新课程高中数学测试题组(必修5)含答案
新课标人教版必修5高中数学_综合检测试卷 附答案解析

新课标人教版必修5高中数学 综合检测试卷1.如果33log log 4m n +=,那么n m +的最小值是( )A .4B .34C .9D .18 2、数列{}n a 的通项为n a =12-n ,*N n ∈,其前n 项和为n S ,则使n S >48成立的n 的最小值为( )A .7B .8C .9D .103、若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为( ) A .a =﹣8 b =﹣10 B .a =﹣4 b =﹣9 C .a =﹣1 b =9D .a =﹣1 b =2 4、△ABC 中,若2cos c a B =,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .锐角三角形5、在首项为21,公比为12的等比数列中,最接近1的项是( )A .第三项B .第四项C .第五项D .第六项6、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a等于( )A .32 B .23C .23或32D .﹣32或﹣237、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )A .120B .60C .150D .30 8、数列{}n a 中,1a =15,2331-=+n n a a (*N n ∈),则该数列中相邻两项的乘积是负数的是( )A .2221a aB .2322a aC .2423a aD .2524a a9、某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )A .41.1B .51.1C .610(1.11)⨯-D . 511(1.11)⨯- 10、已知钝角△ABC 的最长边为2,其余两边的长为a 、b ,则集合{}b y a x y x P ===,|),(所表示的平面图形面积等于( ) A .2 B .2-π C .4 D .24-π 11、在△ABC 中,已知BC=12,A=60°,B=45°,则AC= 12.函数2lg(12)y x x =+-的定义域是13.数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =14、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为15、《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。
人教版高中数学必修5测试题及答案全套

第一章 解三角形 测试一 正弦定理和余弦定理Ⅰ 学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ 基础训练题一、选择题1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( )(A)60°(B)30°(C)60°或120° (D)30°或150°2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( ) (A)2(B)3(C)4(D)53.在△ABC 中,已知32sin ,53cos ==C B ,AC =2,那么边AB 等于( )(A )45(B)35(C)920(D)5124.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( )(A)等边三角形 (B)等腰三角形(C)直角三角形(D)等腰三角形或直角三角形5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2(C)1∶4∶9 (D)1∶2∶3二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________.7.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,b=23,c =4,则A=________.8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形.9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B=60°,则c=________.10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________.三、解答题11.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=2,b=4,C =60°,试解△ABC.12.在△ABC中,已知AB=3,BC=4,AC=13.(1)求角B的大小;(2)若D是BC的中点,求中线AD的长.13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.14.在△ABC中,已知BC=a,AC=b,且a,b是方程x2-23x+2=0的两根,2cos(A+B)=1.(1)求角C的度数;(2)求AB的长;(3)求△ABC的面积.测试二解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( ) (A)6π(B)3π(C)32π(D)65π2.在△ABC 中,给出下列关系式:①sin(A +B )=sin C ②cos(A +B )=cos C ③2cos 2sin C B A =+其中正确的个数是( ) (A)0(B)1(C)2(D)33.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6 (D)8274.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( ) (A)8(B)6(C)4(D)35.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( )(A)直角三角形(B)正三角形(C)腰和底边不等的等腰三角形 (D)等腰直角三角形二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B=45°,则角A =________.7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________.8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________.9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________. 10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ; (2)求sin B .12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长; (2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提示:利用正弦定理R CcB b A a 2sin sin sin ===,其中R 为△ABC 外接圆半径)Ⅱ 拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX 、OY 上的A 、B 两点,| OA |=3km ,| OB |=1km ,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向. 问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)? (2)何时两人距离最近?16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ca bC B +-=2cos cos . (1)求角B 的值; (2)若b =13,a +c =4,求△ABC的面积.第二章 数列 测试三 数列 Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( )(A)a n =4n(B)a n =4n (C)a n =94(10n -1)(D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( )(A)30(B)35(C)36(D)423.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( )(A)4(B)13(C)28(D)434.156是下列哪个数列中的一项( )(A){n 2+1}(B){n 2-1}(C){n 2+n }(D){n 2+n -1}5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( )(A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1 =________;(2)0,1,0,1,0,…,a n =________. 7.一个数列的通项公式是a n =122+n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211-++++=n a n (n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0. 12.在数列{a n }中,已知a n =312-+n n (n ∈N *).(1)写出a 10,a n +1,2n a ;(2)7932是否是此数列中的项?若是,是第几项? 13.已知函数xx x f 1)(-=,设a n =f (n )(n ∈N +).(1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列 Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( )(A)98(B)-195(C)-201(D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( )(A)667(B)668(C)669(D)6703.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( )(A)15(B)30(C)31(D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)na b -(B)1+-n a b(C)1++n a b(D)2+-n a b5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( )(A)S 4<S 5 (B)S 4=S 5(C)S 6<S 5(D)S 6=S 5二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________. 9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________. 10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n}的前n项和为S n,已知a10=30,a20=50.(1)求通项a n;(2)若S n=242,求n.13.数列{a n}是等差数列,且a1=50,d=-0.6.(1)从第几项开始a n<0;(2)写出数列的前n项和公式S n,并求S n的最大值.Ⅲ拓展训练题14.记数列{a n}的前n项和为S n,若3a n+1=3a n+2(n∈N*),a1+a3+a5+…+a99=90,求S100.测试五等比数列Ⅰ学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ基础训练题一、选择题1.数列{a n}满足:a1=3,a n+1=2a n,则a4等于( )(A)3(B)24 (C)48 (D)5482.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a 5等于( )(A)33(B)72(C)84(D)1893.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4(B)23(C)916(D)34.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( )(A)81(B)120(C)168(D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论:①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列;③{a n }是递增数列; ④{a n }可能是递减数列.其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________.9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n}中,若a2a6=36,a3+a5=15,求公比q.13.已知实数a,b,c成等差数列,a+1,b+1,c+4成等比数列,且a+b+c =15,求a,b,c.Ⅲ拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q,每列上的数从上到下都成等差数列.a ij表示位于第i行第j列的数,其中a24=1,a42=1,a54=5.(1)求q的值;(2)求a ij的计算公式.测试六数列求和Ⅰ学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( )(A)15(B)17(C)19 (D)212.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60(B)72.5(C)85(D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( )(A)100 (B)-100 (C)200 (D)-2004.数列⎭⎬⎫⎩⎨⎧+-)12)(12(1n n 的前n 项和为( )(A)12+n n(B)122+n n(C)24+n n(D)12+n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( ) (A)7000 (B)7250 (C)7500 (D)14950二、填空题 6.nn +++++++++11341231121 =________.7.数列{n +n21}的前n 项和为________.8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________.9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.nn 21813412211⨯++⨯+⨯+⨯ =________.三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n都有f (1)=n 2成立. (1)求数列{a n }的通项a n ; (2)求13221111++++n n a a a a a a .13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211-++++n ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( )(A)3(B)2(C)-2(D)2或-22.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( )(A)5(B)10(C)15(D)203.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( )(A)a1a8>a4a5 (B)a1a8<a4a5(C)a1+a8>a4+a5(D)a1a8=a4a54.一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),则该函数的图象是( )5.已知数列{a n}满足a1=0,1331+-=+nnn aaa(n∈N*),则a20等于( )(A)0 (B)-3(C)3(D)23二、填空题6.设数列{a n}的首项a1=41,且⎪⎪⎩⎪⎪⎨⎧+=+.,,41,211为奇数为偶数nanaannn则a2=________,a3=________. 7.已知等差数列{a n}的公差为2,前20项和等于150,那么a2+a4+a6+…+a20=________.8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n}中,a1=2,a n+1=a n+3n(n∈N*),则a n=________.10.在数列{a n}和{b n}中,a1=2,且对任意正整数n等式3a n+1-a n=0成立,若b n是a n与a n+1的等差中项,则{b n}的前n项和为________.三、解答题11.数列{a n}的前n项和记为S n,已知a n=5S n-3(n∈N*).(1)求a1,a2,a3;(2)求数列{a n}的通项公式;(3)求a 1+a 3+…+a 2n -1的和.12.已知函数f (x )=422+x (x >0),设a 1=1,a 21+n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( )(A)16(B)20(C)24(D)362.在50和350间所有末位数是1的整数和( )(A)5880(B)5539(C)5208(D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( )(A)0(B)1(C)2(D)不能确定4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( )(A)-2(B)2(C)-4(D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) (A)4012 (B)4013(C)4014(D)4015二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________. 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________.8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a ++++=________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题15.已知函数f (x )=412-x (x <-2),数列{a n }满足a 1=1,a n =f (-11+n a )(n ∈N *).(1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f是直角坐标系平面xOy到自身的一个映射,点P在映射f下的象为点Q,记作Q=f(P).设P1(x1,y1),P2=f(P1),P3=f(P2),…,P n=f(P n-1),….如果存在一个圆,使所有的点P n(x n,y n)(n∈N*)都在这个圆内或圆上,那么称这个圆为点P n(x n,y n)的一个收敛圆.特别地,当P1=f(P1)时,则称点P1为映射f下的不动点.1y).若点P(x,y)在映射f下的象为点Q(-x+1,2(1)求映射f下不动点的坐标;(2)若P1的坐标为(2,2),求证:点P n(x n,y n)(n∈N*)存在一个半径为2的收敛圆.第三章 不等式 测试九 不等式的概念与性质Ⅰ 学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小.2.理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( )(A)a >b ⇒a -c >b -c (B)a >b ⇒ac >bc (C)a >b ⇒a 2>b 2(D)a >b ⇒ac 2>bc 22.若-1<<<1,则-的取值范围是( )(A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0)3.设a >2,b >2,则ab 与a +b 的大小关系是( )(A)ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定 4.使不等式a >b 和ba11>同时成立的条件是( )(A)a >b >0 (B)a >0>b (C)b >a >0 (D)b >0>a5.设1<x <10,则下列不等关系正确的是( )(A)lg 2x >lg x 2>lg(lg x ) (B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x )(D)lg x 2>lg(lg x )>lg 2x二、填空题6.已知a <b <0,c <0,在下列空白处填上适当不等号或等号:(1)(a -2)c ________(b -2)c ; (2)ac ________bc ; (3)b -a ________|a |-|b |. 7.已知a <0,-1<b <0,那么a 、ab 、ab 2按从小到大排列为________.8.已知60<a <84,28<b <33,则a -b 的取值范围是________;ba 的取值范围是________.9.已知a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③cb ca >;④a -c >b-c .以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________⇒________;________⇒________.(在“⇒”的两侧填上论断序号). 10.设a >0,0<b <1,则P =23+a b 与)2)(1(++=a a bQ 的大小关系是________.三、解答题11.若a >b >0,m >0,判断ab 与ma mb ++的大小关系并加以证明.12.设a >0,b >0,且a ≠b ,b a q a b b a p +=+=,22.证明:p >q .注:解题时可参考公式x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知a >0,且a ≠1,设M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较a 5和b 5的大小.测试十 均值不等式 Ⅰ 学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ 基础训练题一、选择题1.已知正数a ,b 满足a +b =1,则ab ( )(A)有最小值41 (B)有最小值21 (C)有最大值41 (D)有最大值212.若a >0,b >0,且a ≠b ,则( )(A)2222b a ab ba +<<+ (B)2222b a b a ab +<+<(C)2222ba b a ab +<+<(D)2222ba ab b a +<<+ 3.若矩形的面积为a 2(a >0),则其周长的最小值为( )(A)a(B)2a(C)3a(D)4a4.设a ,b ∈R ,且2a +b -2=0,则4a +2b 的最小值是( )(A)22(B)4 (C)24(D)85.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )(A)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (B)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (C)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 (D)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 二、填空题6.