离散数学,置换群和子群及其陪集共48页

合集下载

《子群的陪集》课件

《子群的陪集》课件
《子群的陪集》PPT 课件
• 子群与陪集的定义 • 子群的分类 • 陪集的分类 • 子群的性质 • 陪集的性质 • 子群与陪集的应用
目录
01
子群与陪集的定义
子群的定义
子群
一个群G的一个非空子集H,如果 对于G的每一个元素g,H中的元 素h满足$ghg^{-1}$也在H中, 则称H是G的一个子群。
陪集的性质
总结词
陪集的性质
详细描述
陪集具有传递性、对称性和可结合性,即如果H₁/G和H₂/G是群G的两个子群,那么H₁∩H₂/G=(H₁/G)∩(H₂/G), 且(H₁∪H₂)/G=(H₁/G)∪(H₂/G)。
陪集的运算性质
总结词
陪集的运算性质
详细描述
如果H₁/G和H₂/G是群G的两个子群,那么(H₁∪H₂)/G=(H₁/G)∪(H₂/G), (H₁∩H₂)/G=(H₁/G)∩(H₂/G),且H₁/G⋅H₂/G=(H₁⋅H₂)/G。
正规子群。
举例
整数模n的乘法子群是模n的剩余 类环的正规子群。
性质
正规子群在陪集中保持元素共轭 。
幂零子群
定义
如果存在正整数n,使得 $a^n=e$对于所有$a in H$,则称H是幂零子群。
举例
整数模n的乘法子群是幂零 子群。
性质
幂零子群是可解的,且其 指数为素数。
幂小子群
定义
如果存在正整数n,使得$a^n=e$对于所有$a in H$,则称H是幂小子群。
子群与陪集的关系
子群的陪集
如果H是G的子群,那么H的左陪集和右陪集都是G的子群。特别地,如果H是G 的正规子群,那么H的左陪集和右陪集是相同的,称为H在G中的余类。
举例
在整数集合中,所有偶数的集合是整数集合的一个子群,偶数集合的左陪集和右 陪集都是整数集合的子群。特别地,如果取H为所有偶数,那么H是整数集合的 正规子群,其左陪集和右陪集都是整数集合的子群。

离散数学第2版教学课件-子群

离散数学第2版教学课件-子群

8.2 子群与陪集子群与群的关系:拉格朗日定理。

子群判定定理典型子群陪集H 是G 的非空子集(1)a,b ∈H 有a b ∈H(2) a ∈H 有a -1∈H.H 是G 的非空子集a,b ∈H,有ab -1∈HH 是G 的非空有穷子集a,b ∈H 有ab ∈H 陪集的性质Lagrange 定理及推论子群非空子集、群8.2 子群与陪集子群定义设G是群,H是G的非空子集,定义8.5(1) 如果H关于G中的运算构成群,则称H是G的子群, 记作H≤G.(2) 若H是G的子群,且H G,则称H是G的真子群,记作H<G.例如nZ (n是自然数) 是整数加群<Z,+> 的子群. 当n≠1时,nZ是Z的真子群.任何群G都存在子群. G和{e}都是G的子群,称为G的平凡子群.(子群判定定理1 )定理8.5设G为群,H是G的非空子集,则H是G的子群当且仅当(1) ∀a,b∈H有ab∈H(2) ∀a∈H有a-1∈H.证必要性是显然的.为证明充分性,只需证明e∈H.因为H非空,存在a∈H. 由条件(2) 知a-1∈H,根据条件(1) aa-1∈H,即e∈H.(子群判定定理2 )定理8.6设G为群,H是G的非空子集. H是G的子群当且仅当∀a,b∈H,有ab-1∈H.证必要性显然.只证充分性. 因为H非空,必存在a∈H.根据给定条件得aa-1∈H,即e∈H.任取a∈H, 由e,a∈H 得ea-1∈H,即a-1∈H.任取a,b∈H,知b-1∈H. 再利用给定条件得a(b-1) -1∈H,即ab∈H.综合上述,可知H是G的子群.(子群判定定理3 )定理8.7设G为群,H是G的非空有穷子集,则H是G的子群当且仅当∀a,b∈H有ab∈H. 证必要性显然.为证充分性,只需证明a∈H有a-1∈H.任取a∈H, 若a = e, 则a-1= e∈H.若a≠e,令S={a,a2,…},则S⊆H.由于H是有穷集,必有a i= a j(i<j).根据G中的消去律得a j-i= e,由a ≠ e可知j-i>1,由此得a j-i-1a = e 和 a a j-i-1= e从而证明了a-1= a j-i-1∈H.根据子群判定定理1,可知H是G的子群。

