微积分-高斯公式

合集下载

散度定理与高斯公式

散度定理与高斯公式

散度定理与高斯公式在研究电磁学、流体力学以及热传导等领域时,散度定理和高斯公式是非常重要的数学工具。

它们可以用于描述和解释物质和能量在空间中的流动和分布规律。

本文将深入探讨散度定理和高斯公式的概念、原理和应用,并通过实例展示其在实际问题中的作用。

一、散度定理散度定理又称为高斯散度定理,它是微积分中的一个基本定理。

简单来说,散度定理描述了一个有向闭曲面上向量场的通量与该向量场在该闭曲面所围成的体积之间的关系。

下面我们来详细介绍一下散度定理。

散度定理的数学表述如下:对于向量场F,其连续可微函数,它的定义域为包围体V内的有界区域D,其边界为闭曲面S。

那么散度定理可以表示为:∬S F·dS = ∭V div(F) dV在这里,F·dS表示对于向量场F的通量积分,div(F)表示F的散度。

从散度定理中可以看出,一个向量场的通量积分等于该向量场在体积内的散度的体积分。

散度定理的应用非常广泛,包括但不限于以下几个方面:1. 流体力学中的应用:通过散度定理可以计算一个流体的流出流量或流入流量,从而在实际应用中可以用于计算管道中的流体流速、流量、压力等参数。

2. 电磁学中的应用:散度定理可以描述电场与磁场的分布规律,并用于计算电场或磁场的总通量。

3. 热传导中的应用:散度定理可以用于描述热流在空间中的传导规律,并用于计算热量的传递率等参数。

二、高斯公式高斯公式又称为高斯定理,它是微积分中的另一个基本定理。

高斯公式是对于散度定理在三维空间中的一种特殊情况,即当闭曲面是一个球面时,散度定理被称为高斯公式。

下面我们来详细介绍一下高斯公式。

高斯公式的数学表述如下:对于向量场F,其连续可微函数,它的定义域为包围体V内的有界区域D,其边界为球面S。

那么高斯公式可以表示为:∬S F·dS = ∭V div(F) dV由高斯公式的形式可知,在计算球面上的通量积分时,等于该向量场在球内的散度的体积分。

116高斯公式

116高斯公式

3 2 R3 0 2 R3
3
P247 题4(2) 同样可利用高斯公式计算.
2020/9/26
15
例3 设Σ是空间一有界闭区域Ω的整个边界曲面,
u( x, y, z),v( x, y, z) C (2)(Ω), u , v 分别表示u( x, y, z), n n
v( x, y, z)沿的外法线方向的方向导数,证明:
2
1hh
o
y
x
2020/9/26
13
练习 计算 ( x y)dydz ( y z)dzdx (z x)dxdy,
其中是以原点为中心,边长为a的轴向正方体的整
个表面的外侧.
解 P x y, Q y z, R z x, 根据高斯公式
原式
P x
Q y
R z
dv
(1 1 1)dv
Q y
R z
dv
Σ
Pdydz
Qdzdx
Rdxdy.
2020/9/26
7
Ω
P x
Q y
R z
dv
Σ
Pdydz
Qdzdx
Rdxdy.
由两类曲面积分之间的关系知
Ω
P x
Q y
R z
dv
高斯公式
(P cos Q cos Rcos )dS.
Σ
高斯公式是微积分基本公式在三重积分情形下
的推广,它将空间区域上的三重积分与定向边界曲面
在式两边同除以 的体积 V, 并令 以
任意方式缩小至点 M
则有
lim
M V
P x
Q y
R z
M
分此别式反反映应在了该流点速有场流在体点涌M出的, 吸特入点, :或其没值有为任正何,负变或化0. ,

2020高中数学竞赛—基础微积分(联赛版)20高斯公式与斯托克斯公式课件(共27张PPT)

2020高中数学竞赛—基础微积分(联赛版)20高斯公式与斯托克斯公式课件(共27张PPT)

