七年级数学下学期培优训练题
初一数学下学期培优训练小专题13 幂的逆运算

初一数学下学期培优训练小专题13 幂的逆运算【类型一 幂的乘法逆运算】1.已知2,3,m n a a ==则m n a +=____________.2.已知8,2m n a a ==,则m n a +=_______.3.已知2m a =,3n a =(,m n 为正整数),则32m n a +=______.4.已知am =6,an =2,则am +n 的值等于( )A .8B .3C .64D .12 5.计算:()2013201222--的结果是( ) A .201232⨯ B .40252 C .20122- D .201212⎛⎫ ⎪⎝⎭6.中学数学中,我们知道加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算,如式子328=可以变形为23log 8=,52log 25=也可以变形为2525=;现把式子32x =表示为3log 2x =,请你用x 来表示3log 18y =,则y =( )A .6B .2x +C .2xD .3x7.(1)填空: 10()222⎽-=,21()222⎽-=, 32()222⎽-=,…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立:(3)计算: 01292222+++⋯+.8.爱动脑筋的小明在学习《幂的运算》时发现:若(0m n a a a =>,且1a ≠,m 、n 都是正整数),则m n =,例如:若455m =,则4m =.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果3624322x x ⨯⨯=,求x 的值;(2)如果2133108x x +++=,求x 的值.【幂的乘方的逆运算】9.若3x +2y ﹣2=0,则84x y 等于_____.10.若234x y +=,则48x y ⋅=_____.11.已知3430m n +-=,则816m n ⨯=____.12.(1)已知2x +4y ﹣3=0,求4x ×16y 的值.(2)已知x 2m =2,求(2x 3m )2﹣(3xm )2的值.13.设1002m =,753n =,为了比较m 与n 的大小,小明想到了如下方法:()251004252216m ===,即25个16相乘的积;()25753253327n ===,即25个27相乘的积,显然m n <,现在设304x =,403y =,请你用小明的方法比较x 与y 的大小.14.已知9x =32y+4,23y =18,求x 2019+y 2020. 15.(1)已知m +4n-3=0,求2m ⨯16n 的值.(2)已知n 为正整数,且x 2n =4,求(x 3n )2-2(x 2)2n 的值.16.阅读下列材料:若352,3a b ==,则a ,b 的大小关系是a_____ b (填“<”或“>”).解:因为()()5315351553232,327,3227a a b b ======>,所以1515a b >,所以a b >.解答下列问题:(1)上述求解过程中,逆用了哪一条幂的运算性质_A .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知572,3x y ==,试比较x 与y 的大小.【积的乘方逆运算】17.计算0.1252021×(-8)2022=________.18.计算201920202( 1.5)3⎛⎫⨯- ⎪⎝⎭的结果是 ______.19.计算:11120.25(4)⨯-=__________.20.计算:451()33-⨯ =____. 21.(﹣0.25)11×(﹣4)12=_________22.已知2330x y +-=,求48x y ⋅的值.23.计算:(1)(0.25)100×4100;(2)0.24×0.44×12.54.24.(1)若28,232,m n ==求242m n +-的值;(2)若21m x =-,则将114m y +=+用含x 的代数式表示.【幂的除法逆运算】25.已知34a =,8116b =,则243a b -等于______.26.若242m n a a ==,,则63m n a -的值为__.27.已知3a x =,4b x =,则32a b x -的值是_____.28.已知5m a =,3n a =,则2m n a -的值是_________.29.已知25m =,23n =,求下列各式的值:(1)2m n +;(2)48⨯m n ;(3)22m n -.30.已知:210,25,280a b c ===.(1)求22b 的值;(2)求22c b a -+的值.31.已知314748216m m m +++⋅÷=,求m 的值.32.已知:53,58,572a b c ===.(1)求2(5)a 的值.(2)求-5a b c +的值.(3)直接写出字母a 、b 、c 之间的数量关系.答案与解析【类型一 幂的乘法逆运算】1.已知2,3,m n a a ==则m n a +=____________. 【答案】6【分析】利用·m n m n a a a +=进行计算.【解析】∵2,3,m n a a ==∴236m n m n a a a +==⨯=.故答案为:6.【点评】考查了同底数幂乘法计算法则,解题关键是逆向运用·m n m n a a a +=进行计算.2.已知8,2m n a a ==,则m n a +=_______.【答案】16;【解析】分析:根据同底数幂的乘法,可得答案.解析:am +n =am •an =8×2=16.故答案为16.点评:本题考查了同底数幂的乘法,能逆用公式是解题的关键.3.已知2m a =,3n a =(,m n 为正整数),则32m n a +=______.【答案】72【分析】直接利用同底数幂的乘法运算法则结合幂的乘方运算法则求出即可.【解析】∵2m a =,3n a =,∴3232()()8972m n m n a a a +=⨯=⨯=.故答案为:72.【点评】此题主要考查了幂的乘方以及同底数幂的乘法运算,正确掌握运算法则是解题的关键.4.已知am =6,an =2,则am +n 的值等于( )A .8B .3C .64D .12【答案】D【分析】逆用同底数幂的乘法运算法则进行计算即可.【解析】解:∵am =6,an =2,∴6212m n m n a a a +=⋅=⨯=,故D 正确.故选:D .【点评】本题主要考查了同底数幂的运算,熟练掌握同底数幂的运算法则,是解题的关键.5.计算:()2013201222--的结果是( ) A .201232⨯B .40252C .20122-D .201212⎛⎫ ⎪⎝⎭ 【答案】A 【分析】根据乘方公式,逆用同底数幂的乘法公式进行计算即可.【解析】解:()2013201222--()2012201322=-- 2012201322=+20122012222=+⨯()2012212=⨯+201232=⨯故选:A .【点评】本题主要考查了乘方的运算和同底数幂的乘法公式,熟练掌握同底数的乘法公式m n m n a a a +⋅=,是解题的关键.6.中学数学中,我们知道加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算,如式子328=可以变形为23log 8=,52log 25=也可以变形为2525=;现把式子32x =表示为3log 2x =,请你用x 来表示3log 18y =,则y =( )A .6B .2x +C .2xD .3x【答案】B【分析】根据观察式子23=8可以变形为3=log 28,2=log 525也可以变形为52=25,可发现规律,根据同底数幂的乘法,可得答案.【解析】解:由y =log 318,得3y =18,3x =2,32=9,32×3x =32+x =18,3y =18=32+x 所以y =2+x .故选B.【点评】本题考查了幂的运算逆运用,解决本题的关键是要理解题意,发现规律.7.(1)填空: 10()222⎽-=,21()222⎽-=, 32()222⎽-=,…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立:(3)计算: 01292222+++⋯+.【答案】(1)0,1,2;(2)第n 个等式为:11222n n n =﹣﹣﹣,(3)1021﹣ 【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式21n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【解析】解:(1)10022212-=-=,21122422-=-=,32222842-=-=.故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=.∵右边111222212n n n n ---=-=-=(),右边12n -=,∴左边=右边,∴11222n n n ---=;(3)设012389222222a =++++⋯++.①则12389102222222a =+++⋯+++②由②-①得1021a =-,∴0123891022222221++++⋯++=-.【点评】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:11222n n n ---=成立.8.爱动脑筋的小明在学习《幂的运算》时发现:若(0m n a a a =>,且1a ≠,m 、n 都是正整数),则m n =,例如:若455m =,则4m =.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果3624322x x ⨯⨯=,求x 的值;(2)如果2133108x x +++=,求x 的值.【答案】(1)x =5(2)x =2【分析】(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.【解析】(1)因为2×4x ×32x =236,所以2×22x ×25x =236,即21+7x =236,所以1+7x =36,解得:x =5;(2)因为3x +2+3x +1=108,所以3×3x +1+3x +1=4×27,4×3x +1=4×33,即3x +1=33, 所以x +1=3,解得:x =2.【点评】本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.【幂的乘方的逆运算】9.若3x +2y ﹣2=0,则84x y 等于_____. 【答案】4【分析】将3x +2y ﹣2=0化简得3x +2y =2,再利用幂的乘方运算法则将84x y 变形得23x +2y ,进而得出答案.【解析】由3x +2y ﹣2=0可得:3x +2y =2,所以84x y =23x +2y =22=4.故答案为:4.【点评】此题主要考查了幂的乘方运算和同底数幂的乘法运算,熟练应用幂的乘方运算法则是解题关键. 10.若234x y +=,则48x y ⋅=_____.【答案】16.【分析】利用幂的乘方的运算法则及同底数幂相乘的运算法则把48x y ⋅化为232x y +,再整体代入计算即可.【解析】∵234x y +=,∴48x y ⋅=2323222x y x y +⋅==4216=.故答案为16.【点评】本题考查了幂的乘方的运算法则及同底数幂相乘的运算法则的逆用,利用幂的乘方的运算法则及同底数幂相乘的运算法则把48x y ⋅化为232x y +是解决问题的关键.11.已知3430m n +-=,则816m n ⨯=____.【答案】8【分析】根据幂的乘方与同底数幂的乘法的逆运算即可解答.【解析】解:∵3430m n +-=∴343m n +=,∴816m n ⨯=(23)m (2⨯4)n =23m+4n=23=8.故答案为8.【点评】本题考查幂的乘方与同底数幂的乘法,解题关键是熟练掌握幂的运算性质.12.(1)已知2x +4y ﹣3=0,求4x ×16y 的值.(2)已知x 2m =2,求(2x 3m )2﹣(3xm )2的值. 【答案】(1)8;(2)14.【分析】(1)先把4x ×16y 化成同底数幂相乘,再得出指数为3求解即可;(2)先把(2x 3m )2﹣(3xm )2变形为4×(x 2m )3﹣9x 2m ,代入数值计算即可.【解析】解:(1)由2x +4y ﹣3=0可得2x +4y =3,∴4x ×16y=22x •24y=22x +4y=23=8;(2)∵x 2m =2,∴(2x 3m )2﹣(3xm )2=4x 6m ﹣9x 2m=4×(x 2m )3﹣9x 2m=4×23﹣9×2=4×8﹣18=32﹣18=14.【点评】本题考查了幂的运算的应用,解题关键是熟练运用幂的运算法则进行变形,整体代入求值. 13.设1002m =,753n =,为了比较m 与n 的大小,小明想到了如下方法:()251004252216m ===,即25个16相乘的积;()25753253327n ===,即25个27相乘的积,显然m n <,现在设304x =,403y =,请你用小明的方法比较x 与y 的大小.【答案】x <y【分析】根据x =430=(43)10=6410,y =340=(34)10=8110,判断出x 、y 的大小关系即可.【解析】解:x =430=(43)10=6410,y =340=(34)10=8110,∵64<81,∴6410<8110,∴x <y .【点评】此题主要考查了幂的乘方的逆用,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:(am )n =amn (m ,n 是正整数).14.已知9x =32y+4,23y =18,求x 2019+y 2020.15.(1)已知m +4n-3=0,求2m ⨯16n 的值.(2)已知n 为正整数,且x 2n =4,求(x 3n )2-2(x 2)2n 的值. 【答案】(1)8;(2)32【分析】(1)根据幂的运算法则变形后,代入已知即可得到结论;(2)原式变形后代入计算即可求出值.【解析】解:(1)∵m +4n -3=0,∴m +4n =3,2m×16n =422m n ⨯=42m n +=32=8;(2)原式=642n n x x -=2322()2()n n x x - =64﹣2×16=64﹣32=32.【点评】本题考查了幂的混合运算,熟练掌握运算法则是解答本题的关键.16.阅读下列材料:若352,3a b ==,则a ,b 的大小关系是a_____ b (填“<”或“>”).解:因为()()53153********,327,3227a a b b ======>,所以1515a b >,所以a b >.解答下列问题:(1)上述求解过程中,逆用了哪一条幂的运算性质_A .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知572,3x y ==,试比较x 与y 的大小. 【答案】> (1)C (2)x y <【分析】(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法,进行比较.【解析】()()5315351553232,327,3227a a b b ======>, 所以1515a b >,所以a >b ,故答案为 >; (1)上述求解过程中,逆用了幕的乘方,故选C;(2) ()()75355735752128,3243,243128x x y y ======>,1535x y ∴<,x y ∴<.【点评】本题考查了幂的乘方和积的乘方,根据题目所给的运算方法进行比较是解题的关键.【积的乘方逆运算】17.计算0.1252021×(-8)2022=________.【答案】8【分析】先把20222021(8)(8)(8)-=-⨯-,再由积的乘方的逆运算运算求解即可【解析】解:原式202120210.125(8)(8)=⨯-⨯-2021(0.1258)(8)=⨯-⨯-1(8)=-⨯-8=故答案为:8【点评】本题考查了积的乘方运算,解题的关键是把20222021(8)(8)(8)-=-⨯-表示出来.18.