若x >0,则变量xx 9+的最小值是________;取到最小值时,x =________.7.函数y =142+x x(x >0)的最大值是________;取到最大值时,x =________. 8.已知a <0,则316-+a a 的最大值是________. 9.函数f (x )=2log 2(x +2)-log 2x 的最小值是________.10.已知a ,b ,c ∈R ,a +b +c =3,且a ,b ,c 成等比数列,则b 的取值范围是________.三、解答题11.四个互不相等的正数a ,b ,c ,d 成等比数列,判断2d a +和bc的大小关系并加以证明.12.已知a >0,a ≠1,t >0,试比较21log a t 与21log +t a的大小.Ⅲ 拓展训练题13.若正数x ,y 满足x +y =1,且不等式a y x ≤+恒成立,求a 的取值范围. 14.(1)用函数单调性的定义讨论函数f (x )=x +xa (a >0)在(0,+∞)上的单调性;(2)设函数f (x )=x +xa (a >0)在(0,2]上的最小值为g (a ),求g (a )的解析式.测试十一 一元二次不等式及其解法Ⅰ 学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系. 2.会解简单的一元二次不等式.Ⅱ 基础训练题一、选择题1.不等式5x +4>-x 2的解集是( )(A){x |x >-1,或x <-4} (B){x |-4<x <-1} (C){x |x >4,或x <1}(D){x |1<x <4}2.不等式-x 2+x -2>0的解集是( )(A){x |x >1,或x <-2} (B){x |-2<x <1}(C)R(D)∅3.不等式x 2>a 2(a <0)的解集为( )(A){x |x >±a } (B){x |-a <x <a } (C){x |x >-a ,或x <a }(D){x |x >a ,或x <-a }4.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )(A){x |-3<x <21} (B){x |x <-3,或x >21} (C){x -2<x <31}(D){x |x <-2,或x >31}5.若函数y =px 2-px -1(p ∈R )的图象永远在x 轴的下方,则p 的取值范围是( )(A)(-∞,0) (B)(-4,0] (C)(-∞,-4) (D)[-4,0)二、填空题6.不等式x 2+x -12<0的解集是________. 7.不等式05213≤+-x x 的解集是________.8.不等式|x 2-1|<1的解集是________. 9.不等式0<x 2-3x <4的解集是________.10.已知关于x 的不等式x 2-(a +a1)x +1<0的解集为非空集合{x |a <x <a1},则实数a 的取值范围是________. 三、解答题11.求不等式x 2-2ax -3a 2<0(a ∈R )的解集. 12.k在什么范围内取值时,方程组⎩⎨⎧=+-=-+0430222k y x x y x 有两组不同的实数解?Ⅲ 拓展训练题13.已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1)求实数a 的取值范围,使C ⊇(A ∩B ); (2)求实数a 的取值范围,使C ⊇(U A )∩(U B ).14.设a ∈R ,解关于x 的不等式ax 2-2x +1<0.测试十二 不等式的实际应用Ⅰ 学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ 基础训练题一、选择题 1.函数241xy -=的定义域是( )(A){x |-2<x <2} (B){x |-2≤x ≤2} (C){x |x >2,或x <-2}(D){x |x ≥2,或x ≤-2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价p (元/件)的关系为p =300-2x ,生产x 件的成本r =500+30x (元),为使月获利不少于8600元,则月产量x 满足( ) (A)55≤x ≤60 (B)60≤x ≤65 (C)65≤x ≤70(D)70≤x ≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r 的取值范围为( ) (A)2≤r ≤10 (B)8≤r ≤10 (C)2≤r ≤8(D)0≤r ≤84.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( )(A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M(D)2∉M ,0∈M二、填空题5.已知矩形的周长为36cm ,则其面积的最大值为________.6.不等式2x2+ax+2>0的解集是R,则实数a的取值范围是________.7.已知函数f(x)=x|x-2|,则不等式f(x)<3的解集为________.8.若不等式|x+1|≥kx对任意x∈R均成立,则k的取值范围是________.三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m,乙车的刹车距离略超过10m.已知甲乙两种车型的刹车距离s(km)与车速x(km/h)之间分别有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.问交通事故的主要责任方是谁?Ⅲ拓展训练题11.当x∈[-1,3]时,不等式-x2+2x+a>0恒成立,求实数a的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm的空白,上下留有都为6cm的空白,中间排版面积为2400cm2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题1.已知点A (2,0),B (-1,3)及直线l :x -2y =0,那么( )(A)A ,B 都在l 上方(B)A ,B 都在l 下方(C)A 在l 上方,B 在l 下方(D)A 在l 下方,B 在l 上方2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥≥2,0,0y x y x 所表示的平面区域的面积为()(A)1 (B)2 (C)3 (D)43.三条直线y =x ,y =-x ,y =2围成一个三角形区域,表示该区域的不等式组是( )(A)⎪⎩⎪⎨⎧≤-≥≥.2,,y x y x y (B)⎪⎩⎪⎨⎧≤-≤≤.2,,y x y x y (C)⎪⎩⎪⎨⎧≤-≥≤.2,,y x y x y (D)⎪⎩⎪⎨⎧≤-≤≥.2,,y x y x y4.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )(A)-6(B)-10 (C)5(D)105.某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) (A)5种(B)6种(C)7种(D)8种二、填空题6.在平面直角坐标系中,不等式组⎩⎨⎧<>00y x 所表示的平面区域内的点位于第________象限.7.若不等式|2x +y +m |<3表示的平面区域包含原点和点(-1,1),则m 的取值范围是________. 8.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,033,3,1y x y x 那么z =x -y 的取值范围是________.9.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,022,2,1y x y x 那么x y 的取值范围是________.10.方程|x |+|y |≤1所确定的曲线围成封闭图形的面积是________. 三、解答题11.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x12.某实验室需购某种化工原料106kg ,现在市场上该原料有两种包装,一种是每袋35kg ,价格为140元;另一种是每袋24kg ,价格为120元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13.商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A ,B 两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A 镇需大米70吨,B 镇需大米110吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往A 、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题1.设a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( )(A)ac 2>bc 2(B)ba11(C)a -c >b -c (D)|a |>|b |2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+2,042,04y y x y x 表示的平面区域的面积是( )(A)23(B)3 (C)4 (D)63.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m ,则这个矩形的面积最大值是( ) (A)50m 2 (B)100m 2 (C)200m 2 (D)250m 24.设函数f (x )=222xx x +-,若对x >0恒有xf (x )+a >0成立,则实数a 的取值范围是( )(A)a <1-22(B)a <22-1 (C)a >22-1 (D)a >1-225.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0,则( )(A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题6.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba的取值范围是________.7.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________. 8.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 9.若函数f (x )=1222--⋅+a ax x 的定义域为R ,则a 的取值范围为________.10.三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于x 的函数,作出函数图象.”参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是________.三、解答题11.已知全集U =R ,集合A ={x | |x -1|<6},B ={x |128--x x >0}. (1)求A ∩B ; (2)求(U A )∪B .12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题13.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ij a a 两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且n nna a a a a a a =++++++---1121121 .测试十五 必修5模块自我检测题一、选择题 1.函数42-=x y 的定义域是( )(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2](D)(-∞,-2]∪[2,+∞)2.设a >b >0,则下列不等式中一定成立的是( )(A)a -b <0 (B)0<ba <1(C)ab <2ba +(D)ab >a +b3.设不等式组⎪⎩⎪⎨⎧≥-≥≤0,0,1y x y x 所表示的平面区域是W ,则下列各点中,在区域W 内的点是( ) (A))31,21((B))31,21(-(C))31,21(--(D))31,21(-4.设等比数列{a n }的前n 项和为S n ,则下列不等式中一定成立的是( )(A)a 1+a 3>0 (B)a 1a 3>0(C)S 1+S 3<0 (D)S 1S 3<05.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( ) (A)1∶3∶2(B)1∶2∶3 (C)2∶3∶1 (D)3∶2∶16.已知等差数列{a n }的前20项和S 20=340,则a 6+a 9+a 11+a 16等于( )(A)31(B)34(C)68(D)707.已知正数x 、y 满足x +y =4,则log 2x +log 2y 的最大值是( )(A)-4(B)4(C)-2(D)28.如图,在限速为90km/h 的公路AB 旁有一测速站P ,已知点P 距测速区起点A 的距离为0.08 km ,距测速区终点B 的距离为0.05 km ,且∠APB =60°.现测得某辆汽车从A点行驶到B点所用的时间为3s,则此车的速度介于( )(A)60~70km/h (B)70~80km/h(C)80~90km/h (D)90~100km/h二、填空题9.不等式x(x-1)<2的解集为________.10.在△ABC中,三个内角A,B,C成等差数列,则cos(A+C)的值为________. 11.已知{a n}是公差为-2的等差数列,其前5项的和S5=0,那么a1等于________.12.在△ABC中,BC=1,角C=120°,cos A=32,则AB=________.13.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤-+≤-+≥≥342,0yxyxyx,所表示的平面区域的面积是________;变量z=x+3y的最大值是________.14.如图,n2(n≥4)个正数排成n行n列方阵,符号a ij(1≤i≤n,1≤j≤n,i,j∈N)表示位于第i行第j列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若a11=21,a24=1,a32=41,则q=________;a ij=________.三、解答题15.已知函数f(x)=x2+ax+6.(1)当a=5时,解不等式f(x)<0;(2)若不等式f(x)>0的解集为R,求实数a的取值范围.16.已知{a n }是等差数列,a 2=5,a 5=14.(1)求{a n }的通项公式;(2)设{a n }的前n 项和S n =155,求n 的值.17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A ,B 是锐角,c =10,且34cos cos ==ab BA .(1)证明角C =90°; (2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56吨,供电至多45千瓦,问该厂如何安排生产,使得该厂日产值最大?19.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos A =31.(1)求A C B 2cos 2sin 2++的值;(2)若a =3,求bc 的最大值.20.数列{a n }的前n 项和是S n ,a 1=5,且a n =S n -1(n =2,3,4,…).(1)求数列{a n }的通项公式; (2)求证:⋅<++++531111321n a a a a参考答案 第一章 解三角形 测试一 正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B 提示:4.由正弦定理,得sin C =23,所以C =60°或C =120°,当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形. 5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°, 由正弦定理CcB b A a sin sin sin ===k ,得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2.二、填空题6.362 7.30° 8.等腰三角形 9.2373+ 10.425 提示:8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1,∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C .9.利用余弦定理b 2=a 2+c 2-2ac cos B . 10.由tan A =2,得52sin =A ,根据正弦定理,得ABCB AC sin sin =,得AC =425.三、解答题 11.c =23,A =30°,B =90°.12.(1)60°;(2)AD =7.13.如右图,由两点间距离公式,得OA =29)02()05(22=-+-,同理得232,145==AB OB .由余弦定理,得cos A =222222=⨯⨯-+AB OA OB AB OA ,∴A =45°.14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°. (2)由题意,得a +b =23,ab =2,又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10.所以AB =10.(3)S △ABC =21ab sin C =21·2·23=23.测试二 解三角形全章综合练习1.B 2.C 3.D 4.C 5.B 提示:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc , 由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°.因为sin A =2sin B cos C ,A +B +C =180°, 所以sin(B +C )=2sin B cos C , 即sin B cos C +cos B sin C =2sin B cos C . 所以sin(B -C )=0,故B =C .故△ABC 是正三角形. 二、填空题6.30° 7.120° 8.524 9.55 10.3三、解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392.12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°; (2)由向量减法几何意义,知|a |,|b |,|a -b |可以组成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7, 故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA ,同理得232,145==AB OB .由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A 所以A =45°. 故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29.14.由正弦定理R CcB b A a 2sin sin sin ===, 得C RcB R b A R a sin 2,sin 2,sin 2===.因为sin 2A +sin 2B >sin 2C , 所以222)2()2()2(RcR b R a >+, 即a 2+b 2>c 2. 所以cos C =abc b a 2222-+>0,由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲、乙分别到达P 、Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合.故当t ∈[0,43]时,|PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°;当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°.故得|PQ |=724482+-t t (t ≥0).(2)当t =h 4148224=⨯--时,两人距离最近,最近距离为2km.16.(1)由正弦定理R CcB b A a 2sin sin sin ===, 得a =2R sin A ,b =2R sin B ,c =2R sinC . 所以等式c a b CB +-=2cos cos 可化为CR A R BR C B sin 2sin 22sin 2cos cos +⋅-=, 即CA BC B sin sin 2sin cos cos +-=,2sin A cos B +sin C cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为A +B +C =π,所以sin A =sin(B +C ), 故cos B =-21, 所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°,即a 2+c 2+ac =13 又a +c =4, 解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a .所以S △ABC =21ac sin B =21×1×3×23=433.第二章 数列 测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12+=n a n (或其他符合要求的答案) (2)2)1(1n n a -+=(或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.15110.4 提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102-+=++==+n n a n n a a n n ; (2)7932是该数列的第15项.13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11+-n ]-(n -n1)=1+)1(1+n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n . 所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m-1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2, 即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *). 所以数列{a 2m }是等差数列. 故S 10=5a 1+5a 2+2)15(5-⨯×2=35.三、解答题11.设等差数列{a n }的公差是d ,依题意得⎪⎩⎪⎨⎧=⨯+=+.242344,7211d a d a 解得⎩⎨⎧==.2,31d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. 12.(1)设等差数列{a n }的公差是d ,依题意得⎩⎨⎧=+=+.5019,30911d a d a 解得⎩⎨⎧==.2,121d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +10.。
人教版高中数学必修5测试题及答案全套(20200731141056).pdf

16.在△ ABC中, a, b, c 分别是角 A,B, C的对边,且 cosB cosC
(1) 求角 B 的值;
b
.