)'x
(Z
z'x )'y )d
Dxy
(
Z
' x
z'y
Z
' y
z'x
)dxdy
(2)
Dxy
比较(1), (2)可得
Zdz S
S
Z y
dy ^ dz
Z x
dz ^ dx
当 曲 面S为xoy平 面 上 的 平 面 域 时,
Stokes公 式 即 为Green公 式
2020/5/1
20
[例1] 应用三种方法计算下列曲线积分,从而
x
Dxy
a2 x2 y2
2 a2 x2 y2
y
y]dxdy
2020/5/1
a2 x2 y2
27
z
I ( x 3 y)dxdy
Dxy
L
n
o
y
a sin
d (r cos 3r sin )rdr
0
0
x
Dxy
(cos
3 sin ) r 3
a sin
d
0
3
0
a3( 1 cos sin3 d sin4 d )
03
0
a3(0 2
2
sin4 d )
3 a3
2020/5/1
0
8
28
2( x y z)dV
2(u v w a b c) 1dudvdw
2(a b c) 4 R3
3
利用对称性得到 (u v w)dudvdw 0
2020/5/1
13
特别
对于 X x, Y y, Z z
利 用 高 斯 公 式, 可 以 得 到S所 包 围 的

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。

可以理解为小步长地移动拟合函数,接近曲线本身。

可以表示为\frac{dy}{dx} 或f'(x) 。

2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。

可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。

它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。

4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。

可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。

5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。

6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。

高考数学冲刺复习高斯公式考点解析

高考数学冲刺复习高斯公式考点解析

高考数学冲刺复习高斯公式考点解析在高考数学的冲刺复习阶段,高斯公式是一个重要的考点,理解并掌握它对于提高数学成绩至关重要。

高斯公式,又称为高斯通量定理,在数学和物理学中都有着广泛的应用。

首先,我们来了解一下高斯公式的基本概念。

高斯公式表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系。

简单来说,如果我们有一个空间闭区域Ω,其边界曲面为Σ,函数 P、Q、R具有一阶连续偏导数,那么高斯公式可以表示为:∫∫∫Ω (∂P/∂x +∂Q/∂y +∂R/∂z) dV =∫∫Σ Pdydz + Qdzdx + Rdxdy 。

接下来,让我们通过一些具体的例子来深入理解高斯公式的应用。

例 1:计算∫∫∫Ω (x + y + z) dV ,其中Ω是由球面 x²+ y²+ z²=1 所围成的闭区域。

我们先求出∂P/∂x = 1,∂Q/∂y = 1,∂R/∂z = 1 ,然后将其代入高斯公式,得到:∫∫∫Ω (x + y + z) dV =3∫∫∫Ω dV ,而∫∫∫Ω dV 表示闭区域Ω的体积,由于Ω是半径为 1 的球体,其体积为4π/3 ,所以最终结果为4π 。

例 2:计算∫∫Σ x²dydz + y²dzdx + z²dxdy ,其中Σ是立方体0 ≤ x ≤ 1,0 ≤ y ≤ 1,0 ≤ z ≤ 1 的表面外侧。

这里,我们直接使用高斯公式,得到:∫∫Σ x²dydz + y²dzdx + z²dxdy =∫∫∫Ω (2x + 2y + 2z) dV ,然后分别计算三个积分,最终结果为 3 。

