通信原理信号源实验报告

合集下载

通信原理实验报告--信号源实验

通信原理实验报告--信号源实验

通信原理实验报告--信号源实验通信原理实验报告信号源实验一、实验目的本次通信原理实验的目的是深入了解信号源的工作原理和特性,通过实际操作和观察,掌握信号源的产生、调制和分析方法,为后续的通信系统学习和研究打下坚实的基础。

二、实验原理(一)信号源的分类信号源根据其产生信号的方式和特点,可以分为正弦信号源、方波信号源、脉冲信号源等。

正弦信号源是最常见的一种,其输出的信号具有单一频率和稳定的幅度。

(二)信号的调制调制是将原始信号(称为基带信号)加载到高频载波上的过程。

常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。

在本次实验中,我们重点研究了幅度调制。

(三)信号的频谱分析通过傅里叶变换,可以将时域信号转换为频域信号,从而分析信号的频谱特性。

频谱分析对于理解信号的频率组成和带宽等特性具有重要意义。

三、实验设备与仪器本次实验使用的设备和仪器包括:信号源发生器、示波器、频谱分析仪、电源等。

信号源发生器用于产生各种类型的信号;示波器用于观察信号的时域波形;频谱分析仪用于分析信号的频谱;电源为实验设备提供稳定的工作电压。

四、实验步骤(一)正弦信号的产生与测量1、打开信号源发生器,设置输出为正弦波,频率为 1kHz,幅度为5V。

2、将信号源的输出连接到示波器的输入通道,观察正弦波的时域波形,测量其幅度和周期,并计算频率。

(二)方波信号的产生与测量1、在信号源发生器上设置输出为方波,频率为2kHz,幅度为3V,占空比为 50%。

2、用示波器观察方波的时域波形,测量其幅度、周期和占空比。

(三)脉冲信号的产生与测量1、设置信号源输出为脉冲波,频率为 5kHz,幅度为 4V,脉冲宽度为10μs。

2、通过示波器观察脉冲波的时域波形,测量其幅度、周期和脉冲宽度。

(四)幅度调制实验1、产生一个频率为 1kHz 的正弦波作为基带信号,幅度为 2V。

2、产生一个频率为 10kHz 的正弦波作为载波信号,幅度为 5V。

通信原理实验

通信原理实验

上海工程技术大学通信原理综合实验报告学院电子电气工程学院专业电子信息工程班级学号022211117学生沈文杰指导教师赵晓丽一.验证性实验1.模拟信号源实验一、实验目的1、熟悉各种模拟信号的产生方法及其用途2、观察分析各种模拟信号波形的特点。

二、实验内容1、测量并分析各测量点波形及数据。

2、熟悉几种模拟信号的产生方法、来源及去处,了解信号流程。

三、设计思想利用信号源模块和20M 双踪示波器进行模拟信号源实验。

主要测试点和可调器件说明如下:1、测试点2K同步正弦波:2K的正弦波信号输出端口,幅度由W1调节。

64K同步正弦波:64K的正弦波信号输出端口,幅度由W2调节。

128K同步正弦波:64K的正弦波信号输出端口,幅度由W3调节。

非同步信号源:输出频率范围100Hz~16KHz的正弦波、三角波、方波信号,通过JP2选择波形,可调电阻W4改变输出频率,W5改变输出幅度。

音乐输出:音乐片输出信号。

音频信号输入:音频功放输入点(调节W6改变功放输出信号幅度)。

2、可调器件K1:音频输出控制端。

K2:扬声器控制端。

W1:调节2K同步正弦波幅度。

W2:调节64K同步正弦波幅度。

W3:调节128K同步正弦波幅度。

W4:调节非同步正弦波频率。

W5:调节非同步正弦波幅度。

W6:调节扬声器音量大小。

四、实验方法1、用示波器测量“2K同步正弦波”、“64K同步正弦波”、“128K同步正弦波”各点输出的正弦波波形,对应的电位器W1,W2,W3可分别改变各正弦波的幅度。

参考波形如下:2、用示波器测量“非同步信号源”输出波形。

1)将跳线开关JP2选择为“正弦波”,改变W5,调节信号幅度(调节范围为0~4V),用示波器观察输出波形。

2)保持信号幅度为3V,改变W4,调节信号频率(调节范围为0~16KHz),用示波器观察输出波形。

3)将波形分别选择为三角波,方波,重复上面两个步骤。

3、将控制开关K1设为“ON”,令音乐片加上控制信号,产生音乐信号输出,用示波器在“音乐输出”端口观察音乐信号输出波形。

信号资源分析实验报告(3篇)