2a c
(2) 若 b= 13 ,a+ c= 4,求△ ABC的面积 .
第二章 数列
测试三 数列
Ⅰ 学习目标
1.了解数列的概念和几种简单的表示方法 ( 列表、图象、通项公式 ) ,了解数列是一种特殊的函数 .
7.在等差数列 { an} 中,已知 a1+a2= 5, a3+ a4= 9,那么 a5+ a6= ________.
8.设等差数列 { an} 的前 n 项和是 Sn,若 S17= 102,则 a9=________. 9.如果一个数列的前 n 项和 Sn= 3n2+ 2n,那么它的第 n 项 an=________. 10.在数列 { an} 中,若 a1= 1, a2= 2, an+ 2-an= 1+ ( -1) n( n∈ N*) ,设 { an} 的前 n 项和是 Sn,则 S10= ________.
三、解答题
11.已知数列 { an} 是等差数列,其前 n 项和为 Sn, a3=7, S4= 24.求数列 { an} 的通项公式 .
12.等差数列 { an} 的前 n 项和为 Sn,已知 a10=30, a20= 50. (1) 求通项 an; (2) 若 Sn= 242,求 n.
13.数列 { an} 是等差数列,且 a1=50, d=-. (1) 从第几项开始 an< 0; (2) 写出数列的前 n 项和公式 Sn,并求 Sn 的最大值 .
②cos( A+ B) = cos C ③ sin A
B
C cos
2
2
人教版高中数学必修5测试题及答案全套

第一章解三角形测试一正弦定理和余弦定理Ⅰ学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形 . Ⅱ基础训练题一、选择题1.在△ ABC 中,若BC=2, AC= 2,B= 45°,则角 A 等于()(A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, b= 3,cosC=-1 ,则c 等于 () 4(A)2(B)3(C)4(D)53.在△ ABC 中,已知cos B 3,sin C2, AC= 2,那么边AB等于() 53(A) 5(B) 5(C) 20(D) 1243954.在△ ABC 中,三个内角A,B,C 的对边分别是a,b,c,已知B= 30°, c= 150,b= 50 3 ,那么这个三角形是()(A)等边三角形(C)直角三角形5.在△ ABC 中,三个内角A, B, C 的对边分别是(B)等腰三角形(D)等腰三角形或直角三角形a, b, c,假如 A∶ B∶ C= 1∶ 2∶3 ,那么a∶ b∶c 等于 ()(A)1∶ 2∶3(B)1∶ 3 ∶2(C)1∶ 4∶ 9(D)1∶2∶3二、填空题6.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, B= 45°, C=75°,则b=________.7.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 2, b= 2 3 ,c=4,则A= ________.8.在△ ABC 中,三个内角A, B,C 的对边分别是a,b, c,若2cosBcosC= 1-cosA,则△ ABC形状是________三角形 .9.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若a= 3, b= 4,B= 60°,则c= ________.10.在△ ABC中,若tanA= 2, B= 45°, BC= 5 ,则AC=________.三、解答题11.在△ ABC中,三个内角A,B, C 的对边分别是a, b, c,若a= 2, b= 4,C=60°,试解△ABC.12.在△ ABC中,已知AB= 3, BC= 4,AC=13 .(1)求角 B 的大小;(2)若 D 是 BC的中点,求中线AD 的长 .13.如图,△ OAB 的极点为 O(0, 0), A(5, 2)和 B(- 9, 8),求角 A 的大小 .14.在△ ABC中,已知BC= a, AC= b,且 a,b 是方程 x2- 2 3 x+2=0的两根,2cos(A+B)=1.(1)求角 C的度数;(2)求 AB 的长;(3)求△ ABC的面积 .测试二解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 b2+c2- a2= bc,则角 A 等于 ()ππ2π5π(A)(B)(C)(D)63362.在△ ABC 中,给出以下关系式:① sin(A+ B)= sinC②cos(A+ B)= cosCA B C③ sin cos22此中正确的个数是 ()(A)0(B)1(C)2(D)3 3.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c.若 a= 3, sinA=2, sin(A+ C)=3,则 b 等于 () 34(A)4(B) 8(C)6(D)27384.在△ ABC中,三个内角A, B,C 的对边分别是a, b,c,若 a= 3,b= 4,sinC=2,则此三角形的面积是 () 3(A)8(B)6(C)4(D)35.在△ ABC 中,三个内角A, B, C 的对边分别是a,b, c,若 (a+ b+ c)(b+ c- a)= 3bc,且 sinA= 2sinBcosC,则此三角形的形状是 ()(A)直角三角形(B)正三角形(C)腰和底边不等的等腰三角形(D)等腰直角三角形二、填空题6.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 a=2, b= 2, B= 45°,则角 A= ________. 7.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 a= 2, b= 3,c=19 ,则角C=________.8.在△ ABC中,三个内角A,B,C 的对边分别是a,b,c,若 b= 3,c=4,cosA=3,则此三角形的面积为 ________. 59.已知△ ABC的极点 A(1,0), B(0, 2), C(4, 4),则 cosA= ________.10.已知△ ABC的三个内角A,B, C 知足 2B= A+ C,且 AB= 1,BC= 4,那么边 BC上的中线AD 的长为 ________.三、解答题11.在△ ABC中, a, b, c 分别是角A, B, C 的对边,且a= 3, b=4, C= 60° .(1)求 c;(2)求 sinB.12.设向量 a, b 知足 a· b= 3, | a| = 3, | b| =2.(1)求〈 a, b 〉;(2)求| a- b|.13.设△ OAB 的极点为O(0,0), A(5, 2)和 B(- 9, 8),若 BD⊥ OA 于 D.(1)求高线 BD 的长;(2)求△ OAB 的面积 .14.在△ ABC中,若 sin2A+ sin2B> sin2C,求证: C 为锐角 .(提示:利用正弦定理a b csin A sin B 2R ,此中 R 为△ ABC外接圆半径 )sin CⅡ拓展训练题15.如图,两条直路 OX与 OY 订交于 O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX、OY 上的 A、B 两点, | OA | = 3km ,| OB | = 1km,两人同时都以4km/h 的速度行走,甲沿XO方向,乙沿OY方向 .问: (1)经过 t 小时后,两人距离是多少(表示为 t的函数 )(2)何时两人距离近来cosB b16.在△ ABC中, a, b, c 分别是角A, B, C 的对边,且.cosC2a c(1)求角 B 的值;(2)若 b=13 ,a+c=4,求△ABC的面积.第二章数列测试三数列Ⅰ学 目1.认识数列的观点和几种 的表示方法(列表、 象、通 公式),认识数列是一种特别的函数.2.理解数列的通 公式的含 ,由通 公式写出数列各.3.认识 推公式是 出数列的一种方法,能依据 推公式写出数列的前几.Ⅱ 基一、1.数列 {a }的前四 挨次是: 4, 44, 444, 4444 ,⋯ 数列 {a }的通 公式能够是 ()nn (A)a = 4n(B)a = 4 nnn4 (10 n -1)(D)an(C)a =n =4×1192.在有必定 律的数列0, 3, 8,15, 24, x ,48, 63,⋯⋯中, x 的 是 ()(A)30(B)35(C)36(D)423.数列 {a n } 足: a 1= 1,a n = a n -1 +3n , a 4 等于 ()(A)4(B)13(C)28(D)434.156 是以下哪个数列中的一()(A){n 2+ 1}(B){n 2- 1} (C){n 2+ n}(D){n 2+ n -1}5.若数列 {a }的通 公式 a = 5-3n , 数列 {a }是 ()n nn(A) 增数列 (B) 减数列(C)先减后增数列(D)以上都不二、填空6.数列的前 5 以下, 写出各数列的一个通 公式:2 1 2 1 = ________;(1) 1, , , , , , a n3 2 5 3(2)0, 1, 0, 1, 0,⋯, a n = ________.n 21 .7.一个数列的通 公式是 a n =n 2(1)它的前五 挨次是________;(2)是此中的第 ________ .8.在数列 {a n }中, a 1= 2,a n + 1= 3a n +1 , a 4= ________.9.数列 {a }的通 公式 a n1* ), a =________.(n ∈Nn1 23( 2n 1)3nn2- 15n + 3, 它的最小 是第________ .10.数列 {a }的通 公式 a = 2n三、解答11.已知数列 {a n }的通 公式a n =14- 3n.(1)写出数列 {a n }的前 6 ; (2)当 n ≥ 5 , 明a n <0.nnn 2n 1 *).12.在数列 {a }中,已知a =3(n ∈ N(1)写出 a 10, a n + 1, a n 2 ;(2)79 2是不是此数列中的 假如,是第几313.已知函数1 n +).f ( x) x, a = f(n)(n ∈ Nx(1)写出数列 {a n }的前 4 ;(2)数列 {a n }是 增数列 是 减数列 什么测试四 等差数列Ⅰ 学 目1.理解等差数列的观点,掌握等差数列的通 公式,并能解决一些 .2.掌握等差数列的前n 和公式,并能 用公式解决一些 .3.能在详细的 情境中, 数列的等差关系,并能领会等差数列与一次函数的关系.Ⅱ基 一、1.数列 {a } 足: a = 3,a= a -2, a等于 ()n1n + 1n100(A)98(B)- 195 (C)- 201 (D)- 1982.数列 {a n }是首 a 1= 1,公差 d = 3 的等差数列,假如 a n = 2008 ,那么 n 等于 ( )(A)667(B)668 (C)669(D)6703.在等差数列 {a } 中,若 a + a = 16, a = 1, a12的 是()n794(A)15(B)30(C)31(D)644.在 a 和 b(a ≠ b)之 插入 n 个数,使它 与a ,b 成等差数列, 数列的公差()(A)b a(B)ba (C)ba (D)ba nn 1n 1n25. 数列 {a n }是等差数列,且a 2 =- 6, a 8= 6, S n 是数列 {a n }的前 n 和, ()(A)S < S(B)S = S(C)S < S(D)S = S45456565二、填空6.在等差数列 {a n } 中, a 2 与 a 6 的等差中 是 ________.7.在等差数列 {a n } 中,已知 a 1+ a 2= 5, a 3+ a 4= 9,那么 a 5+ a 6= ________.8. 等差数列 {a } 的前 n 和是 S ,若 S = 102, a = ________.nn 1799.假如一个数列的前n2 +2n ,那么它的第n a nn 和 S = 3n= ________.10.在数列 {a n }中,若 a 1 =1, a 2= 2, a n + 2- a n = 1+ (-1)n (n ∈ N *), {a n }的前 n 和是 S n , S 10= ________.三、解答11.已知数列 {a n }是等差数列,其前n 和 S n ,a 3= 7, S 4=24.求数列 {a n }的通 公式 .12.等差数列 {a n }的前 n 和 S n ,已知 a 10= 30, a 20= 50.(1)求通 a n ;(2)若 S n = 242,求 n.13.数列 {a n }是等差数列,且a 1= 50,d =-.(1)从第几 开始a n <0;(2)写出数列的前 n 和公式S n ,并求 S n 的最大 .Ⅲ 拓展14. 数列 {a n }的前 n 和 S n ,若 3a n + 1=3a n + 2(n ∈ N * ), a 1+ a 3+ a 5+⋯+ a 99= 90,求 S 100.测试五 等比数列Ⅰ 学 目1.理解等比数列的观点,掌握等比数列的通 公式,并能解决一些.2.掌握等比数列的前 n 和公式,并能 用公式解决一些 .3.能在详细的 情境中, 数列的等比关系,并能领会等比数列与指数函数的关系.Ⅱ 基 一、1.数列 {a } 足: a = 3,a= 2an, a 等于 ()n1n + 14(A)3(B)24(C)48(D)5482.在各 都 正数的等比数列{a n }中,首 a 1= 3,前三 和 21, a 3+ a 4+ a 5 等于 () (A)33(B)72(C)84(D)1893.在等比数列 {a n } 中,假如 a 6= 6,a 9= 9,那么 a 3 等于 ()(A)4 (B) 316(D)32(C)94.