在运用高斯公式时,需要注意一些关键的要点。

一是要正确判断闭区域的边界曲面的方向。

如果方向判断错误,会导致整个计算结果的错误。

二是要注意函数的偏导数是否连续。

如果不连续,可能需要采用其他方法进行计算。

三是在计算过程中,要仔细计算三重积分和曲面积分,避免出现计算错误。

高斯公式通量与散度课件

高斯公式通量与散度课件

通过高斯公式,可以对流体的能量进 行分析,了解流体在某一区域的能量 分布情况。
流速场分析
结合高斯公式和压力场,可以对流速 场进行分析,了解流体在某一区域的 流速大小和方向。
04
高斯公式通量与散度的推导
推导高斯公式通量部分
推导过程
利用微分几何中的高斯定理,将三维 空间中的通量转化为曲面上的积分, 再通过坐标变换和代数运算,得到通 量的高斯公式。
详细描述
高斯公式也称为高斯-奥斯特罗格 拉德斯基公式,它表示一个封闭 曲面内的体积等于该曲面所包围 的三维空间的体积的积分。
高斯公式的应用领域
总结词
高斯公式的应用领域包括物理学、工程学和统计学等。
详细描述
在物理学中,高斯公式被广泛应用于电磁学、流体动力学和量子力学等领域。在工程学中,高斯公式被用于解决 各种实际问题,如流体流动、热传导和结构分析等。在统计学中,高斯公式用于概率论和数理统计中的随机变量 和概率分布的计算。
实例三:流体流动的高斯公式应用
总结词
流体流动的特性
详细描述
流体流动具有连续性和不可压缩性,其流线 呈现出特定的规律。高斯公式在流体流动中 的应用,可以用来计算流速和流量。
06
高斯公式通量与散度的扩展思考
高斯公式的推广与应用
推广到多维空间
高斯公式在三维空间中得到了广泛应用,但其实它也可以推广到 更高维度的空间,为解决更复杂的问题提供工具。
总结词
散度是描述矢量场在某一点的发散程度。
详细描述
散度是矢量场的一个重要性质,它描述了矢量场在某一点的发散程度。对于标 量场,散度等于标量场在某一点的梯度的散度;对于矢量场,散度等于矢量场 在某一点的三个分量的散度的和。
通量与散度在物理中的意义

考研高等数学复习——高斯公式

考研高等数学复习——高斯公式

考研高等数学复习——高斯公式高斯公式是高等数学中的一个重要的公式,它是计算闭曲线内部面积的一种方法。

高斯公式可以用于求解定积分,也可以用于计算二重积分和三重积分。

高斯公式在数学和物理中都有广泛的应用。

在数学中,高斯公式常用于计算包围封闭曲线的内部面积,或者计算通过曲面的流量。

在物理学中,高斯公式常用于计算电场的通量和磁场的通量,以及计算介质中的电荷和磁荷的总量。

高斯公式的表述为:对于平面封闭曲线C,其内部有一无穷个数的点,每个点视为源点,曲线C上有一单位的源强度。

假设曲线C包围的面积为A,则通过曲线C的总通量Φ等于A。

这个公式的数学表达式可以表示为:∫∫D dxdy=∮C(xdy-ydx)其中D表示平面曲线C所围成的区域,∮C表示曲线C的线积分,dxdy表示在D上的二重积分,xdy-ydx表示曲线C的微分形式。

高斯公式的证明可以通过对二重积分的计算来完成。

假设曲线C的参数方程为x=x(t),y=y(t),其中t的范围为[a,b],则曲线C的线积分可以表示为∫C(xdy-ydx)=∫[a,b] (x(t)dy(t)-y(t)dx(t))根据微积分中的参数方程曲线上的导数关系,我们可以得到dy(t)=dy/dt dt,dx(t)=dx/dt dt,并将其代入线积分的表达式中,得到∫C(xdy-ydx)=∫[a,b] (x(t)(dy(t)/dt)-y(t)(dx(t)/dt))dt=∫[a,b](x(t)*dy(t)/dt-y(t)*dx(t)/dt)dt通过对该式进行变形,我们可以得到∫C(xdy-ydx)=∫[a,b]((x(t)dx(t)/dt+y(t)dy(t)/dt)dt利用变量替换,我们可以将x(t)dx(t)/dt+y(t)dy(t)/dt表示为求面积D上的二重积分,即∫∫D dxdy。

因此,我们得到了高斯公式∮C(xdy-ydx)=∫∫D dxdy利用高斯公式,我们可以简化一些定积分的计算过程。

高斯定理知识点

高斯定理知识点

高斯定理知识点高斯定理(也称为散度定理或高斯-奥斯特罗格拉德斯基定理)是微积分的一个重要定理,它描述了一个向外或向内的矢量场的通量与其散度之间的关系。

在本文中,我们将详细介绍高斯定理的各个知识点,并附上相关的公式和示例,以帮助读者更好地理解和应用这一定理。

一、高斯定理的基本概念高斯定理是对矢量场的研究中非常重要的一部分,它描述了一个封闭曲面通过向外或向内通过的矢量场的总通量与该矢量场在曲面上的散度之间的关系。

通量表示了矢量场通过单位面积的流量,而散度则表示了矢量场在某一点上的变化速率。

二、高斯定理的数学表达高斯定理可以用数学表达式来表示:∮S F · dS = ∫∫∫V (∇ · F) dV其中,∮S表示对闭合曲面S进行的面积分,F表示矢量场,dS表示曲面上的微元面积,∫∫∫V表示对闭合曲面S所围成的空间V进行的体积分,∇ · F表示矢量场F的散度。