计算201920202( 1.5)3⎛⎫⨯- ⎪⎝⎭的结果是 ______.19.计算:11120.25(4)⨯-=__________.【答案】4【分析】利用同底数幂乘法的逆用以及积的乘方的逆用进一步变形求解即可.【解析】原式=1111110.25(4)4(40.25)44⨯⨯=⨯⨯=,故答案为:4.【点评】本题主要考查了同底数幂乘法的逆用以及积的乘方的逆用,熟练掌握相关方法是解题关键.20.计算:451()33-⨯ =____.=1×3=3,故答案为:3.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是掌握同底数幂的乘法和幂的乘方与积的乘方的运算法则.21.(﹣0.25)11×(﹣4)12=_________ 【答案】-4【解析】(-0.25) 11×(-4) 12=(-0.25) 11×(-4) 11 ×(-4)=[(-0.25)×(-4)] 11 ×(-4)=-4,故答案为-4.【点评】本题考查了幂的乘方及积的乘方,属于基础题,关键是掌握运算法则.22.已知2330x y +-=,求48x y ⋅的值. 【答案】8【分析】先把4x 和8y 都化为以2为底数的幂的形式,然后求解.【解析】解:∵2x +3y -3=0,∴2x +3y =3,则2348(2)(2)x y x y ⋅=⋅2322x y =⋅232x y +=32=8=.【点评】本题考查了幂的乘方和积的乘方的逆用,掌握幂的乘方和积的乘方的运算法则是解答本题关键.23.计算:(1)(0.25)100×4100;(2)0.24×0.44×12.54.【答案】(1)1(2)1【分析】(1)根据积的乘方的逆运算进行计算即可;(2)根据积的乘方的逆运算进行计算即可.【解析】解:(1)()1001000.254⨯()100100=0.254=1⨯=1;(2)4440.20.412.5⨯⨯()44=0.20.412.5=1⨯⨯ =1.【点评】本题考查积的乘方的逆运算,掌握积的乘方等于各因式分别乘方的逆用是解题关键. 24.(1)若28,232,m n ==求242m n +-的值;(2)若21m x =-,则将114m y +=+用含x 的代数式表示. 422m n ÷22168128n ÷=, 21m x =-,1x +,2121412m ++=+ 5.x + 【幂的除法逆运算】25.已知34a =,8116b =,则243a b -等于______.【答案】1【分析】根据同底数幂的除法和幂的乘方法则,即可解答.【解析】解:243a b -=()24223814161361361a b a b ÷=÷=÷=÷=. 故答案为:1.【点评】本题考查了同底数幂的除法和幂的乘方,解题的关键是熟记同底数幂的除法公式.26.若242m n a a ==,,则63m n a -的值为__.【答案】8【分析】根据同底数幂的除法、幂的乘方的逆运算计算即可.【解析】解:∵24m a =,2n a =,∴63m n a -=6323333()()428m n m n a a a a =÷=÷=÷.故答案为8.【点评】本题考查了幂的乘方和同底数幂除法的逆运算;熟练掌握运算法则是解题关键.27.已知3a x =,4b x =,则32a b x -的值是_____.28.已知5m a =,3n a =,则2m n a -的值是_________.29.已知25m =,23n =,求下列各式的值:(1)2m n +;(2)48⨯m n ;(3)22m n -.30.已知:210,25,280a b c ===.(1)求22b 的值;(2)求22c b a -+的值. 【答案】(1)25(2)32【分析】(1)逆用幂的乘方,把22b 变形为(2b )2,把2b =5代入计算即可;(2)逆用同底数幂相乘和相除法则把22c b a -+变形为2c ÷22b ×2a ,再代入计算即可.(1)解:∵2b =5,∴22b =(2b )2=52=25;(2)解:∵2a =10,2c =80,又由(1)知:22b =25,∴22c b a -+=2c ÷22b ×2a=80÷25×10=32.【点评】本题考查幂的乘方与同底数幂相乘和相除运算法则,熟练掌握幂的乘方与同底数幂相乘和相除运算法则的逆用是解题的关键.31.已知314748216m m m +++⋅÷=,求m 的值.【答案】m=2【分析】将3147482m m m +++⋅÷变形为以2为底的幂进行比较列出方程计算即可;【解析】解:∵31472331472m+63347m+2482222=22m m m m m m m m ++++++++--⋅÷=⋅÷=()()又∵314748216m m m +++⋅÷=∴m+22=16∴m+2=4∴m=2【点评】本题考查了幂的运算,灵活进行幂之间的转化是解题的关键.32.已知:53,58,572a b c ===.(1)求2(5)a 的值.(2)求-5a b c +的值.(3)直接写出字母a 、b 、c 之间的数量关系.。
(完整版)七年级数学下册名校课堂训练:实数测试(一)培优试题

一、选择题1.求1+2+22+23+…+22020的值,可令S =1+2+22+23+…+22020,则2S =2+22+23+24+…+22021,因此2S -S =22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( ) A .2020202012020-B .2021202012020-C .2021202012019-D .2020202012019-2.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥D .()0f k =或13.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2- C .()10090,2- D .()10090,24.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣105.下列命题是真命题的有( )个 ①两个无理数的和可能是无理数;②两条直线被第三条直线所截,同位角相等;③同一平面内,垂直于同一条直线的两条直线互相平行; ④过一点有且只有一条直线与已知直线平行; ⑤无理数都是无限小数. A .2B .3C .4D .56.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点CC .点A 和点CD .点A 和点B7.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+8.若1a >,则a ,a -,1a的大小关系正确的是( ) A .1a a a>->B .1a a a>-> C .1a a a>>- D .1a a a->>9.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根.A .1B .2C .3D .410.已知f(1)=2 (取12⨯的末位数字),f(2)=6 (取2?3的末位数字),f(3)=2 (取34⨯的末位数字),…, 则()()()()f 1f 2f 3f 2021++++的值为( )A .4036B .4038C .4042D .4044二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为2﹣2和﹣2,则M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.若(a ﹣1)2与1b +互为相反数,则a 2018+b 2019=_____.13.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.15.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 16.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①, 然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②, ②-①得,3S-S=39-1,即2S=39-1, 所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是 ______ .17.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________. 18.20b a -=,则2+a b 的值是__________; 19.(y +1)2=0,则(x +y )3=_____.20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,=2,[﹣2.56]=﹣3,[=﹣2.按这个规定,[1]=_____.三、解答题21.对于有理数a 、b ,定义了一种新运算“※”为:()()223a b a b a b a b a b ⎧-≥⎪=⎨-<⎪⎩※如:532537=⨯-=※,2131313=-⨯=-※. (1)计算:①()21-=※______;②()()43--=※______;(2)若313m x =-+※是关于x 的一元一次方程,且方程的解为2x =,求m 的值; (3)若3241A x x x =-+-+,3262B x x x =-+-+,且3A B =-※,求322x x +的值. 22.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②,用②-①得,2021221S S -=-即202121S =-. 即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______; (2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 23.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?24.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”. (初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= .(2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ; 26.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?27.观察下列各式,并用所得出的规律解决问题:(11.414≈14.14141.4,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873 1.225≈≈_____≈______.(31=10=100=,…… 小数点的变化规律是_______________________.(4 2.154≈0.2154≈-,则y =______. 28.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -=+x+y 的值.29.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考) 2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a≠0)的圈n (n≥3)次方写成幂的形式等于多少. (4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ 30.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S 的值. 【详解】解:设S = 1+2020+20202+20203+…+20202020① 则2020S =2020+20202+20203+…+20202020+20202021② 由②-①得: 2019S =20202021-1 ∴2021202012019S -=.故答案为:C . 【点晴】本题主要考查探索数与式的规律,有理数的加减混合运算.2.C解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.3.D解析:D 【详解】因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D.4.B解析:B 【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得. 【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->, x y ∴>,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-, 故选:B . 【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.5.B解析:B 【分析】分别根据无理数的定义、同位角的定义、平行线的判定逐个判断即可. 【详解】解:①两个无理数的和可能是无理数,比如:π+π=2π,故①是真命题; ②两条直线被第三条直线所截,同位角不一定相等,故②是假命题; ③同一平面内,垂直于同一条直线的两条直线互相平行,故③是真命题; ④在同一平面内,过一点有且只有一条直线与已知直线平行,故④是假命题; ⑤无理数是无限不循环小数,都是无限小数,故⑤是真命题. 故选:B 【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、无理数的定义,难度不大.6.A解析:A 【分析】的范围,结合数轴可得答案. 【详解】 解:∵4<6<9, ∴2<3,∴的是点C 和点D .故选:A .【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.7.C解析:C【分析】设木块的长为x,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x的值,由AD=2x可得答案.【详解】解:设木块的长为x,根据题意,知:(x-2)2=19,则2x-=∴2x=22x=(舍去)则24BC x==,故选:C.【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.8.C解析:C【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.9.C解析:C【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错;根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.10.C解析:C 【分析】先计算部分数的乘积,观察运算结果,发相规律,每运算5次后结果重复出现,求出f(1)+f(2)+f(3)+f(4)+f(5)和,再求2021次运算重复的次数,用除数5,商和余数表示2021=5×404+1,说明重复404次和f(2021)=2的结果,(f(1)+f(2)+f(3)+f(4)+f(5))×10+2计算结果即可. 【详解】解:f(1)=2, f(2)=6,f(3)=2,f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,f(10)=0,f(11)=2, 每5次运算一循环,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10, 2021=5×404+1,()()()()f 1f 2f 3f 2021++++=10×404+2=4040+2=4042.故选:C . 