在等比数列 {a } 中,若 a = 9, a = 243, {a}的前四 和 ()n 2 5n(A)81(B)120(C)168(D)1925.若数列 n n1 n -1{a } 足 a= a q (q > 1), 出以下四个 :① {a n }是等比数列;② {a n }可能是等差数列也可能是等比数列;③ {a n }是 增数列;④ {a n }可能是 减数列 .此中正确的 是 ( )(A)①③ (B)①④(C)②③(D)②④二、填空6.在等比数列 {a n } 中,a 1,a 10 是方程 3x 2+ 7x -9 =0 的两根, a 4a 7= ________.7.在等比数列 {a } 中,已知 a + a = 3, a + a = 6,那么 a + a= ________.n1 23 4 568.在等比数列 {a n } 中,若 a 5= 9, q =1, {a n }的前 5 和 ________.29.在 8 和27之 插入三个数,使 五个数成等比数列, 插入的三个数的乘 ________.3210. 等比数列 {a n }的公比 q ,前 n 和 S n ,若 S n + 1, S n ,S n + 2 成等差数列, q = ________.三、解答11.已知数列 {a}是等比数列, a =6, a =162. 数列 {a }的前 n 和 S .n25nn(1)求数列 {a n }的通 公式; (2)若 S n = 242,求 n.12.在等比数列 {a n }中,若 a 2a 6= 36, a 3+ a 5= 15,求公比q.13.已知 数 a , b , c 成等差数列, a + 1, b + 1,c + 4 成等比数列,且a +b +c = 15,求 a , b ,c.Ⅲ 拓展14.在以下由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列 .a ij 表示位于第 i 行第 j 列的数,此中241, a 4254 5a == 1 a=816a 11 a 12 a 13 a 14 a 15 ⋯ a 1j ⋯ a 21 a 22 a 23 a 24a 25⋯a 2j ⋯ a31 a 32aaa⋯a3j ⋯33 34 35 a41a42a a a ⋯ a 4j⋯434445⋯ ⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯a i1 a i2a i3 a i4 a i5a ij⋯⋯⋯⋯⋯⋯⋯⋯(1)求 q 的 ;(2)求 a ij 的 算公式 .测试六 数列乞降Ⅰ 学 目1.会求等差、等比数列的和,以及求等差、等比数列中的部分 的和 .2.会使用裂 相消法、 位相减法求数列的和.Ⅱ 基一、1.已知等比数列的公比2,且前 4 的和1,那么前 8 的和等于 ()(A)15(B)17(C)19(D)21n1的等差数列,它的前100 和 145, a 1 3599的 ()2.若数列 {a }是公差2+ a + a +⋯+ a(A)60(B)(C)85(D)120nn n -1 *n100· 2n(n ∈ N等于 ()3.数列 {a }的通 公式a = (- 1)), 其前 n 和 S ,S (A)100(B)- 100(C)200 (D)- 2001 4.数列(2n1)(2n1)的前 n 和 ()(A)n (B)2n(C)n (D)2n2n 12n 14n 2n 15. 数列 {a }的前 n 和 S , a = 1, a = 2,且 a=a n + 3(n = 1, 2, 3,⋯ ), S 等于 ()nn12n +2100(A)7000 (B)7250(C)7500(D)14950二、填空6.1111= ________.213 243n 1n17.数列 {n +2n }的前 n 和 ________.8.数列 {a n } 足: a 1= 1,a n + 1= 2a n , a 12 + a 22 +⋯+ a n 2 =________.9. n ∈ N * , a ∈ R , 1+ a + a 2+⋯+ a n = ________. 10. 11 2 1 31n1 = ________.2 482n三、解答11.在数列 {a n }中, a 1=- 11, a n +1= a n +2(n ∈ N * ),求数列 {| a n |} 的前 n 和 S n .12.已知函数 f(x)= a 1x + a 2x 2+ a 3 x 3+⋯+ a n x n (n ∈ N * , x ∈ R),且 全部正整数n 都有 f(1)= n 2 建立 .(1)求数列 {a }的通 a ;nn(2)求11 1.a 2a 3a nan 1a 1a 21 11n 和 S n .13.在数列 {a n }中, a 1= 1,当 n ≥ 2 , a n = 142n 1 ,求数列的前2Ⅲ拓展14.已知数列 {a n }是等差数列,且a 1= 2, a 1+ a 2+ a 3= 12.(1)求数列 {a }的通 公式;n(2)令 b n n nn }的前 n 和公式 .= a x (x ∈ R),求数列{b测试七数列综合问题Ⅰ基一、1.等差数列 {a n }中, a 1 =1,公差 d ≠0,假如 a 1, a 2, a 5 成等比数列,那么 d 等于 ( )(A)3(B)2(C)- 2(D)2 或- 22.等比数列 {a n}中, a n> 0,且 a2a 4+ 2a3a5+ a4 a6= 25, a3+ a5等于 ()(A)5(B)10(C)15(D)203.假如 a , a , a,⋯, a各都是正数的等差数列,公差d≠ 0, ()1238(A)a1a8> a4a5(B)a1a8< a4 a5(C)a1+ a8> a4+ a5(D)a1a8= a4a54.一定函数y=f(x)的象在以下中,并且随意a1∈ (0,1),由关系式a n+1= f(a n)获取的数列 {a n}足 a n+1>a n(n ∈N* ),函数的象是()5.已知数列 {a n}足 a1=0,a n 1a n3) 3a n(n∈ N* ), a20等于 (1(A)0(B)-3(C) 33 (D)2二、填空11a n ,n为偶数,2a2=________, a3= ________.6.数列 {a n}的首 a1=,且 a n 14a n 1,n为奇数 . 47.已知等差数列 {a n}的公差2,前 20 和等于150,那么 a2+ a4+ a6+⋯+ a20= ________.8.某种菌的培育程中,每20分分裂一次 (一个分裂两个 ), 3 个小,种菌能够由1个生殖成________个 .9.在数列 {a n}中, a1= 2,a n+1= a n+3n(n∈ N* ), a n= ________.10.在数列 {a n}和 {b n}中, a1= 2,且随意正整数n 等式 3a n+1-a n= 0建立,若 b n是 a n与 a n+1的等差中, {b n}的前 n 和 ________.三、解答11.数列 {a n}的前 n 和 S n,已知 a n= 5S n- 3(n∈ N* ).(1)求 a , a , a ;123(2)求数列 {a }的通公式;n(3)求 a 1+ a3+⋯+ a2n-1的和 .12.已知函数 f(x)=x22(x> 0), a1= 1, a n21· f(a n)= 2(n∈ N* ),求数列 {a n}的通公式 . 413.等差数列 {a }的前 n 和 S ,已知 a = 12, S>0, S< 0.n n31213(1)求公差 d 的范;(2)指出 S1, S2,⋯, S12中哪个最大,并明原因 .Ⅲ拓展14.甲、乙两物体分从相距70m 的两地同相向运.甲第 1 分走2m,此后每分比前 1 分多走1m,乙每分走 5m.(1)甲、乙开始运后几分相遇(2)假如甲、乙抵达方起点后立刻折返,甲每分比前 1 分多走 1m ,乙每分走5m ,那么开始运几分 后第二次相遇15.在数列 {a n }中,若 a 1 ,a 2 是正整数,且a n = | a n -1- a n -2| , n = 3, 4, 5,⋯ 称 {a n } “ 差数列”.(1) 出一个前五 不 零的“ 差数列” (只需求写出前十);(2)若“ 差数列”{a n }中, a 1= 3, a 2= 0, 求出通a n ;(3)* 明:任何“ 差数列”中 含有无 多个 零的.测试八 数列全章综合练习Ⅰ基一、1.在等差数列 {a } 中,已知 a + a = 4, a + a = 12,那么 a + a 等于 ()n12 345 6(A)16(B)20(C)24 (D)362.在 50 和 350 所有末位数是1 的整数和 ()(A)5880(B)5539(C)5208(D)48773.若 a , b , c 成等比数列, 函数y = ax 2+ bx + c 的 象与 x 的交点个数 ()(A)0 (B)1(C)2(D)不可以确立4.在等差数列 {a } 中,假如前 5 的和S =20,那么 a等于 ()n53(A)- 2(B)2(C)- 4(D)45.若 {a n }是等差数列, 首 a 1> 0,a 2007+ a 2008> 0,a 2007·a 2008< 0, 使前 n 和 S n > 0 建立的最大自然数n 是 ( )(A)4012 (B)4013 (C)4014(D)4015二、填空6.已知等比数列 {a n }中, a 3= 3, a 10= 384, 数列的通a n =________.7.等差数列 {a n }中, a 1 + a 2 + a 3=- 24, a 18+ a 19+ a 20= 78, 此数列前 20和 S 20= ________.n n n2-3n + 1, a n = ________.8.数列 {a }的前 n 和 S ,若 S = n9.等差数列 {a n }中,公差 d ≠ 0,且 a 1,a 3, a 9 成等比数列,a 3 a 6 a 9 = ________.a 4a 7a1010. 数列 {a n }是首 1 的正数数列,且 (n + 1)a n 2 1 -na n 2 + a n + 1a n = 0(n ∈N * ), 它的通 公式a n = ________.三、解答11. 等差数列 {a n }的前 n 和 S n ,且 a 3 + a 7- a 10= 8, a 11- a 4 =4 ,求 S 13. 12.已知数列 {a}中, a=1,点 (a , a* )在函数 f(x)= 2x + 1 的 象上 .n1nn + 1(1)求数列 {a n }的通 公式;(2)求数列 {a }的前 n 和 S ;nn(3) c = S ,求数列 {cn }的前 n 和 T .nnn13.已知数列 {a }的前 n 和 S 足条件S = 3a +2.nnn n (1)求 :数列 {a n }成等比数列; (2)求通 公式 a n .14.某 企业今年初用98 万元 一艘 船,用于捕 ,第一年需各样 用12 万元,从第二年开始包含 修 在内,每年所需 用均比上一年增添 4 万元, 船每年捕 的 收入 50 万元.(1)写出 船前四年每年所需的 用(不包含 用 );(2) 船捕 几年开始盈余(即 收入减去成本及所有 用 正)(3)若当盈余 达到最大 , 船以8 万元 出,那么 船 企业 来的利润是多少万元Ⅱ 拓展15.已知函数 f(x)=1(x<- 2),数列 {a n}足 a1= 1, a n= f(-1)(n∈ N* ).x24a n1(1)求 a n;2 1+ a22+⋯+ a2,能否存在最小正整数m,使随意 n∈ N*有 b m(2) b n= a n n 2 n 1n<25建立若存在,求出 m 的,若不存在,明原因.16.已知 f 是直角坐系平面 xOy 到自己的一个映照,点P 在映照 f 下的象点 Q,作 Q= f(P).P1(x1, y1), P2= f(P1), P3= f(P2),⋯, P n=f(P n-1),⋯ .假如存在一个,使所有的点P n(x n, y n )(n∈ N* )都在个内或上,那么称个点P n (x n,y n )的一个收 .特地,当 P1= f(P1),称点P1映照 f 下的不点 .若点 P(x, y)在映照 f 下的象点 Q(-x+ 1,1y).2(1)求映照 f 下不点的坐;(2)若 P 的坐 (2, 2),求:点*)存在一个半径 2 的收 .P (x , y )(n∈ N1n nn第三章 不等式测试九 不等式的观点与性质Ⅰ 学习目标1.认识平时生活中的不等关系和不等式(组 )的实质背景,掌握用作差的方法比较两个代数式的大小.2.理解不等式的基天性质及其证明 .Ⅱ基础训练题一、选择题1.设 a , b , c ∈ R ,则以下命题为真命题的是( )(A)a > b a - c > b - c (B)a > b ac > bc(C)a > ba 2>b 2(D)a > bac 2> bc 22.若- 1<<< 1,则-的取值范围是 ()(A)(-2, 2)(B)(-2,- 1)(C)(- 1, 0)(D)(- 2, 0) 3.设 a > 2, b >2,则 ab 与 a + b 的大小关系是 ()(A)ab > a + b(B)ab < a + b(C)ab =a +b(D)不可以确立4.使不等式 a > b 和11同时建立的条件是 ()ab(A)a > b > 0 (B)a > 0>b(C)b > a > 0(D)b > 0> a5.设 1< x <10,则以下不等关系正确的选项是()(A)lg 2x > lgx 2> lg(lgx)(B)lg 2x > lg(lgx)> lgx 2 (C)lgx 2> lg 2x > 1g(lgx) (D)lgx 2> lg(lgx)> lg 2x二、填空题6.已知 a < b <0 ,c < 0,在以下空白处填上合适不等号或等号:(1)(a -2)c________(b - 2)c ;(2) c ________ c;(3)b - a________| a| - | b|.a b7.