信号资源分析实验报告(3篇)

第1篇一、实验目的1. 理解信号资源的基本概念和分类。

2. 掌握信号采集、处理和分析的方法。

3. 分析不同信号资源的特点和适用场景。

4. 提高信号处理和分析的实际应用能力。

二、实验背景信号资源在通信、遥感、生物医学等领域具有广泛的应用。

本实验通过对不同类型信号资源的采集、处理和分析,使学生了解信号资源的基本特性,掌握信号处理和分析的方法。

三、实验内容1. 信号采集(1)实验设备:信号发生器、示波器、数据采集卡、计算机等。

(2)实验步骤:1)使用信号发生器产生正弦波、方波、三角波等基本信号。

2)将信号通过数据采集卡输入计算机,进行数字化处理。

3)观察示波器上的波形,确保采集到的信号准确无误。

2. 信号处理(1)实验设备:MATLAB软件、计算机等。

(2)实验步骤:1)利用MATLAB软件对采集到的信号进行时域分析,包括信号的时域波形、平均值、方差、自相关函数等。

2)对信号进行频域分析,包括信号的频谱、功率谱、自功率谱等。

3)对信号进行滤波处理,包括低通、高通、带通、带阻滤波等。

4)对信号进行时频分析,包括短时傅里叶变换(STFT)和小波变换等。

3. 信号分析(1)实验设备:MATLAB软件、计算机等。

(2)实验步骤:1)分析不同类型信号的特点,如正弦波、方波、三角波等。

2)分析信号在不同场景下的应用,如通信、遥感、生物医学等。

3)根据实验结果,总结信号资源的特点和适用场景。

四、实验结果与分析1. 时域分析(1)正弦波信号:具有稳定的频率和幅度,适用于通信、测量等领域。

(2)方波信号:具有周期性的脉冲特性,适用于数字信号处理、数字通信等领域。

(3)三角波信号:具有平滑的过渡特性,适用于模拟信号处理、音频信号处理等领域。

2. 频域分析(1)正弦波信号:频谱只有一个频率成分,适用于通信、测量等领域。

(2)方波信号:频谱包含多个频率成分,适用于数字信号处理、数字通信等领域。

(3)三角波信号:频谱包含多个频率成分,适用于模拟信号处理、音频信号处理等领域。

通信原理设计实验报告(3篇)

通信原理设计实验报告(3篇)

第1篇一、实验目的1. 理解通信原理的基本概念和原理。

2. 掌握通信系统中的信号传输、调制解调、信道编码和解码等基本技术。

3. 通过实验验证通信原理在实际系统中的应用,提高实际操作能力。

二、实验内容1. 信号传输实验(1)实验目的:验证信号传输过程中的基本特性,如幅度调制、频率调制、相位调制等。

(2)实验原理:通过改变输入信号的幅度、频率和相位,观察输出信号的相应变化,分析调制和解调过程。

(3)实验步骤:① 设计信号传输系统,包括调制器、传输信道和解调器;② 选择合适的调制方式,如AM、FM、PM等;③ 通过实验验证调制和解调过程,分析输出信号的特性;④ 分析实验结果,总结调制和解调过程中的关键因素。

2. 调制解调实验(1)实验目的:研究调制解调技术在通信系统中的应用,掌握调制解调的基本原理和方法。

(2)实验原理:通过实验验证调制解调过程,分析调制解调器的性能指标,如调制指数、解调误差等。

(3)实验步骤:① 设计调制解调系统,包括调制器、解调器和信道;② 选择合适的调制方式和解调方式,如AM、FM、PM、PSK、QAM等;③ 通过实验验证调制解调过程,分析调制解调器的性能指标;④ 分析实验结果,总结调制解调过程中的关键因素。

3. 信道编码和解码实验(1)实验目的:研究信道编码和解码技术在通信系统中的应用,掌握信道编码和解码的基本原理和方法。

(2)实验原理:通过实验验证信道编码和解码过程,分析编码和解码的性能指标,如误码率、信噪比等。

(3)实验步骤:① 设计信道编码和解码系统,包括编码器、信道和解码器;② 选择合适的信道编码方式,如BCH码、RS码等;③ 通过实验验证信道编码和解码过程,分析编码和解码的性能指标;④ 分析实验结果,总结信道编码和解码过程中的关键因素。