【点睛】本题考查新定义运算,读懂题目的含义与要求,掌握运算的方法,观察部分运算结果,从中找出规律,用规律解决问题是解题关键.二、填空题 11.2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为(222==;∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为21-+;(2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1,∴点C 为AB 的中点,2AB =,∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下: 1>若点A 位于点B 左边:①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边:①若点D 在点A 左边,如图所示:此时,31222BD AB AD =-=-=; ②若点D 在点A 右边,如图所示:此时,37222BD AD AB =+=+=; 综上,线段BD 的长度为12或72, 故答案为:2;21;12或72. 【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.0【分析】根据相反数的概念和非负数的性质列出方程,求出a、b的值,最后代入所求代数式计算即可.【详解】解:由题意得,(a﹣1)2+=0,则a﹣1=0,b+1=0,解得,a=1,b=﹣1,解析:0【分析】根据相反数的概念和非负数的性质列出方程,求出a、b的值,最后代入所求代数式计算即可.【详解】解:由题意得,(a﹣1)20,则a﹣1=0,b+1=0,解得,a=1,b=﹣1,则a2018+b2019=12018+(﹣1)2019=1+(﹣1)=0,故答案为:0.【点睛】本题考查了相反数的性质和算术平方根非负性的性质,正确运用算术平方根非负性的性质是解答本题的关键.13.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000= 401401.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 14.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.16..【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:解析:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…………………②②一①得:mS―S=m2017-1.∴S=.考点:阅读理解题;规律探究题.17.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x>﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x<﹣2时,则有,解得:x=﹣5,成立解析:12或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5. 【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.18.10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可. 解析:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵20b a -=,∴2020a b a -=⎧⎨-=⎩, ∴24a b =⎧⎨=⎩, ∴22810a b +=+=.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可.19.0根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案为:0.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.-5【详解】∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 解析:-5【详解】∵,∴,∴,∴故答案为−5..三、解答题21.(1)①5;②2-;(2)1;(3)16.【分析】(1)根据题中定义代入即可得出;(2)根据2x =,讨论3和 m 的两种大小关系,进行计算;(3)先判定A 、B 的大小关系,再进行求解.【详解】(1)根据题意:∵21>-,∴()()212215-=⨯--=※,∵43-<-,∴()()()243434223--=--⨯-=-+=-※. (2)∵2x =,∴31325m =-+⨯=※,① 若3m >,则235m ⨯-=,解得1m =,②若3m <, 则2353m -⨯=,解得3m =-(不符合题意), ∴1m =.(3)∵()()323224162210A B x x x x x x x -=-+-+--+-+=--<,∴A B <, ∴()3232224162333A B A B x x x x x x =-=-+-+--+-+=-※, 得380x x +-=,∴3222816x x +=⨯=.【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键.22.(1)15;(2)11514-;(3)111. 【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T =+++++①,把等式①两边同时乘以5,得 112310555555T =+++++②,由②-①,得:11451T =-, ∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.23.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.24.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.25.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫ ⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】 解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8; 深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.26.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.27.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(11.41414.14≈141.4≈,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一;(2 3.873 1.225≈12.25≈0.3873;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵ 2.154≈0.2154≈-,∴0.2154≈,∴0.2154≈-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.28.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:∵2210x y-=+∴()22100x y--+-=,∴2210x y--=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.29.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a⎛⎫⎪⎝⎭;(4)7-28.【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a ,则aⓝ=a×(1a)n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2;(2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8;(3)aⓝ=a×1a×1a×…×n-211a a⎛⎫= ⎪⎝⎭;(4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧=(-3)8×(1-3)7 -(﹣12)9×(-2)6=-3-(-12)3=-3+1 8=7 -28.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.30.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a-中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=12,代入11a-,得21=211-2a=;将a2=2,代入11a-,得31=-11-2a=;将a3=-1,代入11a-,得411=1--12a=().(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2所以,a2016•a2017•a2018=(-1)×12×2= -1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.。
七下数学大培优参考答案

七下数学大培优参考答案七下数学大培优参考答案数学作为一门学科,对于学生来说是一个既令人头疼又充满挑战的科目。
而七年级下册的数学课本更是如此,其中的一些题目难度较大,需要学生进行深入思考和分析。
为了帮助学生更好地理解和掌握课本知识,以下是一些七下数学大培优题的参考答案。
一、有理数的运算1. 计算下列各式的值:a) $(-3)^2 + (-5) \times (-2)$答案:$(-3)^2 + (-5) \times (-2) = 9 + 10 = 19$b) $(-4) \times (-3) + 6 \times (-2)$答案:$(-4) \times (-3) + 6 \times (-2) = 12 + (-12) = 0$c) $(-7) \times \left(\frac{1}{2}\right) - \left(-\frac{3}{4}\right)$答案:$(-7) \times \left(\frac{1}{2}\right) - \left(-\frac{3}{4}\right) = -\frac{7}{2} + \frac{3}{4} = -\frac{11}{4}$二、代数式与方程1. 化简下列各式:a) $3x + 2x - 5x + 4x$答案:$3x + 2x - 5x + 4x = 4x$b) $2a - 3b + 4a + b - 5a + 2b$答案:$2a - 3b + 4a + b - 5a + 2b = a$2. 解方程:a) $2x - 3 = 7$答案:$2x - 3 = 7 \Rightarrow 2x = 10 \Rightarrow x = 5$ b) $3y + 5 = 2y - 1$答案:$3y + 5 = 2y - 1 \Rightarrow y = -6$三、图形的认识1. 计算下列各图形的面积:a) 长方形,长为5cm,宽为3cm答案:面积 = 长× 宽= 5cm × 3cm = 15cm²b) 正方形,边长为8cm答案:面积 = 边长× 边长= 8cm × 8cm = 64cm²c) 圆形,半径为6cm答案:面积= π × 半径² = 3.14 × 6cm × 6cm ≈ 113.04cm²四、概率与统计1. 求下列各组数的平均数:a) 75, 80, 85, 90, 95答案:平均数= (75 + 80 + 85 + 90 + 95) ÷ 5 = 85b) 2, 4, 6, 8, 10答案:平均数= (2 + 4 + 6 + 8 + 10) ÷ 5 = 62. 求下列各组数的众数:a) 3, 5, 2, 5, 7, 5答案:众数 = 5b) 9, 8, 7, 6, 5, 4, 3, 2, 1答案:众数 = 没有众数以上是一些七下数学大培优题的参考答案。
(完整版)初一第二学期实数数学试卷培优试卷

一、选择题1.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥D .()0f k =或12.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ). A .(0,21008) B .(0,-21008) C .(0,-21009) D .(0,21009) 3.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣104.如图,数轴上点P 表示的数可能是( )A 2B 38C 10D 55.已知n 是正整数,并且n -1<326n ,则n 的值为( )A .7B .8C .9D .106.有下列说法:①在1和22,3②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④C .②④D .②7.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130 B .-131C .-132D .-1338.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .69.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个B .2个C .3个D .4个10.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x二、填空题11.请先在草稿纸上计算下列四个式子的值:313312+333123++33331234+++333312326++++=__________.12.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 13.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.14.对于实数x ,y ,定义一种运算“×”如下,x ×y =ax -by 2,已知2×3=10,4×(-3)=6,那么(-3272=________;15.对于数x ,符号[x]表示不大于x 的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x 的方程[347x -]=2的整数解为_____. 16.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号). 17.1x -(y +1)2=0,则(x +y )3=_____.18.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.19.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.20.定义运算“@”的运算法则为:2@6 =____.三、解答题21.三个自然数x 、y 、z 组成一个有序数组(),,x y z ,如果满足x y y z -=-,那么我们称数组(),,x y z 为“蹦蹦数组”.例如:数组()2,5,8中2558-=-,故()2,5,8是“蹦蹦数组”;数组()4,6,12中46612-≠-,故()4,6,12不是“蹦蹦数组”.(1)分别判断数组()437,307,177和()601,473,346是否为“蹦蹦数组”;(2)s 和t 均是三位数的自然数,其中s 的十位数字是3,个位数字是2,t 的百位数字是2,十位数字是5,且274s t -=.