三、高斯定理的应用高斯定理在物理学、工程学和数学等领域有广泛的应用。

下面我们列举几个常见的应用场景:1. 电场的高斯定理在电学中,高斯定理可以用来计算电场通过一个闭合曲面的总通量。

根据高斯定理,电场的总通量等于闭合曲面内的电荷除以电介质中的介电常数。

2. 磁场的高斯定理在磁学中,高斯定理可以用来计算磁场通过一个闭合曲面的总通量。

根据高斯定理,磁场的总通量为零,即磁场没有起源和终点,它只存在于闭合回路内。

3. 流体力学中的应用在流体力学中,高斯定理可以用来计算流体通过一个闭合曲面的总通量,从而求解流体的质量流率和体积流率。

4. 涡量场的应用在涡量场的研究中,高斯定理可以用来计算涡量场的旋度。

四、高斯定理的重要性和应用前景高斯定理是矢量场研究中的基本工具,它不仅可以解决各种物理学、工程学和数学中的问题,还有很大的应用潜力。

在计算领域,高斯定理可以应用于图像处理、计算流体力学等方面;在物理学领域,高斯定理可以应用于电磁学、热力学等方面;在工程学领域,高斯定理可以应用于建筑结构分析、流体力学等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理1. 设空间闭区域 由分片光滑的有向闭曲
面 所围成, 的方向取外侧,向量场F { P , Q , R }
上有连续的一阶偏导数 , 则有

F dS



(Gauss 公式)
即:
P Q R x y z d x d ydz P d y d z Q d z d x R d xdy
v v v u cos cos cos d S x y z
移项即得所证公式.(见 P171)
*二、沿任意闭曲面的曲面积分为零的条件
1. 连通区域的类型 设有空间区域 G , • 若 G 内任一闭曲面所围成的区域全属于 G, 则称 G 为空间二维单连通域 ; • 若 G 内任一闭曲线总可以张一片全属于 G 的曲面, 则称 G 为空间一维单连通域 . 例如, 球面所围区域 既是一维也是二维单连通区域 ; 环面所围区域 是二维但不是一维单连通区域 ; 立方体中挖去一个小球所成的区域 是一维但 不是二维单连通区 域.
2

( u ) u u xx u yy u zz u

练习1、设f二次可微,求
f ( r ), ( f ( r ) r ), ( f ( r ) r , y },
r r x2 y2 .

一、高斯 ( Gauss ) 公式

下面先证:
R z d x d y d z R d x d y
证明: 设
为XY型区域 , 1 2 3 , 1 : z z1 ( x, y ) ,
2 : z z2 ( x, y ), 则 z R z2 ( x, y ) R xd y dz z d x d y d z Dxd z1 ( x , y ) z y

Dx y
2
R ( x , y , z 2 ( x, y ) )
R( x, y, z1 ( x, y ) ) d x d y
2 1 3

Dx y
3 1
y
x
R d x d y R d x d y
R( x, y, z 2 ( x, y ))dxdy R( x, y, z1 ( x, y )) d xdy

Dx y
h d xd y
z
2
利用重心公式, 注意 x y 0
4 2 z d x d ydz h

1 h h
o x

y
2 z z d z h
2
0
h
4
1 4 h 2
2 2 例3. 设 为曲面 z 2 x y , 1 z 2 取上侧, 求
其中P, Q, R 具有连续一阶偏导数, 在场中点 M(x, y, z) 处
P Q R 记作 x y z
div F F
i

称为向量场 F 在点 M 的散度.
R Q ( y z ), P R ( z x ),

Q P ( x y ) x y z
第六节 高斯公式 通量与散度
Green 公式
推广
第十一章
Gauss 公式
0、梯度、散度 与旋度 一、高斯公式 *二、沿任意闭曲面的曲面积分为零的条件 三、通量与散度
0、梯度、散度 与旋度 定义: 设有向量场
F ( x , y , z ) P( x , y , z ) i Q( x , y , z ) j R( x , y , z ) k

若 为方向向外的闭曲面, 则单位时间通过 的流量为
P d y d z Q d z d x Rdx d y

n n
当 > 0 时, 说明流入 的流体质量少于
流出的, 表明 内有泉; 当 < 0 时, 说明流入 的流体质量多于流出的, 表明
内有洞 ;
当 = 0 时, 说明流入与流出 的流体质量相等 .