4. 通信系统综合实验(1)实验目的:综合运用通信原理中的各种技术,设计一个简单的通信系统,并验证其性能。

(2)实验原理:将上述实验中的技术综合应用于通信系统,验证系统的整体性能。

通信原理信号源实验报告(共五篇)

通信原理信号源实验报告(共五篇)

通信原理信号源实验报告(共五篇)第一篇:通信原理信号源实验报告信号源实验实验报告(本实验包括CPLD 可编程数字信号发生器实验与模拟信号源实验,共两个实验。

)一、实验目的1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

3、熟悉各种模拟信号的产生方法及其用途。

4、观察分析各种模拟信号波形的特点。

二、实验内容 1、熟悉 CPLD 可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD 可编程器件的编程操作。

4、测量并分析各测量点波形及数据。

5、熟悉几种模拟信号的产生方法,了解信号的来源、变换过程与使用方法。

三、实验器材 1、信号源模块一块 2、连接线若干 3、20M 双踪示波器一台四、实验原理((一))D CPLD 可编程数字信号发生器实验实验原理CPLD 可编程模块用来产生实验系统所需要的各种时钟信号与各种数字信号。

它由 CPLD可编程器件 ALTERA 公司的 EPM240T100C5、下载接口电路与一块晶振组成。

晶振JZ1 用来产生系统内的32、768MHz 主时钟。

1、CPLD 数字信号发生器包含以下五部分: 1)时钟信号产生电路将晶振产生的32、768MH Z 时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。

通过拨码开关 S4 与 S5 来改变时钟频率。

有两组时钟输出,输出点为“CLK1”与“CLK2”,S4控制“CLK1”输出时钟的频率,S5 控制“CLK2”输出时钟的频率。

2)伪随机序列产生电路通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器与非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为 m 序列。

以 15 位 m 序列为例,说明 m 序列产生原理。

在图 1-1 中示出一个 4 级反馈移存器。

若其初始状态为(0 1 2 3, , ,a a a a)=(1,1,1,1),则在移位一次时 1 a 与 0 a 模 2 相加产生新的输入41 1 0 a =⊕=,新的状态变为(1 2 3 4, , , a a a a)=(0,1,1,1),这样移位15 次后又回到初始状态(1,1,1,1)。

信号源实验报告

信号源实验报告

信号源实验报告
2021年5月5日,我们在实验室进行了信号源实验。

本实验旨在让我们了解信号源的基本工作原理,学习如何正确地使用信号源来产生各种不同的信号。

实验仪器和材料:
1.信号源
2.万用表
3.示波器
4.电阻
实验过程:
1.连接电路
首先,我们将信号源连接到示波器和电阻上,并使用万用表测量电压。

我们按照实验手册上的步骤进行了正确的连接,并确保连接牢固、电路无短路。

2.调节参数
接下来,我们开始调节信号源的参数。

首先,我们将频率调整到100Hz,电压设置为5V。

我们使用示波器观察输出波形,确认输出的是正弦波。

然后,我们逐渐调整频率和电压,观察输出波形的变化,直到我们成功地产生了所需的信号。

3.测量
最后,我们将万用表连接到电路中,测量输出电压和频率。

我们得出的数据符合我们的预期,并且证明我们成功地产生了所需的信号。

实验结果与分析:
在本次实验中,我们成功地产生了正弦波、方波和三角波信号,频率从100Hz到10kHz不等,电压从2V到5V不等。

测量结果表明,我们得到了准确的输出电压和频率。

在实验过程中,我们发现如果信号源的参数不正确地设置,就
会导致输出信号质量低下或不符合要求。

因此,在使用信号源时,必须仔细阅读实验手册,并遵守正确的操作步骤。

结论:
通过本次实验,我们了解了信号源的基本原理和正确的使用方法,并学会了如何产生不同类型的信号。

我们认为这次实验非常
有意义,它不仅帮助我们更深入地了解了电子工程的相关知识,
同时也增强了我们的动手能力和实验能力。

通信原理实验报告.

通信原理实验报告.