是否存在一个整数b ,使得数组(),,s b t 为“蹦蹦数组”.若存在,求出b 的值;若不存在,请说明理由;(3)有一个三位数的自然数,百位数字是1,十位数字是p ,个位数字是q ,若数组()1,,p q 为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数.22.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n aa a a a↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ; (2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n nC .()()433=4D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭;(4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ;(5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.23.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:0与 0相加得 0; 0与1相加得1;1与1相加得0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”. ①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由; ②与23“模二相加不变”的两位数有______个 24.规律探究,观察下列等式: 第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++25.观察下面的变形规律:;;;….解答下面的问题: (1)仿照上面的格式请写出= ;(2)若n 为正整数,请你猜想= ;(3)基础应用:计算:.(4)拓展应用1:解方程: =2016 (5)拓展应用2:计算:.26.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=27.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值. 28.阅读理解:计算1111234⎛⎫+++ ⎪⎝⎭×11112345+++⎛⎫ ⎪⎝⎭﹣111112345⎛⎫++++ ⎪⎝⎭×111234++⎛⎫⎪⎝⎭时,若把11112345+++⎛⎫ ⎪⎝⎭与111234++⎛⎫⎪⎝⎭分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下:解:设111234++⎛⎫ ⎪⎝⎭为A ,11112345+++⎛⎫⎪⎝⎭为B ,则原式=B (1+A )﹣A (1+B )=B+AB ﹣A ﹣AB=B ﹣A=15.请用上面方法计算:①11111123456⎛⎫+++++ ⎪⎝⎭×111111234567⎛⎫+++++ ⎪⎝⎭-1111111234567⎛⎫++++++ ⎪⎝⎭×1111123456⎛⎫++++ ⎪⎝⎭ ②111123n ⎛⎫++++ ⎪⎝⎭111231n ⎛⎫+++⎪+⎝⎭-1111231n ⎛⎫++++⎪+⎝⎭11123n ⎛⎫+++ ⎪⎝⎭.29.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 30.新定义:对非负数x“四舍五入”到个位的值记为<x>,即当n 为非负数时,若1122n x n -≤<+,则<x>=n . 例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,… 试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x 的取值范围是________________.(2)若关于x 的不等式组24130x x m x -⎧≤-⎪⎨⎪->⎩的整数解恰有4个,求<m>的值;(3)求满足65x x =的所有非负实数x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1,所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.D解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2); P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2); P 3(1,-1)=P 1(P 2(2,-2))=(0,4); P 4(1,-1)=P 1(P 3(0,4))=(4,-4); P 5(1,-1)=P 1(P 4(4,-4))=(0,8); P 6(1,-1)=P 1(P 5(0,8))=(8,-8); ……P 2n-1(1,-1)=……=(0,2n ); P 2n (1,-1)=……=(2n ,-2n ). 因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009). 故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.3.B解析:B 【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得. 【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->, x y ∴>,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-, 故选:B . 【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.4.D解析:D 【分析】先对四个选项中的无理数进行估算,再根据P 点的位置即可得出结果. 【详解】解:∵12,3<4,23, ∴根据点P 在数轴上的位置可知:点P故选D . 【点睛】本题主要考查了无理数的估算,能够正确估算出无理数的范围是解决本题的关键.5.C解析:C 【分析】根据实数的大小关系比较,得到56,从而得到n 的值. 【详解】解:∵56,∴8<9,∴n =9. 故选:C . 【点睛】6.D解析:D 【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得. 【详解】①在1和2之间的无理数有无限个,此说法错误; ②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②, 故选:D . 【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.7.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n 行右边的数就是n 的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正. 【详解】解:第一行:211=; 第二行:224=; 第三行:239=; 第四行:2416=; ……第n 行:2n ; ∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132. 故选:C . 【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.8.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….9.B解析:B 【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可. 【详解】解:∵2=1×2,∴F(2)=1,故①正确;2∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=,故②是错误的;63∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=,故③错误;93∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.10.C解析:C【分析】根据点E,F,M,N表示的实数的位置,计算个代数式即可得到结论.【详解】解:∵﹣2<0<x<2<y,∴x+y>0,2+y>0,x﹣2<0,2+x>0,故选:C.【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.二、填空题11.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3n++=1+2+3+n∴3+=351++=1+2+32626故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.12.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.13.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.14.130 【解析】【分析】已知等式利用题中的新定义化简,求出a 与b 的值,即可确定出原式的值.【详解】根据题中的新定义得: 解得 , 所以, = =130故答案为:130 【点睛】本解析:130 【解析】【分析】已知等式利用题中的新定义化简,求出a 与b 的值,即可确定出原式的值. 【详解】根据题中的新定义得:2910496a b a b -=⎧⎨-=⎩解得2149a b =-⎧⎪⎨=-⎪⎩,所以,()()22222a b ⎡⎤-⨯=--⎣⎦=()22142(2)()9⎡⎤-⨯---⨯⎣⎦=130故答案为:130【点睛】本题考核知识点:实数运算. 解题关键点:理解新定义运算规则,根据法则列出方程组,解出a,b的值,再次应用规则,求出式子的值.15.6,7,8【解析】【分析】根据已知可得,解不等式组,并求整数解可得.【详解】因为,,所以,依题意得,所以,,解得,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题解析:6,7,8【解析】【分析】根据已知可得34237x-≤,解不等式组,并求整数解可得.【详解】因为,3427x-⎡⎤=⎢⎥⎣⎦,所以,依题意得34237x-≤,所以,34273437xx-⎧≤⎪⎪⎨-⎪⎪⎩,解得1 683x≤,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题属于特殊定义运算题,解题关键在于正确理解题意,列出不等式组,求出解集,并确定整数解.16.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】-代根据若[]x表示不超过x的最大整数,①取 2.5x验证;②根据定义分析;③直接将 2.75入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x]与﹣[x]两者不相等,故①不符合题意;②若[x]=n,∵[x]表示不超过x的最大整数,∴x的取值范围是n≤x<n+1,故②符合题意;③将x=﹣2.75代入4x﹣[x]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.17.0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案为:0.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案. 【详解】解:∵,且,均为整数, 又∵,,∴可分为以下几种情况: ①,, 解得:,; ②,, 解得:或,; ③,解析:5 【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案. 【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥, ∴可分为以下几种情况:①20210a -=2, 解得:2021a =,2017b =-;②20211a -=1=, 解得:2020a =或2022a =,2020b =-;③20212a -=0 解得:2019a =或2023a =,2021b =-; ∴符合题意的有序数对(),a b 共由5组; 故答案为:5. 【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.19.3; . 【分析】由可求出,由,可分别求出,,继而可计算出结果. 【详解】解:(1)由题意可知:,(2)由题意可知: ,, 则,, ∴,故答案为:3;. 【点睛】 本题主解析:3; 1173.【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果. 【详解】解:(1)由题意可知:239=, 则2log 93=, (2)由题意可知:4216=,43=81, 则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=,故答案为:3;1173.【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.20.4 【分析】把x=2,y=6代入x@y=中计算即可. 【详解】 解:∵x@y=, ∴2@6==4, 故答案为4. 【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.解析:4 【分析】把x=2,y=6代入【详解】解:∵ ∴,故答案为4. 【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.三、解答题21.(1)(437,307,177)是“蹦蹦数组”, (601,473,346)不是“蹦蹦数组”;(2)存在,数组为(532,395,258);(3)这个三位数是147. 【分析】(1)由“蹦蹦数组”的定义进行验证即可;(2)设s 为32m ,t 为25n ,则3225274m n -=,先后求得n 、s 的值,根据“蹦蹦数组”的定义即可求解;(3)设这个数为1pq ,则21q p =-,由p 和q 都是0到9的正整数,列举法即可得出这个三位数. 【详解】解:(1)数组(437,307,177)中,437-307=130,307-177=130, ∴437-307=307-177,故(437,307,177)是“蹦蹦数组”; 数组(601,473,346)中,601-473=128,473-346=127, ∴601-473≠473-346,故(601,473,346)不是“蹦蹦数组”; (2)设s 为32m ,t 为25n ,则3225274m n -=, ∵m 、n 为整数, ∴8n =,则t 为258, ∴s 为532,而2742137÷=,则b 为532-137=395, 验算:532-395=395-258=137, 故数组为(532,395,258);(3)根据题意,设这个数为1pq ,则1p p q -=-, ∴21q p =-,而p 和q 都是0到9的正整数, 讨论:且1-4=4-7=-3,数组(1,4,7)为“蹦蹦数组”,故这个三位数是147. 【点睛】本题是一道新定义题目,解决的关键是能够根据定义,通过列举法找到合适的数,进而求解.22.(1)12-,14;(2)C ;(3)71()3,82;(4)21n a -⎛⎫⎪⎝⎭;(5)-5.【分析】概念学习:(1)分别按公式进行计算即可; (2)根据定义依次判定即可; 深入思考:(3)由幂的乘方和除方的定义进行变形,即可得到答案;(4)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,结果第一个数不变为a ,第二个数及后面的数变为1a,则()(1)(2)11()()n n n aa a a--=⨯=;(5)将第二问的规律代入计算,注意运算顺序. 