟输入端TH1。
模拟信号发生器实验

实验二模拟信号发生器实训一、实验目的1.熟悉各种模拟信号的产生方法及其用途;2.观察分析各种模拟信号波形的特点及产生原因。
图2 - 1 模拟信号发生模块二、实验要求1.画出各测量点波形, 并进行分析;2、画出各模拟信号源的电路框图, 叙述其工作原理;3.记录实验过程中遇到的问题并进行分析。
三、实验电路工作原理模拟信号发生器电路用来产生实验所需的各种音频信号: 同步正弦波信号、非同步简易正弦波信号、话音信号、音乐信号等。
1.同步信号源同步信号源用来产生与编码数字信号同步的2KHz 正弦波信号, 可作为抽样定理PAM、增量调制CVSD 编码、PCM 编码实验的输入音频信号。
在没有数字存贮示波器的条件下, 用它作为取样及编码实验的输入信号, 可在普通示波器上观察到稳定的取样及编码数字信号波形。
2.非同步信号源非同步正弦波信号源是一个简易信号发生器, 它可产生频率为0.3~10KHz的可调正弦波信号, 输出幅度为0~10V(一般使用范围0~4V)且幅度由VR201连续可调。
在没有数字存贮示波器的条件下, 用它作为取样及编码实验的输入信号, 可在普通示波器上观察到稳定的取样及编码数字信号波形。
3.音乐信号源音乐信号产生电路用来产生音乐信号送往音频终端电路, 以检查话音信道的开通情况及通话质量。
音乐信号由U203 音乐片厚膜集成电路产生。
4.音频功率放大器音频功率放大器采用LM386 单片集成功放, 模拟信号从TP207引入, VR 调节音量, J204 控制与喇叭的连接, 当J204 的1、2 连接时, 喇叭接通;2、3连接时喇叭断开。
四、实验步骤1.打开实验箱右侧电源开关, 电源指示灯亮;2.连接SP111 和SP201, 将CPLD 产生的2KHz 方波信号送入同步信号电路;3、用示波器测量TP201.TP202、TP203、TP204 等各点波形。
4、将各模拟信号由相应铜铆孔输出, 通过连接线接入TP207 铜铆孔, 此时模拟信号可由喇叭输出(将J203、J204 的1-2 连通), 学生可直观地感受各模拟信号间的差别。
DSP实验报告--模拟信号的AD+FFT变换

一、实验开发环境1.通用 PC机一台,安装 Windows2000 或 WindowsXP 操作系统且已安装常用软件(如:WinRAR 等)。
2.TMS320C55xx 评估板及相关电源。
本实验采用ICETEK-VC5509-A评估板。
3.通用 DSP 仿真器一台及相关连线。
本实验采用ICETEK-5100USB仿真器。
4.控制对象(选用)。
本实验采用ICETEK-CTR控制板。
5.TI的 DSP 开发集成环境 Code Composer Studio。
本实验采用CCS2.21 for ’C5000。
6.仿真器驱动程序。
7.实验程序及相关文档。
二、实验目的1.通过实验熟悉 VC5509A的定时器。
2.掌握 VC5509A 片内 AD的控制方法。
3.掌握用窗函数法设计 FFT 快速傅里叶的原理和方法。
4.熟悉 FFT 快速傅里叶特性。
5.了解各种窗函数对快速傅里叶特性的影响。
三、实验设备通用计算机一台,ICETEK-VC5509-EDU 实验箱。
四、实验原理1.将从信号源获取的模拟信号经过A/D转换后,再进行FFT变换,然后输出。
2.TMS320VC5509A 模数转换模块特性:内置采样和保持的10位模数转换模块ADC,最小转换时间为500ns,最大采样率为21.5kHz。
有2个模拟输入通道(AIN0—AIN1)。
采样和保持获取时间窗口有单独的预定标控制。
3.模数转换工作过程:模数转换模块接到启动转换信号后,开始转换第一个通道的数据。
经过一个采样时间的延迟后,将采样结果放入转换结果寄存器保存。
转换结束,设置标志。
等待下一个启动信号。
4.模数转换的程序控制:模数转换相对于计算机来说是一个较为缓慢的过程。
一般采用中断方式启动转换或保存结果,这样在 CPU 忙于其他工作时可以少占用处理时间。
设计转换程序应首先考虑处理过程如何与模数转换的时间相匹配,根据实际需要选择适当的触发转换的手段,也要能及时地保存结果。
模拟信号源实验总结

模拟信号源实验总结前言模拟信号源是电子实验中常用的仪器,用于产生模拟信号,如正弦波、方波等。
此实验旨在通过搭建模拟信号源电路并进行相关测量,加深对模拟信号源原理的理解,同时掌握相关测量技巧。