9 d rd r (r sin z ) d z 0 0 0 2 思考: 若 改为内侧, 结果有何变化? 若 为圆柱侧面(取外侧) , 如何计算?
2 1 3
(r sin z )r dr d d z

o 1 x
y
例2. 利用Gauss 公式计算积分
在 1 上 , 0 2
)( x 2 cos y 2 cos z 2 cos ) d S
2
xy
2 ( x y z ) d x d y d z D h d x d y
I 2 ( x y z ) d xdydz
2. 闭曲面积分为零的充要条件
定理2. 设 P( x, y, z ), Q( x, y, z ), R( x, y, z ) 在空间二维单 连通域G内具有连续一阶偏导数, 为G内任一闭曲面, 则
P d y d z Q d z d x R d x d y 0

的充要条件是: P Q R ② 0 , ( x, y , z ) G x y z 证: “充分性”.根据高斯公式可知②是①的充分条件. “必要性”. 用反证法已知①成立 . , 假设存在 M 0 G, 使 P Q R M 0 0 x y z
I ( x 3 z x) d y d z x 2 yz d z d x x 2 z 2 d x d y. z 解: 作取下侧的辅助面 2 2 2 ( x , y ) D : x y 1 1 : z 1 xy 1 用极坐标 1 I 用柱坐标
( u F ) u F u F


( F G ) ( F ) G F ( G )
III、链规则 f ( u ) f ( u )u


注意:
( F ) divrot F 0 ( u ) rot gradu 0
( a F b G ) a F b G ( a F b G ) a F b G

II、乘积规则
( uv ) vu uv
( u F ) u F u F

Dx y Dx y
R 所以 z d x d y d z R d x d y 若 不是 XY–型区域 , 则可引进辅助面 将其分割成若干个 XY–型区域, 在辅助面 正反两侧面积分正负抵消, 故上式仍成立 . P d x d y d z Pd y d z 类似可证 x Q y d x d y d z Qd z d x 三式相加, 即得所证 Gauss 公式:
根据高斯公式, 流量也可表为

为了揭示场内任意点M 处的特性, 设 是包含点 M 且 方向向外的任一闭曲面 , 记 所围域为, 在③式两边同除以 的体积 V, 并令 以 任意方式缩小至点 M 则有 lim M V
P Q R M div v x y z 此式反应了流速场在点M 的特点: 其值为正,负或 0, 分别反映在该点有流体涌出, 吸入, 或没有任何变化.
1 1
d x d ydz (1) ( x ) d x d y
13 12
2
o
x
1y

2
0
d
0
1
Dxy
dr

2 0
cos d
2
在闭区域 上具有一阶和 v 二阶连续偏导数, 证明格林( Green )第一公式 Pu 2 2 2 x v v v d x d y d z v u x2 y 2 z 2 Qu y v v v v u cos cos cos d S Ru y z x z u v u v u v d x d y d z x x y y z z 其中 是整个 边界面的外侧. P Q R 分析: 高斯公式 x y z d x d ydz 例4. 设函数

j
k
记作
P Q R
rot F F
称为向量场 F 在点 M 的旋度.
若 u( x , y , z ) 是可微的数量函数,则
u u u gradu u( x , y , z ) i j k x y z
I、线性规则
( au bv ) au bv
设 为场中任一有向曲面, 则由对坐标的曲面积分的物 理意义可知, 单位时间通过曲面 的流量为
P d y d z Q d z d x Rdx d y


由两类曲面积分的关系, 流量还可表示为


P cos Q cos R cos d S
v n d S

( M 0 )

P Q R d x d y d z x y z
0
与①矛盾, 故假设不真. 因此条件②是必要的.
三、通量与散度
引例. 设稳定流动的不可压缩流体的密度为1, 速度场为
v( x, y, z ) P( x, y, z ) i Q( x, y, z ) j R( x, y, z ) k
P d y d z Q d z d x R d x d y

v v v , Q u , R u , 由高斯公式得 证 :令 P u x y z 2v 2v 2v x2 y 2 z 2 v v v x y z
因P, Q, R 在G内具有连续一阶偏导数 , 则存在邻域
相关文档
最新文档