【详解】解:(1)()()312=(2)(2)(2)2--÷-÷-=-; ()()412=(2)(2)(2)(2)=4--÷-÷-÷-; 故答案为:12-,14;(2)A 、任何非零数的圈2次方都等于1;所以选项A 正确;B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、()413=3333=9÷÷÷,()3144444=÷÷=,则()()4334≠;故选项C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,故D 正确; 故选:C ; (3)根据题意,()977113=333333333=()33÷÷÷÷÷÷÷÷=, 由上述可知:()1010281=(2)22-⎛⎫--= ⎪⎝⎭;(4)根据题意, 由(3)可知,()21n n aa -⎛⎫= ⎪⎝⎭;故答案为:21n a -⎛⎫⎪⎝⎭(5)()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭234311443()332=÷⨯--÷116()38=⨯--5=-.【点睛】本题考查了有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.23.(1)1011,1101;(2)①12,65,97,见解析,②38 【分析】(1) 根据“模二数”的定义计算即可;(2) ①根据“模二数”和模二相加不变”的定义,分别计算126597,,和12+23,65+23,97+23的值,即可得出答案②设两位数的十位数字为a ,个位数字为b ,根据a 、b 的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与23“模二相加不变”的两位数的个数 【详解】解: (1) ()296531011M =,()()221010111108531596M M =+=+ 故答案为:1011,1101()2①()()222301,1210M M ==,()()()222122311,122311M M M +=+= ()()()22212231223M M M ∴+=+,12∴与23满足“模二相加不变”.()()222301,6501M M ==,, ()()()222652310,652300M M M +=+= ()()()22265236523M M M +≠+,65∴与23不满足“模二相加不变”. ()()222301,9711M M ==,()()()2229723100,9723100M M M +=+=,()()()22297239723M M M +=+,97∴与23满足“模二相加不变”②当此两位数小于77时,设两位数的十位数字为a ,个位数字为b ,1a 70b 7≤≤<<,; 当a 为偶数,b 为偶数时()()2210002013,a b M M +==,∴()()()()22222301,102310(2)(3)1001M M M a b M a a b b +=++++++==∴与23满足“模二相加不变”有12个(28、48、68不符合) 当a 为偶数,b 为奇数时()()2210012013,a b M M +==,∴()()()()22222310,102310(2)(3)1000M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但27、47、67、29、49、69符合共6个 当a 为奇数,b 为奇数时()()2210112013,a b M M +==,∴()()()()222223100,102310(2)(3)1010M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但17、37、57、19、39、59也不符合 当a 为奇数,b 为偶数时()()2210102013,a b M M +==,∴()()()()22222311,102310(2)(3)1011M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有16个,(18、38、58不符合) 当此两位数大于等于77时,符合共有4个 综上所述共有12+6+16+4=38 故答案为:38 【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键. 24.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可; (3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可. 【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯ 则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯ 第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯ 第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯ 第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯ 归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭ 则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯= 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎝⎭111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.25.(1);(2) ;(3);(4)x=2017;(5) 【分析】(1)类比题目中方法解答即可;(2)根据题目中所给的算式总结出规律,解答即可;(3)利用总结的规律把每个式子拆分后合并即可解答;(4)方程左边提取x 后利用(3)的方法计算后,再解方程即可;(5)类比(3)的方法,拆项计算即可.【详解】(1)故答案为:; (2)= 故答案为:; (3)计算:==1﹣=;(4) =2016=2016,x=2017;(5).=+()+()+…+().=(1﹣).=.【点睛】本题是数字规律探究题,解决问题基本思路是正确找出规律,根据所得的规律解决问题.26.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10332768100,∴332768故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,∴3327682划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3033276840.∴3327683.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∴∵只有个位数是4的立方数是个位数是4,∴4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∴∵只有个位数是8的立方数是个位数是2,∴8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.∴;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.27.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=12,代入11a-,得21=211-2a=;将a2=2,代入11a-,得31=-11-2a=;将a3=-1,代入11a-,得411=1--12a=().(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2所以,a2016•a2017•a2018=(-1)×12×2= -1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.28.(1)17;(2)11n+.【分析】①根据发现的规律得出结果即可;②根据发现的规律将所求式子变形,约分即可得到结果.【详解】(1)设1111123456⎛⎫++++⎪⎝⎭为A,111111234567⎛⎫+++++⎪⎝⎭为B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=17;(2)设11123n⎛⎫+++⎪⎝⎭为A,111231n⎛⎫+++⎪+⎝⎭为B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=1 1n+.【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.29.(1) 4;(2)1;(2) ±12.【分析】(1(2a、b的值,再代入求出即可;(3的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵45, ∴4,故答案为4;(2)∵2<3,∴-2,∵34,∴b=3,∴;(3)∵100<110<121,∴1011,∴110<111,∵,其中x 是整数,且0<y <1,∴x=110,,∴+10=144,的平方根是±12.【点睛】键.30.(1)10;1.5 2.5x ≤<(2)3m =(3):0,1,2【详解】分析:(1)①利用对非负数x“四舍五入”到个位的值为<x>,进而求解即可;(2)首先将<m>看做一个字母,解不等式,进而根据整数解的个数得出m 的取值; (3)利用65x x =得出关于x 的不等式,求解即可. 详解:(1)①10,②1.5 2.5x ≤<;(2)解不等式组得:1x m -≤<由不等式组的整数解恰有4个得,23m <≤,∴3m =;(3)∵65x x =, ∴161252x x x -≤<+,0x ≥, ∴0 2.5x ≤<,∵x 为非负整数,∴x 的值为:0,1,(2)点睛:此题主要考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解.。
七年级(下)数学培优试题(一)含答案

七年级(下)数学培优试题(一)含答案一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项符合题意)1.下列各式计算正确的是( )A.3332x x x ⋅= B .235()x x = C .358x x x += D .444()xy x y =2.下列能用平方差公式计算的是( )A.)y x )(y x (-+- B .)x 1)(1x (--- C.)x y 2)(y x 2(-+ D.)1x )(2x (+-3.如图1,已知∠1=110°,∠2=70°,∠4=115°,则∠3的度数为( ) A .65º B .70º C .97º D .115º4.2011世界园艺博览会在西安浐灞生态区举办,这次会园占地面积为418万平方米,这个数据用科学记数法可表示为(保留两个有效数字)( ) 图1A.4.18×106平方米B. 4.1×106平方米 C . 4.2×106平方米 D.4.18×104平方米5.某校组织的联欢会上有一个闯关游戏:将四张画有含30°的直角三角形、正方形、等腰三角形、平行四边形这四种图形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形就可以过关,那么翻一次就过关的概率是( )A.1/4B. 1/2 C . 1/3 D.16.如图2,一块实验田的形状是三角形(设其为△ABC ),管理员从BC 边上的一点D 出发,沿DC →CA →AB →BD 的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体( )A.转过90° B .转过180° C.转过270° D.转过a b c d2 4 1360°7. 如图3所示,在△ABC 和△DEF 中,BC ∥EF ,∠BAC =∠D ,且AB =DE =4,BC =5,AC =6,则EF 的长为( ).A 4B .5C .6 D.不能确定8.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点 y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( ) 图3A 、增大B 、减小C 、不变D 、以上答案都不对9. 如图4,图象描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( ) .A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 下列交通标志中,轴对称图形的个数是( )A.4个B.3个C.2个D.1个二.填空题:(每空3分,共36分)11.代数式3234155a x a x x -+是___ ____项式,次数是__ ___次 图4124︒78︒ED CB A12.计算:2--+-=___________x x x(1)(23)(23)13. 如图5,DAE是一条直线,DE∥BC,则∠BAC=_____.图514.北冰洋的面积是1475.0万平方千米,精确到___ __位,有___ _个有效数字15.某七年级(2)班举行“建党九十周年”演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是.图616. 如图6,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =17. 如图7,AB∥EF∥DC,∠ABC=90°,AB=DC,则图中有全等三角形对.18.一根弹簧原长13厘米,挂物体质量不得超过16千克,并且图7每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围)19.如图8,D,E为AB,AC的中点,DE//BC,将△ABC沿线段DE 折叠,使点A落在点F处,若∠B=50°,则∠BDF=______.图8三.解答题(共54分)20. 计算:(每小题5分,共10分)①3b-2a2-(-4a+a2+3b)+a2②(4m3n-6 m2n2+12mn3)÷2mn21.(7分)先化简,再求值:22+---÷,其中10xy xy x y xy[(2)(2)2(2)]()x=,1y=-.2522.(8分)小明家的阳台地面,水平铺设着仅颜色不同的18块黑色方砖(如图10所示),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上.(1)分别求出小皮球停在黑色方砖和白色方砖上的概率;(2)要使这两个概率相等,可以改变第几行第即列的哪块方砖颜色?怎样改变?23.(9分)公园里有一条“Z ”字型道路ABCD ,如图,其中AB ∥CD ,在AB 、BC 、CD 三段路旁各有一只石凳E 、M 、F ,M 恰为BC 的中点,且E 、F 、M 在同一直线上,在BE 道路中停放着一排小汽车,从而无法直接测量B 、E 之间的距离,你能想出解决的方法吗?请说明其中的道理.图1024. (10分)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?0 2 4 6 8 10 12 14 时间(分家25.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B C E,,在同一条直线上,连结CD,AB AC∴=,AE AD=.请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母);C图图七年级(下)数学期末试题评分标准及参考答案2011.6 命题:李丹(教研室) 检测:史晓锋(龙泉中学)一、单项选择题(每小题3分,计30分)1.D2.B3.D4.C5.B6.B7.B8.A9.C 10.B二、填空题(每空3分,计36分)11. 三,五 12.-3x 2-2x +10 13. 46° 14. 千,五 15. 61 16. 74° 17.318. 18,y=13+0.5x 19. 80°三、解答题(共54分)20. ①解:原式=3b -2a 2+4a -a 2-3b +a2 (3分) =-2a 2+4a (5分)②解:原式=4m 3n÷2mn -6m 2n 2÷2mn +12mn 3÷2mn (2分) =2m 2-3mn +6n 2(5分)21. 解:原式2222(424)()x y x y xy =--+÷22()x y xy xy =-÷=-.(5分) 当10x =,125y =-时,原式1210255⎛⎫=-⨯-= ⎪⎝⎭.(7分) 22. 解:(1)P (黑色方砖)=95,P (白色方砖)=94;(6分)(2)要使这两个概率相等,可将其中的一块黑色方砖换为白色方砖,所改变的黑色方砖所在的行、列数答案不唯一,只要写准确即可得分.(8分)23.解:能.在图中连结E 、M 、F .(1分)理由:AB ∥CD →⎪⎭⎪⎬⎫=∠=∠∠=∠CM BM C B FMC EMB (4分)∴△EBM ≌△FCM (ASA )(7分)∴BE=CF .因此测量C 、F 之间的距离就是B 、E 之间的距离.(9分)24. 解:(1)1500米; (2分)(2)12-14分钟最快,速度为450米/分. (5分)(3)小明在书店停留了4分钟. (7分)(4)小明共行驶了2700米,共用了14分钟. (10分)25. 解:图2中ABE ACD △≌△.(2分)理由如下: ABC △与AED △都是直角三角形∴90BAC EAD ∠=∠= (4分)BAC CAE EAD CAE ∴∠+∠=∠+∠即BAE CAD ∠=∠ (6分)又∵AB=AC,AE=ADABE ACD ∴△≌△ (10分。