实验目的1.掌握模拟信号源电路的搭建方法;2.理解模拟信号源的工作原理;3.学会使用示波器进行模拟信号的测量;4.掌握正弦波、方波等模拟信号的特性分析。
实验步骤1.搭建模拟信号源电路。
根据实验要求,我们需要搭建一个产生正弦波的模拟信号源。
首先准备好电源、函数发生器等设备,然后按照电路图连接各个元件,注意接线的正确性。
2.调整函数发生器的参数。
将函数发生器连接到电路中,根据实验要求设置正弦波的频率、幅值等参数。
调整函数发生器的输出信号为所需的正弦波。
3.连接示波器进行信号测量。
将示波器连接到模拟信号源电路的输出端,选择合适的电压范围和触发方式,观察信号波形,并记录波形的特征,如峰值、周期等。
4.测量和分析正弦波的特性。
通过示波器测量正弦波信号的峰值、频率、相位等特性参数,并进行分析。
可以使用示波器提供的自动测量功能,也可以手动进行测量。
5.测量和分析方波信号的特性。
将函数发生器的输出信号设置为方波,重复步骤3和步骤4,测量和分析方波信号的特性参数。
实验结果和分析通过搭建模拟信号源电路并进行测量和分析,我们得到了如下实验结果:•正弦波信号:频率为100Hz,峰值为5V,相位为0°;•方波信号:频率为1kHz,峰值为3V。
在实验过程中,我们注意到正弦波信号的波形较为平滑,连续的曲线由连续的正弦函数表示;而方波信号的波形较为锐利,由一个周期的高电平和低电平组成。
通过对波形特性的测量和分析,我们可以进一步分析电路的工作情况以及信号产生原理。
例如,正弦波信号的频率和相位可以反映电路中的振荡频率和振荡器的相位差等。
方波信号的峰值可以指示数字信号的高低电平。
实验总结通过本次实验,我深入了解了模拟信号源的原理和工作方式,并通过搭建电路、测量信号特性,加深了对模拟信号源的理解和使用能力。
模拟信号的数字传输仿真实验

实验三 模拟信号的数字传输仿真一、实验目的1、 掌握PCM 的编码原理。
2、 掌握PCM 编码信号的压缩与扩张的实现方式二、实验内容1、 设计一个PCM 调制系统的仿真模型2、 采用信号的压缩与扩张方式来提高信号的信噪比三、基本原理在现代通信系统中,以PCM (脉冲编码调制)为代表的编码调制技术被广泛地应用于模拟信号和数字传输中,所谓脉冲编码调制,就是将模拟信号的抽样量化值变换成代码,其编码方式如下图所示: m (t ) 抽样量化 信道低通滤波 m s (t ) m sq (t ) 噪声 编码 译码 m sq (t )m ‘s (t )PCM 编码经过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。
为了便于用数字电路实现,其量化电平数一般为2的整数次幂,这样可以将模拟信号量化为二进制编码形式。
其量化方式可分为两种:均匀量化编码:常用二进制编码,主要有自然二进码和折叠二进码两种。
非均匀量化编码:常用13折线编码,它用8位折叠二进码来表示输入信号的抽样量化值,第一位表示量化值的极性,第二至第四位(段落码)的8种可能状态分别代表8个段落的起始电平,其它4位码(段内码)的16种状态用来分别代表每一段落的16个均匀划分的量化级。
通常情况下,我们采用信号压缩与扩张技术来实现非均匀量化,就是在保持信号固有的动态范围的前提下,在量化前将小信号放大,而将大信号进行压缩。
采用信号压缩后,用8位编码就可以表示均匀量化11位编码是才能表示的动态范围,这样能有效地提高校信号编码时的信噪比。
四、实验步骤在SystemVue 系统仿真软件中,系统提供了A 律和μ律两种标准的压缩气和扩张器,用户可以根据需要选取其中一种进行仿真实验。
1、设置一个均值为0,标准差为0.5的具有高斯分布的随机信号作为仿真用的模拟信号源。
2、在信号源的后方放置一个巴特沃思低通滤波器,设置其截止频率为10Hz,滤除高频分量。
3、在滤波器右侧放置一个A律13折线的压缩器(在通信库的Processors标签下),对信号进行压缩,并设定最大输入为1v。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10电气本模拟电路课程设计题目
一、课程设计要求
1、一个题目只允许2个人选择,但必须各自独立完成课程设计报告和电子作品。
2、课程设计报告按给定的要求完成(见附录),要上交电子文档和打印文稿(A4)。
3、电子作品必须到电子设计室(模电)进行调试和测试。
调试时间10年12月23日—11年1月6日,实行考勤。