已知 a < 0,- 1< b < 0,那么 a 、 ab 、 ab 2 按从小到大摆列为 ________.8.已知 60< a <84, 28< b < 33,则 a - b 的取值范围是 ________; a的取值范围是 ________.b9.已知 a ,b ,c ∈ R ,给出四个论断:① a > b ;② ac 2> bc 2;③ a b;④ a - c >b - c.以此中一个论断作条件,另一c c个论断作结论,写出你以为正确的两个命题是 ________ ________;________________.(在“”的双侧填 上论断序号 ).a32 与Qb ( a1)( a 2)10.设 a > 0, 0<b < 1,则 P = b的大小关系是 ________.三、解答题11.若 a > b > 0,m > 0,判断 b 与bm的大小关系并加以证明 .aa ma 2b 212.设 a > 0, b >0,且 a ≠ b , p b a , q a b .证明: p > q.注:解题时可参照公式 x 3+y 3= (x + y)(x 2 - xy + y 2).Ⅲ 拓展训练题13.已知 a > 0,且 a ≠ 1,设 M = log a (a 3-a + 1), N =log a (a 2- a + 1).求证: M > N.14.在等比数列 {a n }和等差数列 {b n }中,a 1= b 1> 0,a 3= b 3> 0, a 1≠ a 3,试比较 a 5 和 b 5 的大小 .测试十 均值不等式Ⅰ学习目标1 .认识基本不等式的证明过程 .2 .会用基本不等式解决简单的最大(小 )值问题 .Ⅱ 基础训练题一、选择题1.已知正数 a , b 知足 a + b =1,则 ab()(A)有最小值1(B)有最小值1(C)有最大值1(D)有最大值142 422.若 a > 0, b >0,且 a ≠ b ,则 ()a ba 2b 2(B)aba ba 2b 2(A)ab2222(C)a 2b 2a b(D)a 2b 2aba b ab2 2223.若矩形的面积为 a 2(a > 0),则其周长的最小值为 ()(A)a(B)2a (C)3a(D)4a4.设 a , b ∈ R ,且 2a + b - 2=0,则 4a + 2b 的最小值是 ( )(A) 22(B)4(C) 4 2(D)85.假如正数 a , b , c ,d 知足 (A)ab ≤ c + d ,且等号建即刻 (B)ab ≥ c + d ,且等号建即刻 (C)ab ≤ c +d ,且等号建即刻(D)ab ≥c + d ,且等号建即刻二、填空题a +b = cd = 4,那么 ( )a ,b ,c ,d 的取值独一a ,b ,c ,d 的取值独一 a , b ,c , d 的取值不独一a ,b ,c ,d 的取值不独一6.若 x > 0,则变量 x9的最小值是 ________;取到最小值时, x = ________.x4x 7.函数 y = (x > 0)的最大值是 ________;取到最大值时, x = ________.x 218.已知 a < 0,则 a16 的最大值是 ________. a 39.函数 f(x)= 2log 2(x + 2)- log 2 x 的最小值是 ________.10 .已知 a , b , c ∈ R , a + b + c =3 ,且 a , b ,c 成等比数列,则 b 的取值范围是 ________. 三、解答题 11 .四个互不相等的正数a ,b ,c ,d 成等比数列,判断a d 和 bc 的大小关系并加以证明 .212 .已知 a > 0,a ≠ 1, t > 0,试比较1log a t 与log at 1的大小 .2 2Ⅲ拓展训练题13.若正数 x , y 知足 x + y = 1,且不等式xy a 恒建立,求 a 的取值范围 .a 14.(1)用函数单一性的定义议论函数f(x)= x +(a > 0)在 (0,+∞ )上的单一性;xa (2)设函数 f(x)= x +(a > 0)在(0, 2]上的最小值为g(a),求 g(a)的分析式 .x测试十一 一元二次不等式及其解法Ⅰ 学习目标1.经过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系 .2.会解简单的一元二次不等式 .Ⅱ基础训练题一、选择题1.不等式 5x + 4>- x 2 的解集是 ()(A){x| x >- 1,或 x <- 4}(B){x| -4< x <- 1 }(C){x| x > 4,或 x < 1 }(D){x|1 < x < 4}2.不等式- x 2 +x - 2>0 的解集是 ()(A){x| x >1 ,或 x <- 2 } (B){x| -2< x < 1} (C)R(D)3.不等式 x 2 >a 2(a <0)的解集为 ()(A){x| x >± a}(B){x| - a < x < a }(C){x| x >- a ,或 x < a }(D){x| x >a ,或 x <- a}4.已知不等式 ax 2+ bx + c > 0 的解集为 { x| 1 2} ,则不等式 cx 2+ bx + a < 0 的解集是 ()x3(A){x| - 3< x < 1 }(B){x| x <- 3,或 x >1 }22 1}(D){x| x <- 2,或 x >1(C){x - 2<x <}335.若函数 y =px 2- px -1(p ∈ R)的图象永久在 x 轴的下方,则 p 的取值范围是 ()(A)(-∞, 0) (B)(-4, 0](C)(-∞,- 4)(D)[- 4, 0)二、填空题6.不等式 x 2 +x - 12< 0 的解集是 ________. 7.不等式3x1 0 的解集是 ________.2 x58.不等式 | x 2- 1| < 1 的解集是 ________.9.不等式 0< x 2- 3x < 4 的解集是 ________.10.已知对于 x 的不等式 x 2- (a +1)x + 1< 0 的解集为非空会合{ x| a < x <1 },则实数 a 的取值范围是 ________.aa三、解答题11.求不等式 x 2- 2ax -3a 2<0(a ∈ R)的解集 .12.k 在什么范围内取值时,方程组 x 2 y 2 2x 03x 4y k 有两组不一样的实数解Ⅲ 拓展训练题13.已知全集 U = R ,会合 A = {x| x 2- x - 6< 0}, B = {x| x 2+ 2x - 8>0}, C = {x| x 2- 4ax + 3a 2< 0}.(1)务实数 a 的取值范围,使C (A ∩ B); (2)务实数 a 的取值范围,使C( U A)∩ ( U B).14.设 a ∈ R ,解对于 x 的不等式 ax 2- 2x + 1< 0.测试十二 不等式的实质应用Ⅰ 学习目标会使用不等式的有关知识解决简单的实质应用问题.Ⅱ基础训练题一、选择题1的定义域是 ()1.函数y4 x2(A){x| - 2< x< 2 }(B){x| -2≤ x≤ 2}(C){x| x> 2,或 x<- 2 }(D){x| x≥2,或 x≤- 2 }2.某村办服饰厂生产某种风衣,月销售量x(件 )与售价 p(元 / 件 )的关系为 p =300- 2x,生产 x 件的成本r= 500+30x(元),为使月赢利许多于 8600 元,则月产量 x 知足 ()(A)55≤ x≤ 60(B)60≤x≤ 65(C)65≤ x≤70(D)70≤x≤ 753.国家为了增强对烟酒生产管理,推行征收附带税政策.现知某种酒每瓶 70元,不征收附带税时,每年大概产销100 万瓶;若政府征收附带税,每销售100 元收税 r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附带税许多于 112万元,那么 r 的取值范围为 ()(A)2≤ r≤ 10(B)8≤ r≤10(C)2≤ r≤ 8(D)0≤ r≤ 84.若对于 x 的不等式 (1+ k2)x≤ k4+ 4 的解集是 M ,则对随意实常数k,总有 ()(A)2∈ M, 0∈ M(B)2M , 0M(C)2∈M,0 M(D)2M,0∈M二、填空题5.已知矩形的周长为36cm,则其面积的最大值为 ________.6.不等式 2x2+ ax+ 2>0 的解集是 R,则实数 a 的取值范围是 ________.7.已知函数 f(x)= x| x- 2| ,则不等式f(x)< 3 的解集为 ________.8.若不等式 | x+1| ≥ kx 对随意 x∈ R 均建立,则 k 的取值范围是 ________.三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车内行驶过程中,因为惯性作用,刹车后还要持续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是剖析事故的一个主要要素,在一个限速为40km/h的弯道上,甲乙两车相向而行,发现状况不对同时刹车,但仍是相撞了,过后现场测得甲车刹车的距离略超出12m ,乙车的刹车距离略超出10m. 已知甲乙两种车型的刹车距离s(km)与车速 x(km/h) 之间分别有以下关系:s 甲=+, s 乙=+.问交通事故的主要责任方是谁Ⅲ拓展训练题11.当 x∈ [- 1, 3]时,不等式- x2+ 2x+ a> 0 恒建立,务实数 a 的取值范围 .12.某大学印一份招生广告,所用纸张(矩形 )的左右两边留有宽为 4cm 的空白,上下留有都为 6cm 的空白,中间排版面积为2400cm2 .怎样选择纸张的尺寸,才能使纸的用量最小测试十三二元一次不等式 (组)与简单的线性规划问题Ⅰ学习目标1.认识二元一次不等式的几何意义,能用平面地区表示二元一次不等式组.2.会从实质情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ基础训练题一、选择题1.已知点 A(2, 0), B(- 1, 3)及直线 l: x-2y=0,那么 ()(A)A, B 都在 l 上方(B)A, B 都在 l 下方(C)A 在 l 上方, B 在 l 下方(D)A 在 l 下方, B 在 l 上方x0,2.在平面直角坐标系中,不等式组y0,所表示的平面地区的面积为()x y2(A)1(B)2(C)3(D)43.三条直线 y= x, y=- x, y=2围成一个三角形地区,表示该地区的不等式组是()y x,y x,y x,y x,(A) y x,(B) y x,(C) y x,(D)y x,y 2.y 2.y 2.y 2.x y 5 0,4.若 x, y 知足拘束条件x y0,则 z= 2x+ 4y 的最小值是 ()x3,(A)- 6(B)- 10(C)5(D)105.某电脑用户计划使用不超出500 元的资本购置单价分别为60 元, 70元的单片软件和盒装磁盘.依据需要,软件起码买 3 片,磁盘起码买2 盒,则不一样的选购方式共有()(A)5 种(B)6 种(C)7 种(D)8 种二、填空题6.在平面直角坐标系中,不等式组x0 所表示的平面地区内的点位于第________象限 .y07.若不等式 |2 x+ y+ m| <3表示的平面地区包含原点和点(- 1, 1),则 m 的取值范围是 ________.x1,8.已知点 P(x, y)的坐标知足条件y3,那么 z= x- y 的取值范围是 ________.3 x y30,x1,那么y的取值范围是 ________.9.已知点 P(x, y)的坐标知足条件y2,2 x y2x 0,10.方程 | x| + | y| ≤ 1 所确立的曲线围成关闭图形的面积是________.三、解答题11.画出以下不等式 (组 )表示的平面地区:x1,(1)3x+ 2y+ 6> 0(2)y2,x y 10.12.某实验室需购某种化工原料106kg,此刻市场上该原料有两种包装,一种是每袋35kg,价钱为 140 元;另一种是每袋 24kg,价钱为120 元.在知足需要的前提下,最少需要花销多少元Ⅲ拓展训练题13.商铺现有75 公斤奶糖和120 公斤硬糖,准备混淆在一同装成每袋装 250 克奶糖和750 克硬糖,每袋可盈余元;第二种每袋装500种应装多少袋,使所赢利润最大最大利润是多少1 公斤销售,有两种混淆方法:第一种每袋克奶糖和500 克硬糖,每袋可盈余元.问每一14.甲、乙两个粮库要向A, B 两镇运送大米,已知甲库可调出100 吨,乙库可调出80 吨,而 A 镇需大米70 吨,B 镇需大米110 吨,两个粮库到两镇的行程和运费以下表:行程 (千米 )运费 (元 /吨·千米)甲库乙库甲库乙库A 镇20151212B 镇2520108问: (1)这两个粮库各运往A、 B 两镇多少吨大米,才能使总运费最省此时总运费是多少(2)最不合理的调运方案是什么它给国家造成不应有的损失是多少测试十四不等式全章综合练习Ⅰ基础训练题一、选择题1.设a, b, c∈ R, a> b,则以下不等式中必定正确的选项是()(A)ac2> bc2(B) 11(C)a- c> b-c(D)| a| > | b|a bx y40,2.在平面直角坐标系中,不等式组2x y40, 表示的平面地区的面积是()y2(A) 3(B)3(C)4(D)6 23.某房地产企业要在一块圆形的土地上,设计一个矩形的泊车场.若圆的半径为10m,则这个矩形的面积最大值是()(A)50m 2(B)100m2(C)200m2(D)250m 2x 2x 2,若对 x> 0 恒有 xf(x)+ a> 0建立,则实数 a 的取值范围是 ()4.设函数 f(x)=x2(A)a< 1-2 2(B)a< 2 2 -1(C)a> 2 2 -1(D)a> 1- 225.设 a, b∈ R,且 b(a+ b+ 1)< 0, b(a+ b-1)< 0,则 ()(A)a> 1(B)a<- 1(C)- 1< a< 1(D)| a| > 1二、填空题6.