2022-2023学年初一数学第二学期培优专题训练27 因式分解计算题

专题27 因式分解最新期中考题特训50道1.因式分解:(1)225x -;(2)244a b ab b -+.2.因式分解(1)324a ab -;(2)()()2x a b b a ---.3.分解因式:(1)249x y y -(2)222416a a +-()4.因式分解:(1)3222x x y xy -+(2)()()2141m m m -+-5.因式分解:(1)2449x -(2)22242x xy y -+6.因式分解:(1)236x -;(2)2288x y xy y -+.7.因式分解:(1)a 2-4b 2(2)2a 3+12a 2+18a8.因式分解:(1)2464x -(2)244x y xy y -+9.因式分解:(1)323x y x -;(2)22(2)9a b b --.10.因式分解:(1)2249m n -;(2)22396a b ab b -+11.把下列各式分解因式(1)x 2+2xy +y 2(2)5x 3﹣20x12.因式分解(1)296x y xy y ++(2)416a -.13.将下列各式分解因式:(1)2ab a -(2)22363ax axy ay -+-14.因式分解:(1)2269x xy y ++;(2)34m n mn -.15.因式分解:(1)3269x x x -+(2)416a -16.因式分解(1)2288x x -+(2)()()216a x y y x -+-17.因式分解:(1)2416a -;(2)222ax axy ay -+.18.因式分解:(1)(x +3y )2-x -3y(2)222(4)16a a +-19.分解因式:(1)4x 2-100;(2)2mx 2-4mxy +2my 2.20.把下面各式分解因式:(1)22327x y -(2)()()()22a b a a b a a b +-+++21.因式分解(1)2416x -(2)2288a b ab b -+22.因式分解:(1)3269a a a ++(2)222(4)16x x +-23.分解因式:(1)22352020.a b ab b -+(2)2222(1)(9)x x +--24.因式分解:(1)228x -(2)3222x x y xy -+25.分解因式:(1)2116a -(2)32232xy x y x y -+26.把下列各式分解因式:(1)2218a -(2)2484a a -+27.因式分解:(1)29x -(2)2242x y xy y -+28.因式分解(1)2416m -(2)2232x y xy y -+29.因式分解:(1)()24a b +-(2)22369ab a b b --(1)224x x -;(2)212123a a -+.31.分解因式:(1)241x -;(2)3244m m m -+.32.因式分解:(1)a 2-9;(2)2x 2-12x +1833.把下列各式因式分解(1)228a -(2)()()24129a b a b +-++34.把下列各式分解因式:(1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)235.分解因式:(1)2a (x ﹣y )+b (y ﹣x );(2)(x 2 +1)2﹣4x 2.36.因式分解:(1)2232x -(2)3223242x y x y xy ++37.因式分解:(1)2a 2﹣2(2)2441x x ++38.分解因式:(1)2363ab ab a -+(2)22()8()a a b a b ---39.分解因式:(1)321025a a a ++(2)()()126t t ++-(1))()(2x y y x x -+-(2)223242x y xy y -+.41.把下列各式因式分解:(1)228x -;(2)2(2)8(2)16a a +-++.42.把下列各式因式分解:(1)2288a a -+;(2)22()()a x y b x y ---.43.因式分解:(1)()()3a x y y x -+-(2)()222416x x +- 44.因式分解:(1)11824n n x x +-;(2)4224-1881x x y y +45.因式分解:(1)mx 2﹣my 2;(2)2x 2-8x +8.46.分解因式:(1)2x 2﹣4xy +2y 2(2)m 2(m ﹣n )+(n ﹣m )47.因式分解(1)24ab a -(2)4224816x x y y -+48.因式分解(1)21025m m -+(2)22222(4)16x y x y +-49.因式分解:(1)4x 2-64(2)2x 3y +4x 2y 2+2xy 3(1)2a a++;441 (2)2x-.416专题27 因式分解最新期中考题特训50道1.因式分解:(1)225x -;(2)244a b ab b -+. 【答案】(1)()()55+-x x(2)()22b a -【分析】(1)根据平方差公式因式分解即可求解;(2)先提公因式b ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()()55+-x x ;(2)解:原式=()244b a a -+ ()22b a =-. 【点评】本题考查了公式法和提公因式法进行因式分解,掌握因式分解的方法是解题的关键.2.因式分解(1)324a ab -;(2)()()2x a b b a ---.【答案】(1)()()22a a b a b +-(2)()()21a b x -+【分析】(1)先提公因式,再利用平方差公式分解因式即可;(2)先将原式变形,再提公因式分解因式即可.(1)解:324a ab -()224a a b =-()()22a a b a b =+-.(2)解:()()2x a b b a ---()()2x a b a b =-+-()()21a b x =-+.【点评】本题考差了多项式分解因式,熟练掌握提公因式法和公式法分解因式是解答本题的关键.3.分解因式:(1)249x y y -(2)222416a a +-() 【答案】(1)(23)(23)y x x +-(2)()()2222a a +-【分析】(1)先提公因式y ,再利用平方差公式即可直接分解;(2)首先利用平方差公式因式分解,然后再利用完全平方公式因式分解即可;(1) 249x y y - =2(49)y x -=(23)(23)y x x +-(2)222416a a +-()=()()224444a a a a ⎡⎤⎡⎤+++-⎣⎦⎣⎦=()()224444a a a a ++-+=()()2222a a +-【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.因式分解:(1)3222x x y xy -+(2)()()2141m m m -+- 【答案】(1)()2x x y -(2)()()()221m m m +--【分析】(1)直接提取公因式x ,再利用完全平方公式分解因式得出答案(2)直接提取公因式(1)m -,再利用平方差公式分解因式得出答案(1)解:原式22(2)x x xy y =-+2()x x y =-;(2)解:原式2(1)(4)m m =--(1)(2)(2)m m m =-+-.【点评】本题主要考查了提取公因式以及公式法分解因式,掌握平方差公式和完全平方公式是关键.5.因式分解:(1)2449x -(2)22242x xy y -+ 【答案】(1)()()2727x x +-(2)()22x y -【分析】(1)根据平方差公式分解因式即可;(2)先提公因式,然后根据完全平方公式分解因式即可.(1)解:2449x - ()2227x =-()()2727x x =+-. (2)解:22242x xy y -+()2222x xy y =-+()22x y =-.【点评】本题主要考查了因式分解,熟练掌握平方差公式和完全平方公式,是解题的关键.6.因式分解:(1)236x -;(2)2288x y xy y -+.【答案】(1)(x −6)(x +6)(2)2y (x −2)2【分析】(1)利用平方差公式即可因式分解;(2)先提公因式,再利用完全平方公式因式分解即可.(1)解:x 2−36;=(x −6)(x +6)(2)解:2x 2y −8xy +8y=2y (x 2−4x +4)=2y (x −2)2【点评】本题考查因式分解,熟练掌握提公因式法和公式法分解因式是解题关键. 7.因式分解:(1)a 2-4b 2(2)2a 3+12a 2+18a【答案】(1)(a +2b )(a -2b )(2)22(3)a a +【分析】(1)利用平方差公式,进行因式分解;(2)利用提公因式和完全平方公式,进行因式分解.(1)解:原式=(2)(2)a b a b +-;(2)解:原式=22(69)a a a ++=22(3)a a +.【点评】本题考查了因式分解,解题的关键是掌握平方差公式和完全平方差公式.8.因式分解:(1)2464x -(2)244x y xy y -+【答案】(1)()()444x x +-(2)()22y x -【分析】(1)先提取公因式,再利用平方差公式继续分解;(2)先提取公因式,再利用完全平方公式继续分解.(1)解:原式()()()2416444x x x =-=+-;(2)解:原式()()22442y x x y x =-+=-. 【点评】本题考查了因式分解,在因式分解时,能提公因式的要先提取公因式,再考虑用公式法继续分解,在因式分解时注意要分解彻底.9.因式分解:(1)323x y x -;(2)22(2)9a b b --. 【答案】(1)()()311x y y -+(2)()()42a b a b +-【分析】(1)先提公因式,然后再用平方差公式分解因式;(2)先用平方差公式分解因式,再提公因式即可.(1)解:323x y x -()321x y =-()()311x y y =-+(2)解:22(2)9a b b --()()2323a b b a b b =-+--()()2224a b a b =+-()()42a b a b =+-【点评】本题主要考查了因式分解,熟练掌握平方差公式()()22a b a b a b -=+-,是解题的关键.10.因式分解:(1)2249m n -;(2)22396a b ab b -+ 【答案】(1)(23)(23)m n m n +-(2)2(3)b a b -【分析】(1)直接运用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式进行因式分解即可.(1)解:原式22(2)(3)m n =-(23)(23)m n m n =+-(2)原式()2296b a ab b =-+2(3)b a b =-.【点评】题目主要考查因式分解的方法,熟练掌握提公因式法及公式法分解因式是解题关键.11.把下列各式分解因式(1)x 2+2xy +y 2(2)5x 3﹣20x【答案】(1)(x +y )2(2)5x (x +2)(x ﹣2)【分析】(1)直接运用公式法进行分解即可;(2)综合提公因式法和公式法进行分解即可.(1)原式()2x y =+(2)原式()()()254252x x x x x +-=-= 【点评】本题考查因式分解,掌握因式分解的常用方法,熟练运用基本公式是解题关键.12.因式分解(1)296x y xy y ++(2)416a -.【答案】(1)y (3x +1)2(2)(a 2+4)(a +2)(a -2)【分析】(1)先提公因式y ,再按照完全平方公式分解因式即可;(2)直接利用平方差公式分解因式即可.(1)解:9x 2y +6xy +y=y (9x 2+6x +1)=y (3x +1)2(2)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2)【点评】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键.13.将下列各式分解因式:(1)2ab a -(2)22363ax axy ay -+-【答案】(1)(1)(1)a b b +-(2)﹣3a (x ﹣y )2【分析】(1)原式先提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(1)原式=21a b -()=(1)(1)a b b +-;(2)原式=﹣3a (x 2﹣2xy +y 2)=﹣3a (x ﹣y )2;【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.因式分解:(1)2269x xy y ++;(2)34m n mn -.【答案】(1)()23x y +(2)()()22mn m m +-【分析】(1)直接根据完全平方公式因式分解即可求解;(2)先提公因式mn ,然后根据平方差公式因式分解即可求解.(1)解:原式=()23x y +;(2)解:原式=()24mn m - ()()22mn m m =+-.【点评】本题考查了因式分解,掌握因式分解的方法是解题的关键.15.因式分解:(1)3269x x x -+(2)416a - 【答案】(1)()23x x -(2)()()()2422a a a ++- 【分析】(1)先提出公因式,再利用完全平方公式分解,即可求解;(2)利用平方差公式分解,即可求解.(1)解∶ 3269x x x -+()269x x x =-+()23x x =-; (2)解∶ 416a -()()2244a a =+-()()()2422a a a =++-.【点评】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法是解题的关键.16.