离散数学,置换群和子群及其陪集

离散数学,置换群和子群及其陪集

因为置换按定义是一对一的,所以b1,b2,…,bn是 a1,a2,…,an的一个排列,由此可见,M的每个置 换对应a1,a2,…,an的一个排列,不同的置换对应 不同的排列,此外,a1,a2,…,an的任意排列也确 定M的一个置换,所以,M的置换共有n!个,其 中n是M的元数,M上的置换也称为n元置换。以下 用Sn表示这n!个置换作成的集合。
a1 a 2 a n b b b n 1 2
-1= b1 b 2 b n a1 a 2 a n

因此,我们有:
定理6.2.6 n元置换的全体作成的集合Sn对置换 的乘法作成一个群,称为n 次对称群。 注意,由于一般情况下置换相乘不满足交换律, 如上例,
§6.2.4 置 换 群 在伽罗瓦理论中起关键作用的就是置换群,它是有限群 的特例,是群的典型代表。
置换的定义:
定义6.2.4 设M是一个非空的有限集合,M的一个一对一 变换称为一个置换。 设M的元素为a1,a2,…,an,则M的置换σ可以简记为
σ=
a1 a 2 a n ,bi=σ(ai),i=1,2…,n b b b n 1 2
若M已经没有另外的元素,则σ就等于这个轮 换,否则设b1不在a1,…,ar之内,则同样 作法又可得到一个轮换(b1…bs)。 因为a1,…,ar各自已有变到它的元素,所 以b1,…,bs中不会有a1,…,ar出现,即 这两个轮换不相杂。若M的元素已尽,则σ 就等于这两个轮换的乘积,否则如上又可 得到一个轮换。如此类推,由于M有限,最 后必得 σ=( a1…ar)(b1…bs)…(c1…ct) (1) 即σ表成了不相杂的轮换的乘积。
证明:设σ=(a1…ar),τ=(b1…bs),σ和τ不 相杂。命χ为M的任意元素, (1)若χ在a1,…,ar之内,例如χ=ai,则 στ(χ)=στ(ai)=σ(ai)=ai+1, τσ(χ)=τσ(ai)=τ(ai+1)= ai+1。 i=r时,ai+1应改为a1。 总之,στ(χ)=τσ(χ)。 (2)同样可以说明,若χ在b1, …,bs之内, 也有στ(χ)=τσ(χ)。 (3)设χ不在a1, …,ar, b1, …,bs之内。 于是, στ(χ)=σ(χ)=χ,τσ(χ)=τ(χ)=χ。 因此,在所有情况下,στ(χ)=τσ(χ),故 στ=τσ。

§6.3置换群(离散数学)