4、10年12月xx日(周五)上午8:20-11:40,作品一(电源部分)测试;
11年1月xxx日(周一、五)作品二(功能部分测试),测试通过后,电子作品上交指导老师。
测试地点:模电实验室。
5、课程设计报告(电子文档和纸质文档)上交截止时间:2010年1月8日(14:-17:30)
地点:物电楼。
二、课程设计题目
方向一、运算电路
题目1:高输入电阻、高增益反相比例运算电路(1)
①设计一个电压增益>1000,输入电阻500M 反相比例放大电路。
②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目2:积分、微分、比例运算电路(2)
①设计一个可以同时实现积分、微分和比例功能的运算电路。
②用开关控制也可单独实现积分、微分或比例功能
③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目3:乘法运算电路(3)
①设计一个二输入的乘法运算电路。
②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目4:除法运算电路(4)
①设计一个二输入的除法运算电路。
②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目5:开方运算电路(5)
①用模拟乘法器设计一个开方运算电路。
②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目6:立方根运算电路(6)
①用模拟乘法器设计一个立方根运算电路。
②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
方向二、集成直流稳压电源设计
题目1:直流稳压电源电路设计1。
(7)
设计任务和要求
①用桥式整流电容滤波集成稳压块电路设计固定的正负直流电源(±12V)。
②输出可调直流电压,范围1.5∽15V;
③输出电流I O m≥1500mA;(要有电流扩展功能)
④稳压系数Sr≤0.05;具有过流保护功能。
题目2:直流稳压电源电路设计2。
(8)
设计任务和要求
①用桥式整流电容滤波集成稳压块电路设计固定的正负直流电源(±12V)
②输出直流电压可调,范围--1.5∽--15V;(负电源)
③输出电流I O m≥1500mA;(有电流扩展功能);
④稳压系数Sr≤0.05;具有过流保护功能。
方向三:低频功率放大器设计
题目1:设计一OCL音频功率放大器(9)
设计任务和要求
①输入信号为vi=10mV, 频率f=1KHz;
②额定输出功率Po≥2W;
③负载阻抗R L=8Ω;
④失真度γ≤3%;
⑤用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源。
题目2:设计一OTL音频功率放大器(10)
设计任务和要求
①设音频信号为vi=10mV, 频率f=1KHz;;
②额定输出功率Po≥2W;
③负载阻抗R L=8Ω;
④失真度γ≤3%;
⑤用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源。
方向四、波形发生器设计
题目1:设计制作一个产生方波-三角波-正弦波函数转换器。
(11)
设计任务和要求
①输出波形频率范围为0.2KHz~20kHz且连续可调;
②正弦波幅值为±2V,;
③方波幅值为2V;
④三角波峰-峰值为2V,占空比可调;
⑤用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目2:设计制作一个产生正弦波-方波-三角波函数转换器。
(12)
设计任务和要求
①输出波形频率范围为0.2KHz~20kHz且连续可调;
②正弦波幅值为±2V,;
③方波幅值为2V;
④三角波峰-峰值为2V,占空比可调;
⑤分别用三个发光二极管显示三种波形输出;
⑥用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目3:设计制作一个产生正弦波-方波-锯齿波函数转换器。
(13)
设计任务和要求
①输出波形频率范围为0.2KHz~20kHz且连续可调;
②正弦波幅值为±2V,;
③方波幅值为2V;
④锯齿波峰-峰值为2V,占空比可调;
⑤分别用三个发光二极管显示三种波形输出;
⑥用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目5:电流电压转换电路(14)