已知 1< a<3, 2< b< 4,那么 2a- b 的取值范围是 ________,a的取值范围是 ________. b7.若不等式 x2- ax- b<0的解集为 {x|2 < x< 3},则 a+ b= ________.+,且 x+4y= 1,则 xy 的最大值为 ________.8.已知 x,y∈ R9.若函数 f(x)=2x22ax a1的定义域为 R,则 a 的取值范围为 ________.10.三个同学对问题“对于x 的不等式 x2+ 25+| x3- 5x2| ≥ ax 在[1,12] 上恒建立,务实数 a 的取值范围”提出各自的解题思路 .甲说:“只须不等式左侧的最小值不小于右侧的最大值.”乙:“把不等式形左含量x 的函数,右含常数,求函数的最.”丙:“把不等式两当作对于x 的函数,作出函数象.”参照上述解思路,你他所的的正确,即 a 的取范是 ________.三、解答11.已知全集 U= R,会合 A= {x| | x-1| <6 }, B= {x| x8> 0}.2x1(1)求 A∩ B;(2)求( U A)∪ B.12.某工厂用两种不一样原料生同一品,若采纳甲种原料,每吨成本1000 元,运500 元,可得品90 千克;若采纳乙种原料,每吨成本1500 元,运400 元,可得品100 千克 .今算每天原料成本不得超6000元,运不得超2000 元,此工厂每天采纳甲、乙两种原料各多少千克,才能使品的日量最大Ⅱ拓展12n12n i ja j两13.已知数集 A= {a a,⋯, a }(1 a< a <⋯< a n 2)拥有性 P随意的 j(1 n) a a与a i数中起码有一个属于 A.(1)分判断数集 {1, 3, 4}与{1, 2, 3, 6}能否拥有性 P,并明原因;1a1a2a na n.(2)明: a = 1,且a11a21a n1测试十五必修 5 模块自我检测题一、选择题1.函数y x2 4 的定义域是()(A)(-2, 2)(B)(-∞,- 2)∪ (2,+∞ )(C)[- 2,2](D)(-∞,- 2]∪ [2,+∞ )2.设 a> b> 0,则以下不等式中必定建立的是()(A)a- b< 0(B)0<a< 1 b(C)ab<a b(D)ab> a+ b 2x1,3.设不等式组y0, 所表示的平面地区是W,则以下各点中,在地区W 内的点是 () x y 0(A) (1,1)(B) (1,1)2323(C) (11)(D) (11) ,3,3 224.设等比数列 {a n} 的前 n 项和为 S n,则以下不等式中必定建立的是()(A)a1+ a3> 0(B)a1a3> 0(C)S1+ S3< 0(D)S1S3< 05.在△ ABC 中,三个内角 A, B, C 的对边分别为 a, b, c,若 A∶ B∶ C= 1∶ 2∶ 3,则 a∶ b∶ c 等于 ()(A)1∶ 3 ∶2(B)1∶ 2∶ 3(C)2∶ 3 ∶1(D)3∶ 2∶ 16.已知等差数列 {a n}的前 20 项和 S20= 340,则 a6+a9+ a11+ a16等于 ()(A)31(B)34(C)68(D)707.已知正数 x、 y 知足 x+ y= 4,则 log x+log y 的最大值是 ()22(A)- 4(B)4(C)- 2(D)28.如图,在限速为 90km/h 的公路 AB 旁有一测速站P,已知点 P 距测速区起点 A 的距离为 0.08 km ,距测速区终点B 的距离为0.05 km,且∠ APB= 60° .现测得某辆汽车从 A 点行驶到 B 点所用的时间为3s,则此车的速度介于 ()(A)60~ 70km/h(B)70~ 80km/h(C)80~ 90km/h(D)90~100km/h二、填空题9.不等式 x(x- 1)< 2 的解集为 ________.10.在△ ABC中,三个内角 A,B, C 成等差数列,则 cos(A+ C)的值为 ________.11.已知 {a }是公差为- 2 的等差数列,其前 5 项的和 S =0 ,那么 a 等于 ________.n5112.在△ ABC中, BC= 1,角 C=120°, cosA=2,则 AB=________.3x0, y013.在平面直角坐标系中,不等式组2x y 4 0 ,所表示的平面地区的面积是________;变量 z=x+ 3y 的最大x y 30值是 ________.2a (1≤i ≤ n ,1≤ j ≤ n , i , j ∈ N)表示位于第 i 行第 j 列的正数 .已14.如 , n (n ≥ 4)个正数排成 n 行 n 列方 ,符号ij知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若 a 11=1,a 24= 1, a 32= 1 ,2 4q = ________; a ij = ________.三、解答15.已知函数f(x)= x 2+ ax +6.(1)当 a = 5 ,解不等式 f(x)< 0;(2)若不等式 f(x)> 0 的解集R ,求 数a 的取 范 .16.已知 {a n }是等差数列,a 2= 5, a 5= 14.(1)求{a n }的通 公式;n}的前 n n(2) {a 和 S = 155,求 n 的 .17.在△ ABC 中, a , b , c 分 是角 A ,B , C 的 , A , B 是 角, c = 10,且cos Ab4 .cos B a3(1) 明角 C = 90°; (2)求△ ABC 的面 .18.某厂生 甲、乙两种 品,生 两种 品每吨所需要的煤、 以及每吨 品的 以下表所示.若每天配厂的煤至多 56 吨,供 至多 45 千瓦, 厂怎样安排生 ,使得 厂日 最大用煤 (吨)用 (千瓦 )(万元 )甲种 品 7 2 8 乙种 品351119.在△ ABC 中, a , b , c 分 是角 A , B , C 的 ,且 cosA =1.3(1)求 sin 2 B C cos 2 A 的 ;2 (2)若 a =3 ,求 bc 的最大 .20.数列 {a n }的前 n 和是 S n ,a 1= 5,且 a n = S n - 1(n = 2, 3, 4,⋯ ).(1)求数列 {a n }的通 公式;1 1 11 3(2)求 :a 2 a 3 a na 1 5参照答案第一章解三角形测试一正弦定理和余弦定理一、选择题1.B2.C3. B4. D5. B提示:4.由正弦定理,得sinC=3,所以C=60°或C= 120°,2当 C= 60°时,∵ B= 30°,∴ A=90°,△ ABC是直角三角形;当 C= 120°时,∵ B= 30°,∴ A= 30°,△ ABC是等腰三角形 . 5.因为 A∶ B∶ C= 1∶ 2∶3,所以 A= 30°, B=60°, C= 90°,由正弦定理a b c=k,sin A sin B sin C得 a= k· sin30°=1k, b=k·sin60 °=3k, c= k· sin90°= k,22所以 a∶ b∶c= 1∶3∶2.二、填空题6. 2 67. 30°8.等腰三角形9.33710. 5 2 324提示:8.∵ A+ B+C=π,∴- cosA= cos(B+C).∴ 2cosBcosC= 1- cosA= cos(B+ C)+ 1,∴2cosBcosC= cosBcosC- sinBsinC+ 1,∴ cos(B-C)= 1,∴ B- C= 0,即 B = C. 9.利用余弦定理 b2= a2+ c2- 2accosB.2AC BC 5 2 10.由 tan A= 2,得 sin A 5,依据正弦定理,得sin B sin A,得 AC= 4 .三、解答题11.c= 2 3, A= 30°, B= 90° .12.(1)60°; (2)AD=7 .13.如右图,由两点间距离公式,得 OA= (50) 2( 20)229 ,同理得 OB145, AB232 .由余弦定理,得cosA= OA2AB 2OB2 2 ,2OAAB2∴A=45°.14.(1)因为 2cos(A+ B)= 1,所以 A+ B=60°,故 C= 120°.(2)由题意,得 a + b = 2 3 , ab = 2,又 AB 2=c 2= a 2+ b 2 -2abcosC = (a + b)2- 2ab - 2abcosC= 12- 4-4× ( 1)= 10.2所以 AB =10 .△ABC1 1·2·3 = 3(3)S=absi nC =2222测试二 解三角形全章综合练习1.B2.C3.D4.C5.B提示:5.化简 (a + b +c)(b + c - a)= 3bc ,得 b 2+ c 2- a 2=bc ,由余弦定理,得 cosA = b2c 2 a 21,所以∠ A = 60° .2bc 2 因为 sinA = 2sinBcosC , A + B + C =180°,所以 sin(B + C)= 2sinBcosC ,即 sinBcosC + cosBsinC = 2sinBcosC. 所以 sin(B - C)= 0,故 B =C. 故△ ABC 是正三角形 .二、填空题6.30°7. 120° 8. 249.510. 355三、解答题11.(1)由余弦定理,得c = 13 ;(2)由正弦定理,得 sinB =239.1312.(1)由 a · b = | a| ·| b| · cos 〈 a , b 〉,得〈 a , b 〉= 60°;(2)由向量减法几何意义,知 | a| ,| b| , | a - b| 能够构成三角形,所以 | a - b| 2=| a| 2+ | b| 2- 2| a| · | b| ·cos 〈a , b 〉= 7,故 | a - b| = 7 .13.(1)如右图,由两点间距离公式,得OA(50) 2 (2 0)229 ,同理得 OB145 , AB232 .由余弦定理,得OA 2 AB 2 OB 22 cos A 2OAAB,2所以 A = 45° .故 BD = AB × sinA = 2 29 .△OAB1·OA · BD = 1· 29 ·2 29 =29. (2)S=2214.由正弦定理a b csin A sin B2R ,sin C得 asin A, b sin B, c sin C .2R2R 2R 因为 sin 2A + sin 2B > sin 2C , 所以 ( a)2( b ) 2( c) 2 , 2R2R2R即 a 2+ b 2> c 2.所以 cosC = a 2 b 2 c 22ab> 0,由 C ∈ (0,π ),得角 C 为锐角 .15.(1)设 t 小时后甲、乙分别抵达P 、 Q 点,如图,则 | AP| = 4t ,| BQ| =4t ,因为 | OA| = 3,所以 t = h 时, P 与 O 重合 .4故当 t ∈ [0,]时,4| PQ| 2= (3- 4t)2+ (1+ 4t)2 -2× (3- 4t)×(1+ 4t)× cos60°;当 t >h 时, | PQ| 2= (4t -3)2+ (1+ 4t)2- 2× (4t - 3)× (1+4t )× cos120° .4故得| PQ|=48 224 t7(t ≥ 0).t(2)当 t =241h 时,两人距离近来,近来距离为 2km.2 48 416.(1)由正弦定理abcsin A sin B2 R ,sin C得 a =2RsinA , b = 2RsinB , c = 2RsinC. 所以等式cos Bb 可化为 cos B2 Rsin B,cos C2a ccosC2 2R sin A 2R sin C即 cos B sin B, cosC 2 sin A sin C2sinAcosB +sinCcosB =- cosC · sinB ,故 2sinAcosB =- cosCsinB -sinCcosB =- sin(B + C),因为 A + B + C =π,所以 sinA =sin(B + C), 故 cosB =- 1,2所以 B = 120°.(2)由余弦定理,得 b 2= 13= a 2+ c 2- 2ac × cos120°,即 a 2+ c 2 + ac = 13又 a +c = 4,。
最新【高一数学】新课程高中数学测试题组(必修5)含答案2(共40页)优秀名师资料

【高一数学】新课程高中数学测试题组(必修5)含答案2(共40页)特别说明:《新课程高中数学训练题组》是由李传牛老师根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]建议分别适用于同步练习,单元自我检查和高考综合复习。
本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。
本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错,计算错误,还是方法上的错误,对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。
本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。
目录:数学5(必修)数学5(必修)第一章:解三角形 [基础训练A组]数学5(必修)第一章:解三角形 [综合训练B组]数学5(必修)第一章:解三角形 [提高训练C组]数学5(必修)第二章:数列 [基础训练A组]数学5(必修)第二章:数列 [综合训练B组]数学5(必修)第二章:数列 [提高训练C组]数学5(必修)第三章:不等式 [基础训练A组]数学5(必修)第三章:不等式 [综合训练B组]数学5(必修)第三章:不等式 [提高训练C组]而来亦子新课程高中数学训练题组,不曰说不愠:乎根据最新课程标准,参考独家内部资料,亦学,,不乐而有精心编辑而成;本套资料分必修系列和选修亦乎时朋君,习自子人之系列及部分选修4系列。
高中新课程数学必修同步练习(含答案)