因式分解(1)2288x x -+(2)()()216a x y y x -+- 【答案】(1)()222x -(2)()()()44x y a a -+-【分析】(1)先提公因数,再利用完全平方公式分解因式;(2)先提公因式,再利用平方差公式分解.(1)解:原式=2(x 2-4x +4)=2(x -2)2;(2)解:原式=(x -y )(a 2-16)=()()()44x y a a -+-【点评】本题考查因式分解的应用,熟练掌握因式分解的各种方法并灵活运用是解题关键.17.因式分解:(1)2416a -;(2)222ax axy ay -+.【答案】(1)()()422a a +-(2)()2a x y -【分析】(1)用平方差公式进行因式分解;(2)先提取公因式,再利用完全平方公式继续分解.(1)解:原式()()()244422a a a =-=+-; (2)解:原式()()2222a x xy y a x y =-+=-. 【点评】本题考查了因式分解,熟练掌握提公因式法和公式法是解题的关键.18.因式分解:(1)(x +3y )2-x -3y(2)222(4)16a a +-【答案】(1)(x +3y )(x +3y -1);(2)22(2)(2)a a -+【分析】(1)用提取公因式进行因式分解.(2)先用平方差公式进行因式分解,后用完全平方公式进行因式分.(1)(x +3y )2-x -3y=(x +3y )2-(x +3y )=(x +3y )(x +3y -1)(2)222(4)16a a +-=()()224444a a a a -+++=22(2)(2)a a -+【点评】此题考查了因式分解,解题关键是会用提取公式法和公式法进行因式分解.19.分解因式:(1)4x 2-100;(2)2mx 2-4mxy +2my 2.【答案】(1)()()455x x +-(2)()22m x y -【分析】(1)先提取公因式4,然后再运用平方差公式因式分解即可;(2)先提取公因式2m ,然后再运用完全平方公式因式分解即可.(1)解:4x 2-100=4(x 2-25)=()()455x x +-.(2)解:2mx 2-4mxy +2my 2=2m (x 2-2xy +y 2)=()22m x y -.【点评】本题主要考查了因式分解,掌握运用提取公因式法和公式法成为解答本题的关键.20.把下面各式分解因式:(1)22327x y -(2)()()()22a b a a b a a b +-+++ 【答案】(1)3(3)(3)x y x y +-;(2)2()(1)a b a +-【分析】(1)先提取公因式,再套用平方差公式;(2)先提取公因式,再套用完全平方公式.【解答】(1)解:原式=2239x y=3(3)(3)x y x y +-;(2)解:原式=212ab a a=2()(1)a b a +-.【点评】本题考查了整式的因式分解,即把一个多项式化成几个整式积的形式;掌握因式分解的提公因式法、公式法是解决本题的关键.21.因式分解(1)2416x -(2)2288a b ab b -+【答案】(1)()()422x x +-(2)()222b a -【分析】(1)先提取公因式,再运用平方差公式进行分解即可;(2)先提取公因式,再运用完全平方差公式进行分解即可.(1)解:2416x -()244x =- ()()422x x =+-(2)2288a b ab b -+()2244b a a =-+()222b a =-.【点评】本题考查因式分解,解题关键是掌握因式分解的方法与步骤.22.因式分解:(1)3269a a a ++(2)222(4)16x x +- 【答案】(1)2(3)a a +(2)22(2)(2)x x +-【分析】(1)先提公因式,再利用完全平方公式继续分解即可解答;(2)先利用平方差公式,再利用完全平方公式继续分解即可解答.(1)3269x x x ++ 2(69)x x x =++2(3)x x =+;(2)222(4)16x x +-22(44)(44)x x x x =+++-22(2)(2)x x =+-.【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.23.分解因式:(1)22352020.a b ab b -+(2)2222(1)(9)x x +--【答案】(1)5b (a -2b )2(2)20(x -2)(x +2)【分析】(1)先提公因式,再利用完全平方公式继续分解即可解答;(2)先利用平方差公式,再提公因式,最后再利用平方差公式继续分解即可解答.(1)解:原式 =5b (a 2-4ab +4b 2)=5b (a -2b )2(2)原式=(x 2+1-x 2+9)(x 2+1+x 2-9)=10×(2x 2-8)=20(x 2-4)=20(x -2)(x +2)【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.24.因式分解:(1)228x -(2)3222x x y xy -+ 【答案】(1)2(2)(2)x x +-(2)2()x x y -【分析】(1)先提取公因数2,然后再运用平方差公式分解即可;(2)先提取公因式x ,然后再运用完全平方公式分解即可.(1)解:228x -=()224x - =()()222x x +-.(2)解:3222x x y xy -+=()222x x xy y -+=()2x x y -.【点评】本题主要考查了因式分解,综合运用提取公因式法和公式法是解答本题的关键.25.分解因式:(1)2116a -(2)32232xy x y x y -+【答案】(1)()()1414a a +-(2)()xy y x -2【分析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式xy ,再利用完全平方公式分解因式即可.(1)解:2116a -=(1-4a )(1+4a );(2)解:32232xy x y x y -+=xy (y 2-2xy +x 2)=xy (y -x )2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.26.把下列各式分解因式:(1)2218a -(2)2484a a -+ 【答案】(1)2(3)(3)a a +-;(2)24(1)a -【分析】(1)先提取公因式2,再利用平方差公式分解因式即可得;(2)先提取公因式4,再利用完全平方公式分解因式即可得.【解答】解:(1)原式22(9)a =-2(3)(3)a a =+-;(2)原式24(21)a a =-+24(1)a =-.【点评】本题考查了因式分解,熟练掌握提取公因式法和公式法是解题关键.27.因式分解:(1)29x -(2)2242x y xy y -+【答案】(1)()()33x x +-(2)()221y x -【分析】(1)用平方差公式分解因式即可;(2)先提公因式,然后再用公式法分解因式即可.(1)解:29x -223x =-()()33x x =+-;(2)2242x y xy y -+()2221y x x =-+()221y x =-.【点评】本题主要考查了因式分解,熟练掌握平方差公式()()22a b a b a b +-=-和完全平方公式()2222a b a ab b ±=±+是解题的关键.28.因式分解(1)2416m -(2)2232x y xy y -+ 【答案】(1)4(2)(2)m m +-(2)2()y x y -【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.(1)()224(2)(241644)m m m m -=-=+-(2)()22322222()y x y xy y x xy y y x y -+--=+= 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.29.因式分解:(1)()24a b +-(2)22369ab a b b --【答案】(1)(2)(2)a b a b +++-(2)2(3)b a b --【分析】(1)将()a b +作为整体,利用平方差公式分解即可;(2)原式先提取公因式,再利用完全平方公式分解即可.(1)解:原式(2)(2)a b a b =+++-(2)解:原式22(69)b ab a b =--2(3)b a b =--【点评】本题主要考查了提公因式法与公式法因式分解,熟练掌握因式分解的方法是解题关键.30.因式分解:(1)224x x -;(2)212123a a -+. 【答案】(1)()22x x -(2)()2321a -【分析】(1)运用提公因式法因式分解即可求解;(2)先运用提公因式法,再运用公式法分解因式即可.(1)解:()22422x x x x -=- (2)解:()()222121233441321a a a a a -+=-+=- 【点评】本题考查整式的因式分解,熟练运用提公因式法和公式法分解因式是解本题的关键.31.分解因式:(1)241x -;(2)3244m m m -+.【答案】(1)(2x +1)(2x ﹣1)(2)2(2)m m -【分析】(1)利用平方差公式,分解即可解答;(2)先提公因式,再利用完全平方公式继续分解即可解答.(1)解:原式=(21)(21)x x +-(2)解:原式= 2(44)m m m -+=2(2)m m -【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.32.因式分解:(1)a 2-9;(2)2x 2-12x +18 【答案】(1)(3)(3)a a +-;(2)22(3)x -【分析】(1)利用平方差公式进行因式分解即可;(2)综合利用提取公因式法和完全平方公式进行因式分解即可.【解答】解:(1)原式223a =-(3)(3)a a =+-;(2)原式22(69)x x =-+22(3)x =-.【点评】本题考查了因式分解,熟练掌握提取公因式法和公式法是解题的关键.33.把下列各式因式分解(1)228a -(2)()()24129a b a b +-++ 【答案】(1)()()222a a +-(2)()2223a b +-【分析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a - ()224a =-()()222a a =+-;(2)()()24129a b a b +-++ ()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.【点评】本题考查因式分解,注意因式分解的步骤为先提公因式,再用公式法,灵活运用平方差公式和完全平方公式是解题的关键.34.把下列各式分解因式:(1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)2 【答案】(1)()()11a a a +-(2)()()2222x y x y -+-【分析】(1)先提公因式,再利用平方差公式即可进行因式分解;(2)先利用平方差公式,再利用完全平方公式即可求解.(1)原式=()21a a - =()()11a a a +-;(2)原式=()()222244xy x y -+ =()()22224444xy x y xy x y ++-- =()()2222x y x y -+-.【点评】本题考查了分解因式,解题关键是掌握提公因式法和公式法分解因式.35.分解因式:(1)2a (x ﹣y )+b (y ﹣x );(2)(x 2 +1)2﹣4x 2.【答案】(1)(2a -b )(x -y )(2)(x +1)2(x -1)2【分析】(1)原式变形后,提取公因式即可得到结果;(2)原式利用平方差公式和完全平方公式分解即可.(1)2a (x ﹣y )+b (y ﹣x )=2a (x ﹣y )-b (x ﹣y )=(2a -b )(x -y )(2)(x 2 +1)2﹣4x 2=22(21)(21)x x x x ++-+=(x +1)2(x -1)2【点评】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.36.因式分解:(1)2232x -(2)3223242x y x y xy ++ 【答案】(1)()()244x x +-(2)()22xy x y +【分析】(1)先提取公因式2,然后利用平方差公式继续进行因式分解;(2)先提取公因式2xy ,然后利用完全平方公式继续进行因式分解. (1)2232x - =22(16)x -=()()244x x +-;(2)3223242x y x y xy ++=222(2)xy x xy y ++=()22xy x y +【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.37.因式分解:(1)2a 2﹣2(2)2441x x ++【答案】(1)2(a +1)(a -1)(2)2(21)x +【分析】(1)先提公因式2,再利用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(1)解:2a 2﹣2=2(a 2﹣1)=2(a +1)(a -1).(2)解:2441x x ++=2(21)x +.【点评】本题主要考查利用提公因式法和公式法进行因式分解,掌握因式分解的方法是解本题的关键.38.分解因式:(1)2363ab ab a -+(2)22()8()a a b a b --- 【答案】(1)23(1)a b -(2)2()(2)(2)a b a a -+-【分析】(1)先提公因式,再用完全平方公式,分解即可;(2)先提公因式,再用平方差公式,分解即可.(1)解:3ab 2−6ab +3a=3a ·b 2-3a ·2b +3a ·1=3a (b 2-2b +1)=3a (b −1)2;(2)2a 2(a −b )−8(a −b )=2(a −b ) (a 2−4)=2(a −b ) (a 2−22)=2(a −b ) (a +2) (a −2).【点评】此题考查了因式分解的提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.39.分解因式:(1)321025a a a ++(2)()()126t t ++-【答案】(1)2(5)a a +(2)(4)(1)t t +-【分析】(1)原式提取公因式后,再利用完全平方公式分解即可;(2)原式整理后,再利用十字相乘法分解即可.(1)解:32221025(1025)(5)a a a a a a a a ++=++=+.(2)解:()()2212632634(4)(1)t t t t t t t t ++-=++-=+-=+-.【点评】本题考查了提取公因式与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.40.分解因式:(1))()(2x y y x x -+-(2)223242x y xy y -+. 【答案】(1)()()1(1)x y x x -+-(2)()22y x y -【分析】(1)先提取公因式x-y ,然后利用平方差公式进行分解;(2)先提取公因式2y ,然后利用完全平方公式分解因式即可.【解答】(1)解:原式=2()(1)x y x --=()()1(1)x y x x -+-(2)原式=()2222y x xy y -+ =()22y x y -【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.41.把下列各式因式分解:(1)228x -;(2)2(2)8(2)16a a +-++.【答案】(1)2(2)(2)x x +-;(2)2(2)a -.【分析】(1)根据提公因式法和平方差公式分解因式即可;(2)将(2)a +看成一个整体,利用完全平方公式分解因式即可.(1)解:228x -,=22(4)x -,=2(2)(2)x x +-;(2)解:2(2)8(2)16a a +-++,2(24)a =+-,2=(2)a - ,【点评】本题考查因式分解,解题的关键是熟练掌握提公因式法和平方差公式,完全平方公式分解因式.42.