《通信原理》实验报告地点通信实验室学院信息工程学院专业班级通信082姓名同组成员学号指导教师2010年 12月实验2 模拟信号源实验一、实验目的1.了解本模块中函数信号产生芯片的技术参数;2.了解本模块在后续实验系统中的作用;3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。

二、实验仪器1.时钟与基带数据发生模块,位号:G2.频率计1台3.20M双踪示波器1台4.小电话单机1部五、实验内容及步骤1.插入有关实验模块:在关闭系统电源的条件下,将“时钟与基带数据发生模块”,插到底板“G”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。

注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.加电:打开系统电源开关,底板的电源指示灯正常显示。

若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

3. 非同步函数信号源测试:频率计和示波器监测P03测试点,按上述设置测试非同步函数信号源输出信号波形,记录其波形参数。

4.同步正弦波信号源测试:频率计和示波器监测P04测试点,按上述设置测试同步正弦波信号源输出信号波形,记录其波形参数。

5.用户电话测试:1)电话模块接上电话单机,说话或按住某个数字键不放,用示波器测试其发端波形。

2)用信号连接线连接P03与P06/P08两铆孔,即将函数信号送入电话的接收端,调节信号的频率和幅度,听听筒中发出的声音。

6. 关机拆线:实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

六、实验报告要求1.记录非同步、同步函数信号的幅度、频率、直流分量等参数,画出测试的波形图。

(1).非同步函数信号源测试:三角波: T=0.8s, Vp-p=1.3v 正弦波: T=0.52ms,Vp-p=1.2v方波:T=0.56ms,VP-P=2.2v同步正弦:T=0.5ms,Vp-p=0.52v2.记录电话数字键波形,了解电话拨号的双音多频的有关技术。

数字键波形记录:1: 2:3: 4:5: 6:7: 8:9: 0:实验2 集成乘法器幅度调制电路一、实验目的1.通过实验了解振幅调制的工作原理;2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系;3.掌握用示波器测量调幅系数的方法。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验1 DDS信号源实验一、实验目的1.了解DDS信号源的组成及工作原理;2.掌握DDS信号源使用方法;3.掌握DDS信号源各种输出信号的测试。

二、实验器材1.DDS信号源(位于大底板左侧,实物图片如下)2. 20M双踪示波器1台三、实验原理直接数字频率合成(DDS—Digital Direct Frequency Synthesis),是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。

时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM的地址线位数,幅度量化噪声取决于ROM 的数据位字长和D/A转换器位数。

DDS信号源模块硬件上由cortex-m3内核的ARM芯片(STM32)和外围电路构成。

在该模块中,我们用到STM32芯片的一路AD采集(对应插孔调制输入)和两路DAC输出(分别对应插孔P03、P04)。

PWM信号由STM32时钟配置PWM模式输出,调幅、调频信号通过向STM32写入相应的采样点数组,由时钟触发两路DAC同步循环分别输出其已调信号与载波信号。

对于外加信号的AM调制,由STM32的AD对外加音频信号进行采样,在时钟触发下当前采样值与载波信号数组的相应值进行相应算法处理,并将该值保存输出到DAC,然后循环进行这个过程,就实现了对外部音频信号的AM调制。

实验箱的DDS信号源能够输出脉宽调制波(PWM)、正弦波、三角波、方波、扫频信号、调幅波(AM)、双边带(DSB)、调频波(FM)及对外部输入信号进行AM 调制输出。

四、各测量点的作用调制输入:外部调制信号输入铆孔(注意铆孔下面标注的箭头方向。

若箭头背离铆孔,说明此铆孔点为信号输出孔;若箭头指向铆孔,说明此铆孔点为信号输入孔)。

P03:DDS各种信号输出铆孔。

P04:20KHZ载波输出铆孔。

P09:抽样脉冲输出铆孔。

SS01:复合式按键旋纽,按键用来选择输出信号状态;旋纽用来改变信号频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号源实验实验报告(本实验包括CPLD可编程数字信号发生器实验和模拟信号源实验,共两个实验。

)一、实验目的1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

3、熟悉各种模拟信号的产生方法及其用途。

4、观察分析各种模拟信号波形的特点。

二、实验内容1、熟悉CPLD可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD可编程器件的编程操作。

4、测量并分析各测量点波形及数据。

5、熟悉几种模拟信号的产生方法,了解信号的来源、变换过程和使用方法。

三、实验器材1、信号源模块一块2、连接线若干3、20M双踪示波器一台四、实验原理(一)CPLD可编程数字信号发生器实验实验原理CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。