§6.3置换群(离散数学)
a3=σ(a2)=σ(a’2)= a’3 ,…,
证明
可见,(a1…ar)必和必
出现在(2)中,同样(2)中的任意轮换
必出现在(1)中,因之,(1)和(2)一
样,最多排列方法不同,但不相杂的轮换
相乘适合交换律,所以排列的次序本来是
可以任意颠倒的。
若M已经没有另外的元素,则σ就等于这个
轮换,否则设b1不在a1,…,ar之内,则同样作 法又可得到一个轮换(b1…bs).因为a1,…,ar 各自已有变到它的元素,所以b1,…,bs中不会 有a1,…,ar出现,即这两个轮换不相杂。若M 的元素已尽,则σ就等于这两个轮换的乘积,否
则如上又可得到一个轮换。如此类推,由于M有
往证(a1a2…atat+1)= (a1at+1) (a1a2…at) 令σ1=(a1 at+1),σ2=(a1 a2… at), 下面证明σ= σ1 σ2。 任取l∈M,
若l {a1,a2,…,at-1},不妨设l=am,则 σ(l)= σ(am)=am+1,
σ1 σ2(l)= σ1 (am+1)=am+1; 若l=at,则
§6.3 置 换 群
❖ 6.3.1 置换的定义 ❖ 6.3.2 置换的轮换表法 ❖ 6.3.3 置换的顺向圈表示 ❖ 6.3.4 置换的奇偶性
6.3.1 置换的定义
❖ 定义. 设M是一个非空的有限集合,M的 一个一对一变换称为一个置换。
❖ 设M={a1,a2,…,an},则M的置换σ可简记为
σ=
a1 b1
σ(l)=at+1 σ1σ2(l)=σ1σ2(at)=σ1(σ2(at))=σ1(a1)=at+1; 若l=at+1,则

§6.3 离散数学 置 换 群

§6.3 离散数学 置 换 群
结论:若σ和τ是M的两个不相杂的轮换,
则 στ=τσ.
证明:设σ=(a1…ar),τ=(b1…bs),
σ和τ不相杂。命χ为M的任意元.
若χ∈{a1,…,ar},设χ=ai,则
στ(χ)=στ(ai)=σ(ai) = ai+1,
τσ(χ)=τσ(ai)=τ(ai+1)=ai+1 。
i=r时, ai+1 应改为 a1 。
1 2 3 3 1 2
置换的乘法
对M中任意元素a及M的任意两个置换σ,τ, 规定στ(a)=σ(τ(a))。

例. 设σ= 则στ= τ σ=
1 2 3 4 2 1 3 4, τ= 1 2 3 4 3 4 2 1 , 1 2 3 4 4 3 1 2
1 2 3
一个元素不动:σ2= 1 2 3 σ4=
2 1 3
1 2 3 1 3 2σ 3= 1 2 3 2 3 1 σ = 6
1 2 3 3 2 1
0个元素不动:σ5= 故,S3 = {σ1,σ2,σ3,σ4,σ5,σ6}
Sn不是Abel群。 1
6.3.2 置换的轮换表法 轮换的定义

轮换. 设σ是M的置换,若可取到M的元素
a1, …,ar 使
σ(a1)=a2,σ(a2)=a3,…,σ(ar-1)=ar,σ(ar)=a1, 而σ不变M的其余的元素,则σ称为一个轮换, 记为 (a1 a2 … ar )

例. σ=
1 2 3 4 5 6 3 2 4 1 5 6
1


=
b1 b2 bn a a a n 1 2

《离散数学》课件第6章 (2)

《离散数学》课件第6章 (2)

〈SS, , 〈Σ*, τ〉不是可交换半群。
定义 6.1.3 含有关于*运算的幺元的半群〈S, *〉, 称
它为独异点(monoid), 或含幺半群, 常记为〈S, *, e〉(e是
幺元)。
第六章 几个典型的代数系统
【例6.1.4】
〈Z, +〉是独异点, 幺元是0, 〈Z, +, 0〉;
〈Z, ×〉是独异点, 幺元是1, 〈Z, ×, 1〉;
(4) A≠ , 〈P(A), ∩〉是半群, 幺元为A, 非空集合无逆
元, 所以不是群。
(5) A≠ , 〈P(A), 是S, 所以是群。
S∈P(A), S的逆元
(6) 〈Q+, ·〉(正有理数与数乘)为一群, 1为其幺元。 〈Q, ·〉不是群, 因为数0无逆元。
因为零元无逆元, 所以含有零元的代数系统就不会是群。
逻辑关系见图6.1.1。
第六章 几个典型的代数系统
图6.1.1
第六章 几个典型的代数系统
定义 6.1.1 设〈S, *〉是代数系统, *是二元运算, 如果*运算满足结合律, 则称它为半群(semigroups)。
换言之, x, y, z∈S, 若*是S上的封闭运算且满足 (x*y)*z=x*(y*z), 则〈S, *〉是半群。
设半群〈S, *〉中元素a(简记为a∈S)的n次幂记为an, 递 归定义如下:
a1=a an+1=an*a1 n∈Z+ 即半群中的元素有时可用某些元素的幂表示出来。
因为半群满足结合律, 所以可用数学归纳法证明
am*an=am+n, (am)n=amn。
第六章 几个典型的代数系统
普通乘法的幂、 关系的幂、 矩阵乘法的幂等具体的代 数系统都满足这个幂运算规则。