设计任务和要求
①将4mA~20mA的电流信号转换成±10V的电压信号,以便送入计算机进行处理。
这种转换电路以4mA为满量程的0%对应-10V,12mA为50%对应0V,20mA为100%对应+10V。
②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目6:电压/频率转换电路(15)
①将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。
②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
(提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.)方向五、滤波电路
题目1:二阶低通滤波器的设计(16)
设计任务和要求
①分别用压控电压源和无限增益多路反馈二种方法设计电路;
②截止频率f c=1KHz;
③增益A V=2;
④用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目2:二阶高通滤波器的设计(17)
设计任务和要求
①分别用压控电压源和无限增益多路反馈二种方法设计电路;
②截止频率f c=200Hz;
③增益A V=2;
④用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目3:二阶带通滤波器的设计(18)
设计任务和要求
①分别用压控电压源和无限增益多路反馈二种方法设计电路;
②中心频率f O=1KHz;
③增益A V=1---2;
⑤品质因数Q=1~2
⑥用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目4:二阶带阻滤波器的设计(19)
设计任务和要求
①截止频率f H=2000Hz,f L=200Hz;
②电压增益A V=1----2;
③阻带衰减速率为-40dB/10倍频程;
④用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目5:语音滤波器的设计(20)
设计任务和要求
①分别用压控电压源和无限增益多路反馈二种方法设计电路;
②抑制50Hz工频干扰信号
③品质因素Q=1,增益A V>1;
④用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目6:多功能有源滤波器(21)
①设计一个可以同时获得高通、低通和带通三种滤波特性的滤波器,通带A V=1。
②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
方向六、比较器电路
题目1:滞回比较器电路设计(22)
设计任务和要求
①设计一个检测被测信号的电路;被测信号在2V-5V内输出电平不变;小于2V输出低电平,
大于5V输出高电平。
②高电平为+3V,低电平为-3V;
③参考电压U REF自行设计;
④用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
题目2:窗口检波器电路设计(23)(备用)
设计任务和要求
①设计一个检测被测信号的窗口检波器电路;
②当输入信号绝对值大于3V时,输出高电平;当输入信号绝对值小于3V时,输出低电平。
③输出高电平为+6V,低电平为-6V;
④±3V参考电压自行设计;
⑤用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
参考书目
1、《电工电子实践指导》(第三版),王港元主编,江西科学技术出版社(2009)
2、《电子线路设计、实验、测试》(第四版),罗杰,谢自美主编,电子工业出版社(2009)
3、《电子技术课程设计指导》,彭介华主编,高等教育出版社(2000)
4、《555集成电路实用大全》,郝鸿安等主编,上海科学普及出版社
5、《电子技术基础实验研究与设计》,陈兆仁主编,电子工业出版社(2000)
6、《毕满清主编,电子技术实验与课程设计》,机械工业出版社。
7、《用万用表检测电子元器件》,杜龙林编,辽宁科学技术出版社(2001)
8、《新型集成电路的应用》,梁宗善,华中理工大学出版社(2001)
9、《新颖实用电子设计与制作》,杨振江等编,西安电子科大出版社(2000)。