金华十校高中新课程数学必修(5)同步练习目录第一章解三角形§1.1.1正弦定理和余弦定理 (1)§1.1.1正弦定理和余弦定理参考答案 (3)第一章解三角形§1.1.2正弦定理和余弦定理 (5)§1.1.2正弦定理和余弦定理参考答案 (7)第一章解三角形§1.2.1解三角形应用举例 (9)1.2.1解三角形应用举例参考答案 (11)第一章解三角形§1.2.2解三角形应用举例 (12)1.2.2解三角形应用举例参考答案 (14)第一章 解三角形§1.1.1正弦定理和余弦定理一、选择题1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于……………………....( ) A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为…………..( ) A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于………………………..( ) A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为…..( )A .(2,+∞) ]B .(-∞,0)C .(-21,0) D .(21,+∞)5. 在△ABC 中,根据下列条件解三角形,其中有一解的是………………………..( ) A .b =7,c =3,C =30° B .b =5,c =42,B =45° C .a =6,b =63,B =60° D .a =20,b =30,A =30° * 6.在△ABC 中,A =60°,b =1,其面积为3,则sin sin sin a b cA B C++++等于….( )A .33B .3392 C .338D .239二、填空题7.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________. 8.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.9.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.10*.若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,则它的内切圆半径等于________,外接圆半径等于________. 三、解答题11.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16. (1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.12.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .13.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.14*.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.§1.1.1正弦定理和余弦定理参考答案一、选择题D C A D C B 二、填空题7.23或3 8. 22 9. 60°或120° 10. 3 337三、解答题11.解:(1)∵ a +b =16,∴ b =16-a S =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.12.解:∵ sin C ∶sin A =4∶13∴ c ∶a =4∶13 设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b k k由①、②消去2b ,得13k 2-16k +3=0 ③解得k =133或k =1,∵ k =133时b <0,故舍去. ∴ k =1,此时a =13,b =2135-,c =4.13.证明:由正弦定理,知 a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin()22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴14.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +== ∵ A ≤B∴ 2A ≤A +B ≤180°-C ≤60°∵ 正弦函数在(0,3π)上是增函数,∴ sin(A +B )≥sin2A >0∴ A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴ a c≥2cos A∵ 2A ≤60° ∴ 0°<A ≤30°∴ cos A ≥cos30°=23∴ a c≥2·23∴ a c≥3∴ 最长边与最短边之比不小于3第一章 解三角形§1.1.2正弦定理和余弦定理班级 姓名 学号 得分一、选择题1.在△ABC 中,已知b =43,c =23,∠A =120°,则a 等于……………….( ) A .221B .6C .221或6D .23615+2.在△ABC 中,已知三边a 、b 、c 满足(a +b +c )(a +b -c )=3ab ,则∠C 等于…..( ) A .15°B .30°C .45°D .60°3.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是…( ) A .135°B .90°C .120°D .150°4.在△ABC 中,若c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,则∠C 等于………………….( ) A .90°B .120°C .60°D .120°或60°5.已知A 、B 、C 是△ABC 的三个内角,则在下列各结论中,不正确的为………...( ) A .sin 2A =sin 2B +sin 2C +2sin B sin C cos(B +C ) B .sin 2B =sin 2A +sin 2C +2sin A sin C cos(A +C ) C .sin 2C =sin 2A +sin 2B -2sin A sin B cos CD .sin 2(A +B )=sin 2A +sin 2B -2sin B sin C cos(A +B )6*.在△ABC 中,AB =5,BC =7,AC =8,则⋅的值为……………………( ) A .79B .69C .5D .-5二、填空题7.已知△ABC 中,A =60°,最大边和最小边是方程x 2-9x +8=0的两个正实数根,那么BC 边长是________.8.在△ABC 中,已知a =7,b =8,cos C =1413,则最大角的余弦值是________.9.在△ABC 中,∠C =60°,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则c a bc b a +++=________. 10*.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________.三、解答题11.已知a =33,c =2,B =150°,求边b 的长及S △.12.在△ABC 中,cos210922=+=c c b A ,c =5,求△ABC 的内切圆半径.13.已知△ABC 的三边长a 、b 、c 和面积S 满足S =a 2-(b -c )2,且b +c =8,求S 的最大值.14*.已知a 、b 、c 为△ABC 的三边,且a 2-a -2b -2c =0,a +2b -2c +3=0,求这个三角形的最大内角.§1.1.2正弦定理和余弦定理参考答案一、选择题A D C D D D 二、填空题7.57 8.-719.1 10.4或5三、解答题11.解:b 2=a 2+c 2-2ac cos B =(33)2+22-2·23·2·(-23)=49.∴ b =7,S △=21ac sin B =21×33×2×21=233.12.解:∵ c =5,1092=+c c b ,∴ b =4 又cos 2c c b A A 22cos 12+=+= ∴ cos A =c b又cos A =bc a c b 2222-+ ∴c bbc a c b =-+2222∴ b 2+c 2-a 2=2b 2∴ a 2+b 2=c 2 ∴ △ABC 是以角C 为直角的三角形.a =22b c -=3∴ △ABC 的内切圆半径r =21(b +a -c )=1.13.解:∵ S =a 2-(b -c )2 又S =21bc sin A ∴ 21bc sin A =a 2-(b -c )2∴412222=-+bc a c b (4-sin A )∴ cos A =41(4-sin A )∴ sin A =4(1-cos A ) ∴ 2sin 2sin 82cos 22A A A =∴ tan 2A 41=∴ sin A =178)41(14122tan 12tan222=+⨯=+A A17644)(174174sin 212=+⋅≤==c b S bc A bC S Θ∴ c =b =4时,S 最大为176414.解:∵ a 2-a -2b -2c =0,a +2b -2c +3=0 由上述两式相加,相减可得c =41(a 2+3),b =41(a -3)(a +1)∴ c -b =21(a +3)∵ a +3>0,∴ c >bc -a =41(a 2+3)-a =41(a 2-4a +3)=41(a -3)(a -1)∵ b =41(a -3)(a +1)>0,∴ a >3 ∴ 41(a -3)(a -1)>0∴ c >a∴ c 边最大,C 为最大角∴ cos C =ab c b a 2222-+21)1)(3(412)3(161)1()3(16122222-=+-⋅+-+-+=a a a a a a a∴ △ABC 的最大角C 为120°第一章 解三角形§1.2.1解三角形应用举例一、选择题1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为………………………………………………( ) A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是……………………………………………………….( )A.103海里B.3610海里 C. 52海里 D.56海里3. 有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( ) A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里4. .已知平行四边形ABCD 满足条件0)()(=-⋅+→-→-→-→-AD AB AD AB ,则该四边形是………( ) A.矩形B.菱形C.正方形D.任意平行四边形5. 一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时………………………………………………………………………………………… . ( )A.5海里B.53海里C.10海里D.103海里6.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ………………………………………………………………………..( )A. 21d d >B. 21d d =C. 21d d <D. 不能确定大小 二、 填空题7.一树干被台风吹断折成与地面成30°角,树干底部与树尖着地处相距20米,则树干原来的高度为8.为了测量上海东方明珠的高度,某人站在A 处测得塔尖的仰角为75.5o,前进38.5m 后,到达B 处测得塔尖的仰角为80.0o.试计算东方明珠塔的高度 (精确到1m ).9.某舰艇在A 处测得遇险渔船在北偏东45°距离为10海里的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是10.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60o,行驶4h后,船到达C处,看到这个灯塔在北偏东15o,这时船与灯塔的距离为km.三、解答题11.在奥运会垒球比赛前,C国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°方向把球击出,根据经验,通常情况下,球速为游击手最大跑速的4倍,问按这样布置,游击手能否接着球?12.如图,用两根绳子把重10 N的物体W吊在水平杆子AB上.∠ACW=150°,∠BCW=120°,求A和B处所受力的大小.(忽略绳子重量)A BCFE13.某观察站C在A城的南偏西20°方向,由A城出发有一条公路,走向是南偏东40°,距C处31千米的公路上的B处有一人正沿公路向A城走去,走了20千米后到达D处,此时CD距离为21千米,问人还需走多少千米才能到达A城?1.2.1解三角形应用举例参考答案一、选择题1.A 2.D 3.A 4.B 5.C 6.C 二、填空题7.米320 8.468m 9. 32小时 10. 302 三、解答题 11.不能12. 解:设A 、B 处所受力分别为f 1、f 2,10 N 的重力用f 表示,则f 1+f 2=f .以重力作用点C 为f 1、f 2的始点,作平行四边形CFWE ,使CW 为对角线,则CF =f 1,CE =f 2,CW =f ,则∠ECW =1800-150°=30°,∠FCW =180°-120°=60°,∠FCE =90°.∴四边形CE W F 为矩形.∴|CE |=|CW |cos30°=10·23=53, |CF |=|CN |cos60°=10×21=5.∴A 处受力为53 N ,B 处受力为5 N.13. 