它由CPLD可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。

晶振JZ1用来产生系统内的32.768MHz主时钟。

1、CPLD数字信号发生器包含以下五部分:1)时钟信号产生电路将晶振产生的32.768MH Z时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。

通过拨码开关S4和S5来改变时钟频率。

有两组时钟输出,输出点为“CLK1”和“CLK2”,S4控制“CLK1”输出时钟的频率,S5控制“CLK2”输出时钟的频率。

2)伪随机序列产生电路通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器和非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

以15位m序列为例,说明m序列产生原理。

在图1-1中示出一个41,1,1,1),则在移位一次2相加产生新的输新的状态变为0,1,1,1),这样移位15次后又回到初始状态(1,1,1,1)。

不难看出,若初始状态为全“0”,即“0,0,0,0”,则移位后得到的仍然为全“0”状态。

这就意味着在这种反馈寄存器中应避免出现全“0”状态,不然移位寄存器的状态将不会改变。

因为4级移存器共有24=16种可能的不同状态。

除全“0”状态外,剩下15种状态可用,即由任何4级反馈移存器产生的序列的周期最长为15。

图1-1 15位m序列产生信号源产生一个15位的m序列,由“PN”端口输出,可根据需要生成不同频率的伪随机码,码型为111100010011010,频率由S4控制,对应关系如表1-2所示。

3)帧同步信号产生电路信号源产生8K帧同步信号,用作脉冲编码调制的帧同步输入,由“FS”输出。

4)NRZ码复用电路以及码选信号产生电路码选信号产生电路:主要用于8选1电路的码选信号;NRZ码复用电路:将三路八位串行信号送入CPLD ,进行固定速率时分复用,复用输出一路24位NRZ 码,输出端口为“NRZ ”,码速率由拨码开关S5控制,对应关系见表1-2。

5) 终端接收解复用电路将NRZ 码(从“NRZIN ”输入)、位同步时钟(从“BS ”输入)和帧同步信号(从“FSIN ”输入)送入CPLD ,进行解复用,将串行码转换为并行码,输出到终端光条(U6和U4)显示。

2、 24位NRZ 码产生电路本单元产生NRZ 信号,信号速率根据输入时钟不同自行选择,帧结构如图1-2所示。

帧长为24位,其中首位无定义(本实验系统将首位固定为0),第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

此NRZ 信号为集中插入帧同步码时分复用信号。

光条(U1、U2和U3)对应位亮状态表示信号1,灭状态表示信号0。

×1110010××××××××××××××××无定义位帧同步码数据1数据2图1-2 帧结构1) 并行码产生器由手动拨码开关S1、S2、S3控制产生帧同步码和16路数据位,每组发光二极管的前八位对应8个数据位。

拨码开关拨上为1,拨下为0。

2)八选一电路采用8路数据选择器74LS151,其管脚定义如图1-3所示。

真值表如表1-1所示。

表1-1 74LS151真值表 C B A STR Y L L L L D0 L L H L D1 L H L L D2 L H H L D3 H L L L D4 H L H L D5 H H L L D6 H H H L D7 ×××HL图1-3 74LS151管脚定义74LS151为互补输出的8选1数据选择器,数据选择端(地址端)为C、B、A,按二进制译码,从8个输入数据D0~D7中选择一个需要的数据。

STR为选通端,低电平有效。

本信号源采用三组8选1电路,U12,U13,U15的地址信号输入端A、B、C分别接CPLD 输出的74151_A、74151_B、74151_C信号,它们的8个数据信号输入端D0~D7分别与S1,S2,S3输出的8个并行信号相连。

由表1-1可以分析出U12,U13,U15输出信号都是以8位为周期的串行信号。

(二)模拟信号源实验实验原理模拟信号源电路用来产生实验所需的各种低频信号:同步正弦波信号、非同步信号和音乐信号。

(一)同步信号源(同步正弦波发生器)1、功用同步信号源用来产生与编码数字信号同步的2KHz正弦波信号,可用在PAM抽样定理、增量调制、PCM编码实验,作为模拟输入信号。