离散数学群与子群-PPT

离散数学群与子群-PPT

解:由题意,R上得二元运算★得运算表如上所示,由表知,运算★在R上就 是封闭得。
对于任意a, b, cR,(a★b)★c表示将图形依次旋转a, b和c,而 a★(b★c)表示将图形依次旋转b,c和a,而总得旋转角度都就是 a+b+c(mod 360),因此(a★b)★c= a★(b★c),即★运算满足结合性。
a
b
c
d
b
d
a
c
定理5、4、4 群〈G,*〉得运算表中任一行(列)得元素都就是G中元 素得一个置换。且不同行,不同列得置换都不同。 证明 首先,证明运算表中得任一行或任一列所含G中得一个元素不可能多 于一次。用反证法,如果对应于元素a∈G得那一行中有两个元素都就 是c,即有 a*b1=a*b2=c 且b1≠b2 由可约性可得 b1=b2,这与b1≠b2矛盾。
其次,要证明G中得每一个元素都在运算表得每一行和每一列中出现。考 察对应于元素a∈G得那一行,设b就是G中得任一元素,由于 b=a*(a1*b),所以b必定出现在对应于a得那一行中。
再由运算表中没有两行(或两列)相同得事实,便可得出:<G,*>得运算表中 每一行都就是G得元素得一个置换,且每一行都就是不相同得。同样得 结论对于列也就是成立得。
结果都等于另一个元素, ) 3) G中任何元素得逆元就就是她自己; 。 故〈G,*〉为一个群。 此外,运算就是可交换得,一般称这个群为克莱因(Klein)四元群,简称四元群。
思考练习
已知:在整数集 I 上得二元运算定义为:a,b∈I,
a b=a+b-2
证明:< I , >为群。
么元为:2 逆元:x-1=4-x
离散数学群与子群
一、群得概念

§6.3置换群(离散数学)

§6.3置换群(离散数学)
σ(l)=at+1 σ1σ2(l)=σ1σ2(at)=σ1(σ2(at))=σ1(a1)=at+1; 若l=at+1,则
σ(l)= σ(at+1)= a1 σ1 σ2(l) = σ1 (σ2(at+1)) = σ1 (at+1) = a1 ;
若l {a1,a2,…,at+1},则 σ(l)=l
ห้องสมุดไป่ตู้
11
2 2
33
一个元素不动:σ2=
σ4=
12
2 1
33
11
2 3
23σ 3=
0个元素不动:σ5=
12
2 3
31σ6=
故,S3 = {σ1,σ2,σ3,σ4,σ5,σ6}
13
2 2
31
13
2 1
23
置换的乘法
➢ 对M中任意元素a及M的任意两个置换σ,τ, 规定στ(a)=σ(τ(a))。
➢ 例. 设σ=
12
2 1
3 3
44,τ=
13
2 4
3 1
24
则στ=
13
2 4
3 2
41,
τσ=
14
2 3
3 1
24
≠ στ
置换的乘法的性质
❖ 满足结合律:(στ)ρ=σ(τρ),σ,τ,ρ∈ Sn。
❖ Sn中有单位元: n元恒等置换,设 为σ0,有:σ0τ=τσ0 ,τ∈Sn
❖ 每个n元置换在Sn 中都有逆元素:
σ1=(1)(2)(3)(4) σ2=(1 2 3 4) σ3=(1 3)(2 4)
绕中心逆时针转00; 绕中心逆时针转900; 绕中心逆时针转1800;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档