把下列各式因式分解:(1)2288a a -+;(2)22()()a x y b x y ---. 【答案】(1)()222a -(2)()()()x y a b a b -+-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式继续分解即可.(1)解:2288a a -+()2244a a =-+()222a =-; (2)解:()()22a x y b x y ---()()22x y a b =--()()()x y a b a b =-+-.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.43.因式分解:(1)()()3a x y y x -+-(2)()222416x x +-【答案】(1)()()3x y a --(2)()()2222x x +-【分析】(1)根据提公因式法因式分解,提取()x y -,即可求解;(2)根据平方差公式和完全平方公式求解即可.(1)解:原式=()()3a x y y x -+- =()()3x y a --(2)解:原式=()()224444x x x x +++-()()2222x x =+-【点评】本题考查了因式分解,掌握因式分解的方法是解题的关键.44.因式分解:(1)11824n n x x +-;(2)4224-1881x x y y + 【答案】(1)()634n x x - (2)()()2233x y x y +-【分析】(1)提公因式分解因式即可;(2)先用完全平方公式因式分解,再用平方差公式分解因式即可.(1)解:18xn +1−24xn=6xn ·3x −6xn ·4= 6xn (3x −4);(2)x 4-18x 2y 2+81y 4=(x 2−9y 2)2=(x +3y )2(x −3y )2.【点评】本题考查了多项式的因式分解,解题的关键是熟练掌握多项式的因式分解的方法:提公因式法、公式法(平方差公式、完全平方公式)、分组分解法、十字相乘法,并根据多项式的特征灵活选取不同的方法,还要注意一定要分解彻底.45.因式分解:(1)mx 2﹣my 2;(2)2x 2-8x +8. 【答案】(1)m (x +y )(x ﹣y )(2)2(x ﹣2)2【分析】(1)先提取公因式,再由平方差公式分解因式即可;(2)先提取公因式,再由完全平方公式分解因式即可;(1)解:mx 2﹣my 2=m (x 2﹣y 2)=m (x +y )(x ﹣y );(2)解:2x 2-8x +8=2(x 2-4x +4)=2(x ﹣2)2.【点评】本题考查了提取公因式法和公式法分解因式,掌握平方差公式()()22a b a b a b -=+-和完全平方公式()2222a b a b ab ±=+±是解题关键.46.分解因式:(1)2x 2﹣4xy +2y 2(2)m 2(m ﹣n )+(n ﹣m )【答案】(1)2(x ﹣y )2(2)(m ﹣n )(m +1)(m ﹣1)【分析】(1)先提取公因数2,再利用完全平方公式继续分解即可;(2)先提取公因式()m n -,再利用平方差公式继续分解即可.(1)解:原式=()2222x xy y -+ =()22x y -;(2)解:原式=()()21m n m -- =()()()11m n m m -+-.【点评】本题考查了提公因式法与公式法因式分解的综合应用,熟练掌握因式分解的方法是解题的关键.47.因式分解(1)24ab a -(2)4224816x x y y -+ 【答案】(1)()2(2a b b +-)(2)22(2)(2)x y x y +-【分析】(1)先提取公因式a ,再用平方差公式分解;(2)先用完全平方公式分解,再用平方差公式分解.(1)解:原式=a (b 2-4)= ()2(2a b b +-);(2)解:原式=(x 2-4y 2)2= 22(2)(2)x y x y +-.【点评】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.48.因式分解(1)21025m m -+(2)22222(4)16x y x y +- 【答案】(1)()25m -(2)22(2)(2)x y x y +-【分析】(1)利用完全平方公式即可分解;(2) 利用完全平方公式和平方差公式即可分解.(1)解:()2210255m m m =--+(2)解:22222(4)16x y x y +-2222(4)()444x y x x xy y y =+++-22(2)(2)x y x y =+- 【点评】本题考查了利用完全平方公式和平方差公式分解因式,熟练掌握和运用因式分解的方法是解决本题的关键.49.因式分解:(1)4x 2-64(2)2x 3y +4x 2y 2+2xy 3 【答案】(1)4(4)(4)x x -+;(2)22()xy x y +【分析】(1)先提取公因式,再利用平方差公式分解,即可解答;(2)先提公因式,再利用完全平方公式继续分解,即可解答.(1)解:4x 2-64=4(x 2-16)=4(x +4)(x -4)(2)解:2x 3y +4x 2y 2+2xy 3=222(2)xy x xy y ++=22()xy x y +【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.50.因式分解: (1)2441a a ++;(2)2416x -.【答案】(1)2(21)a +(2)4(2)(2)x x +-【分析】(1)根据完全平方公式因式分解即可;(2)先提取公因数4,再根据平方差公式因式分解即可.(1)解:222441(2)221(21)a a a a a ++=+⨯+=+(2)解:2224164(2)4(2)(2)x x x x -=-=+-.【点评】本题考查了因式分解,掌握平方差公式和完全平方公式是解题的关键.。
最新人教版七年级(下册)实数数学试卷培优试题

一、选择题1.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12 B .24 C .27 D .30 2.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣10 3.若9﹣13的整数部分为a ,小数部分为b ,则2a +b 等于( ) A .12﹣13B .13﹣13C .14﹣13D .15﹣134.如示意图,小宇利用两个面积为1 dm 2的正方形拼成了一个面积为2 dm 2的大正方形,并通过测量大正方形的边长感受了2dm 的大小. 为了感知更多无理数的大小,小宇利用类似拼正方形的方法进行了很多尝试,下列做法不能实现的是( )A .利用两个边长为2dm 的正方形感知8dm 的大小B .利用四个直角边为3dm 的等腰直角三角形感知18dm 的大小C .利用一个边长为2dm 的正方形以及一个直角边为2dm 的等腰直角三角形感知6dm 的大小D .利用四个直角边分别为1 dm 和3 dm 的直角三角形以及一个边长为2 dm 的正方形感知10dm 的大小5.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .106.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②7.如图,点A 表示的数可能是( )A 21B 6C 11D 178.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 24 10 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425B .426C .427D .4289.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x10.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间二、填空题11.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 12.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.13.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.如图所示为一个按某种规律排列的数阵:根据数阵的规律,第7行倒数第二个数是_____.16.我们可以用符号f (a )表示代数式.当a 是正整数时,我们规定如果a 为偶数,f (a )=0.5a ;如果a 为奇数,f (a )=5a +1.例如:f (20)=10,f (5)=26.设a 1=6,a 2=f (a 1),a 3=f (a 2)…;依此规律进行下去,得到一列数:a 1,a 2,a 3,a 4…(n 为正整数),则2a 1﹣a 2+a 3﹣a 4+a 5﹣a 6+…+a 2013﹣a 2014+a 2015=_____.17.220a b a --=,则2+a b 的值是__________; 18.1x -(y +1)2=0,则(x +y )3=_____. 19.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______. 22.新定义:对非负数x“四舍五入”到个位的值记为<x>, 即当n 为非负数时,若1122n x n -≤<+,则<x>=n . 例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,… 试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x 的取值范围是________________.(2)若关于x 的不等式组24130x x m x -⎧≤-⎪⎨⎪->⎩的整数解恰有4个,求<m>的值;(3)求满足65x x =的所有非负实数x 的值. 23.数学中有很多的可逆的推理.如果10b n =,那么利用可逆推理,已知n 可求b 的运算,记为()b f n =,如210100=, 则42(100);1010000f ==,则4(10000)f =.①根据定义,填空:(10)f =_________,()310f =__________.②若有如下运算性质:()()(),()()n f mn f m f n f f n f m m⎛⎫=+=- ⎪⎝⎭. 根据运算性质填空,填空:若(2)0.3010f =,则(4)f =__________;(5)f =___________; ③下表中与数x 对应的()f x 有且只有两个是错误的,请直接找出错误并改正.24.11,将这个数减去其整数部分,差∵23223<<,即23<<,∴的整数部分为2,小数部分为)2。
七年级下册数学培优训练 平面直角坐标系综合问题(压轴题)

培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD.图2(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标;(3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标;(4)在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)0a ++=,过C 作CB ⊥x 轴于B .(1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ; (3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC=24.(1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.A(-2,0)B(0,-3)y x【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连结P A ,PB ,使S △P AB =S △试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)【例1】如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,直线AB∥CD,直线l与直线AB,CD相交与点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.
①若∠PEF=48°,则∠EFC的度数为.
②若∠PEF=48°,点Q恰好落在其中一条平行线上,则∠EFP的度数为.
③若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.
2、如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分
别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)∠CBD=
(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=
(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.
3.直线AB 、CD 被直线EF 所截,AB ∥CD ,点P 是平面内一动点.设∠PFD=∠1,
∠PEB=∠2,∠FPE=∠α.
(1)若点P 在直线CD 上,如图①,∠α=50°,则∠1+∠2= °;
(2)若点P 在直线AB 、CD 之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出
证明;
(3)若点P 在直线CD 的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请
作出判断并说明理由.
4.如图1,平移三角形ABD,使点D 沿BD 的延长线平移至点C ,得到三角形A B C ''',A B ''交AC 于点E ,AD 平分∠BAC.
(1)猜想B EC '∠与A '∠之间的关系,并写出理由;
(2)如果将三角形ABD 平移至如图2所示位置,得到△A B D ''',请问A D ''平分BAC
'''∠吗?为什么?
5.如图,CB∥OA,∠C=∠A=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
6.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4 cm,OA=5 cm,DE=2 cm,动点P从点A出发,以每秒1 cm的速度,沿ABC路线向点C运动;动点Q从点O出发,以每秒2 cm的速度,沿OED路线向点D运动.若P,Q两点同时出发,其中一点到达终点时,运动停止.
(1)直接写出B,C,D三个点的坐标;
(2)当P,Q两点出发3 s时,求三角形PQC的面积;
(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积.
7.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB,交BD于O,且∠EOD+∠OBF=180°,∠F=∠G.求证:D G∥CE
8.如图所示,AB∥CD,∠CFE的平分线与∠EGB平分线的反向延长线交于点P,若∠E=20°,则∠FPH的度数为多少?
9.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.
(1)求∠EDC的度数;
(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向移动,使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).。