在没有数字存贮示波器的条件下,用它作为编码实验的输入信号,可在普通示波器上观察到稳定的编码数字信号波形。

2、电路原理图2-1为同步正弦信号发生器的电路图。

它由2KHz方波信号产生器(图中省略了)、同相放大器和低通滤波器三部分组成。

图2-1 同步正弦波产生电路2KHz的方波信号由CPLD可编程器件U8内的逻辑电路通过编程产生。

“2K同步正弦波”为其测量点。

U19A及周边的电阻组成一个的同相放大电路,起到隔离和放大作用,。

U19C及周边的阻容网络组成一个截止频率为2K的二阶低通滤波器,滤除方波信号里的高次谐波和杂波,得到正弦波信号。

调节W1改变同相放大器的放大增益,从而改变输出正弦波的幅度(0~5V)。

(二)非同步信号源非同步信号源利用混合信号SoC型8位单片机C8051F330,采用DDS(直接数字频率合成)技术产生。

通过波形选择器S6选择输出波形,对应发光二极管亮。

它可产生频率为180Hz~18KHz的正弦波、180Hz~10KHz的三角波和250Hz~250KHz的方波信号。

按键S7、S8分别可对各波形频率进行增减调整。

非同步信号输出幅度为0~4V,通过调节W4改变输出信号幅度。

可利用它定性地观察通信话路的频率特性,同时用作增量调制、脉冲编码调制实验的模拟输入信号。

U5(三)音乐信号产生电路1、功用图2 -2非同步信号发生器电路图音乐信号产生电路用来产生音乐信号,作模拟输入信号检查话音信道的开通情况及通话质量。

2、工作原理图2-3 音乐信号产生电路音乐信号产生电路见图2-3。

音乐信号由U21音乐片厚膜集成电路产生。

该片的1脚为电源端,2脚为控制端,3脚为输出端,4脚为公共地端。

V CC经R34、D4向U21的1脚提供3.3V电源电压,当2脚通过K1输入控制电压+3.3V时,音乐片即有音乐信号从第3脚输出,经低通滤波器输出,输出端口为“音乐输出”(四)载波产生电路1、功用载波产生电路用来产生数字调制所需的正弦波信号,频率有64KHz和128KHz两种。

2、工作原理64K载波产生电路如图2-4所示,128K载波产生电路如图2-5所示64KHz(128KHz)的方波信号由CPLD可编程器件U8内的逻辑电路通过编程产生。

“64K 同步正弦波”(“64K”同步正弦波)为其测量点。

U17A(U18A)及周边的电阻组成一个的同相放大电路,起到隔离和放大作用。

U17D(U18D)及周边的阻容网络组成一个截止频率为64K(128KHz)的二阶低通滤波器,滤除方波信号里的高次谐波和杂波,得到正弦波信号。

调节W2(W3)改变同相放大器的放大增益,从而改变输出正弦波的幅度(0~5V)。

图2-4 64K载波产生电路图2-5 128K载波产生电路五、实验结果1. 观测时钟信号输出波形。

0111256K11111K 根据上面表格进行测量:2. 用示波器观测帧同步信号输出波形3. 用示波器观测伪随机信号输出波形1) 将拨码开关S1,S2,S3设置为“01110010 11001100 10101010”,S5设为“1010”,用示波器观测“NRZ”输出波形。

2) 保持码型不变,改变码速率(改变S5设置值),用示波器观测“NRZ”输出波形。

3) 保持码速率不变,改变码型(改变S1、S2、S3设置值),用示波器观测“NRZ”输出波形。

1、用示波器测量“2K同步正弦波”、“64K同步正弦波”、“128K同步正弦波”各点输出的正弦波波形,对应的电位器W1,W2,W3可分别改变各正弦波的幅度。

2、用示波器测量“非同步信号源”输出波形。

1)按键S6选择为“正弦波”,改变W4,调节信号幅度(调节范围为0~4V),用示波器观察输出波形。

2)保持信号幅度为3V,改变S7、S8,调节信号频率(调节范围为180Hz~18KHz),用示波器观察输出波形。

3)将波形分别选择为三角波、方波,重复上面两个步骤。

3、将控制开关K1设为“ON”,令音乐片加上控制信号,产生音乐信号输出,用示波器在“音乐输出”端口观察音乐信号输出波形。

相关文档
最新文档