解:设AD=x ,AC=y ,2222040602cos6021,BAC ACD x y xy ∠=︒+︒=︒∴∆+-︒=Q 在中有44122=-+xy y x 即 ①而在△ABC 中,,3160cos )20(2)20(222=︒+-++y x y x 即561204022=-+-+y x xy y x ②②—①得62-=x y ,代入①得013562=--x x 得)(15km x =,即此人还需走15km 才能到达A 城.第一章 解三角形§1.2.2解三角形应用举例班级 姓名 学号 得分一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( )A.α>βB.α=βC.α+β=90°D.α+β=180°2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( )A.3400B. 33400米C. 2003米D. 200米3.在∆ABC 中, 已知sinA = 2 sinBcosC, 则∆ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形.4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( )ACDB阳光地面A.75°B.60°C.50°D.45°5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( )A.0.5 hB.1 hC.1.5 hD.2 h6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方向行驶.A BC D12ABCD604520moo10..在一座20 m高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的高为_______.三、解答题11.如图:在斜度一定的山坡上的一点A测得山顶上一建筑物顶端C对于山坡的斜度为15︒,向山顶前进100m后,又从点B测得斜度为45︒,假设建筑物高50m,求此山对于地平面的斜度θ12.某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心O与AB的距离为10 km,问把A、B分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)LO13.海岛上有一座高出水面1000米的山,山顶上设有观察站A,上午11时测得一轮船在A的北偏东60°的B处,俯角是30°,11时10分,该船位于A的北偏西60°的C处,俯角为60°,(1)求该船的速度;(2)若船的速度与方向不变,则船何时能到达A的正西方向,此时船离A的水平距离是多少?(3)若船的速度与方向不变,何时它到A站的距离最近?1.2.2解三角形应用举例参考答案一、选择题1.B 2.A 3.B 4.C 5.B 6.C 二、填空题 7. 203米,3340米 8. 14nmile/h 9. 与水速成135°角的方向 10. 20(1+3)m 三、解答题13.解:在△ABC 中,AB = 100m , ∠CAB = 15︒, ∠ACB = 45︒-15︒ = 30︒ 由正弦定理:οο15sin 30sin 100BC= ∴BC = 200sin15︒ 在△DBC 中,CD = 50m , ∠CBD = 45︒, ∠CDB = 90︒ + θ由正弦定理:)90sin(15sin 20045sin 50θ+=οοο⇒c os θ =13- ,∴θ = 4294︒ 14.解:在△AOB 中,设OA =a ,OB =b .因为AO 为正西方向,OB 为东北方向,所以∠AOB =135°.则|AB |2=a 2+b 2-2ab cos135°=a 2+b 2+2ab ≥2ab +2ab =(2+2)ab ,当且仅当a =b 时,“=”成立.又O 到AB 的距离为10,设∠OAB =α,则∠OBA =45°-α.所以a =αsin 10,b =)(α-︒45sin 10,ab =αsin 10·)(α-︒45sin 10=)(αα-︒⋅45sin sin 100=)(αααsin 22cos 22sin 100-=)(αα2cos 1422sin 42100--=2452sin 2400-︒+)(α≥22400-,当且仅当α=22°30′时,“=”成立.所以|AB |2≥2222400-+)(=400(2+1)2,当且仅当a =b ,α=22°30′时,“=”成立. 所以当a =b =0322sin 10'︒=10)(222+时,|AB |最短,其最短距离为20(2+1),即当AB 分别在OA 、OB 上离O 点10)(222+ km 处,能使|AB |最短,最短距离为20(2-1).15. 解:(1)如图,)(330cot 1km OB =︒⨯=,),(339)21(3332313||,120),(3360cot 1km BC BOC km OC =-⨯⨯⨯-+=∴︒=∠=︒⨯=而∴船的速度);/(39261h km BCv ==(2)设船到达的正西位置为D (x ,0), ∵B 的坐标为),23,23()30sin 3,30cos 3(=︒︒ 而C 的坐标为),63,21()150sin 33,150cos 33(-=︒︒ ∵B 、C 、D 三点共线,,23212363232323-=⇒+-=-∴x x )0,23(-∴D ,),(6393631||km CD =+=∴ ∴==(min),5)(121||h v CD Θ该船在上午11时15分到达正西方向; (3)作OE ⊥BC 于E ,则E 点到A 的距离最近,(min),1390)(263||),(1339352949||),(1323||,120sin ||||||||==∴=-=∴=∴︒⋅=⋅h v ED km DE km OE OC OB BC OE Θ∴=-(min),1318139015Θ船在上午11时1318分时到A 的距离最近.。
【精品推荐】新课程高中数学测试题组(必修5)全套含答案
(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
(完整版)人教版高中数学必修5测试题及答案全套(可编辑修改word版)
233 2 33513第一章解三角形测试一正弦定理和余弦定理Ⅰ学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ基础训练题一、选择题1.在△ABC 中,若BC=,AC=2,B=45°,则角A 等于( )(A)60°(B)30°(C)60°或120°(D)30°或150°12.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=3,cos C=-,则c 等于( )4(A)2 (B)3 (C)4 (D)53.在△ABC 中,已知cos B =3, sin C =2,AC=2,那么边AB 等于( )(A)545(B)533(C)209(D)1254.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,已知B=30°,c=150,b=50 ,那么这个三角形是( )(A)等边三角形(B)等腰三角形(C)直角三角形(D)等腰三角形或直角三角形5.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,如果A∶B∶C=1∶2∶3,那么a∶b∶c 等于( )(A)1∶2∶3 (B)1∶∶2 (C)1∶4∶9 (D)1∶∶二、填空题6.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,B=45°,C=75°,则b=.7.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=2 ,c=4,则A=.8.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC 形状是三角形.9.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=3,b=4,B=60°,则c=.10.在△ABC 中,若tan A=2,B=45°,BC=,则AC=.三、解答题11.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=4,C=60°,试解△ABC.12.在△ABC 中,已知AB=3,BC=4,AC=.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O(0,0),A(5,2)和B(-9,8),求角A 的大小.3 2 19 14. 在△ABC 中,已知 BC =a ,AC =b ,且 a ,b 是方程 x 2-2x +2=0 的两根,2cos(A +B )=1.(1) 求角 C 的度数; (2) 求 AB 的长; (3) 求△ABC 的面积.一、选择题测试二 解三角形全章综合练习Ⅰ 基础训练题1. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 b 2+c 2-a 2=bc ,则角 A 等于( )π (A)6π (B)3(C)2π3(D)5π 62. 在△ABC 中,给出下列关系式:①sin(A +B )=sin C ②cos(A +B )=cos C ③ sin A + B = cos C2 2其中正确的个数是( ) (A)0(B)1(C)2(D)32 33. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c .若 a =3,sin A = ,sin(A +C )= ,则 b 等于()(A)4(B) 833 4(C)6 (D)27 824. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =3,b =4,sin C = ,则此三角形的面积是3( ) (A)8 (B)6 (C)4 (D)3 5. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且 sin A =2sin B cos C ,则此三角形的形状是( )(A) 直角三角形(B)正三角形(C)腰和底边不等的等腰三角形 (D)等腰直角三角形二、填空题6. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =,b =2,B =45°,则角 A =.7. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =2,b =3,c =,则角 C =.3 8. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 b =3,c =4,cos A = ,则此三角形的面积为.59.已知△ABC 的顶点 A (1,0),B (0,2),C (4,4),则 cos A = . 10. 已知△ABC 的三个内角 A ,B ,C 满足 2B =A +C ,且 AB =1,BC =4,那么边 BC 上的中线 AD 的长为 .三、解答题11. 在△ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,且 a =3,b =4,C =60°.(1) 求 c ; (2) 求 sin B . 12.设向量 a ,b 满足 a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为 O (0,0),A (5,2)和 B (-9,8),若 BD ⊥OA 于 D .(1) 求高线 BD 的长; (2) 求△OAB 的面积.14.在△ABC 中,若sin2A+sin2B>sin2C,求证:C 为锐角.(提示:利用正弦定理a=sin Absin B=csin C= 2R ,其中R 为△ABC 外接圆半径)Ⅱ拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX、OY 上的A、B两点,| OA |=3km,| OB |=1km,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向.问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且(1)求角B 的值;(2)若b=,a+c=4,求△ABC 的面积. cos Bcos C=-b.2a +c13第二章 数列测试三 数列Ⅰ 学习目标1. 了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2. 理解数列的通项公式的含义,由通项公式写出数列各项.3. 了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( )(A)a n =4n (B)a n =4n(C)a = 4(10n -1) (D)a =4×11n92.在有一定规律的数列 0,3,8,15,24,x ,48,63,……中,x 的值是( )(A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则 a 4 等于( ) (A)4 (B)13 (C)28 (D)43 4.156 是下列哪个数列中的一项( ) (A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5. 若数列{a n }的通项公式为 a n =5-3n ,则数列{a n }是( ) (A) 递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对二、填空题6. 数列的前 5 项如下,请写出各数列的一个通项公式:(1)1, 2 , 1 , 3 2 2 , 15 3, , a n = ;(2)0,1,0,1,0,…,a n = .n 27.一个数列的通项公式是 a n = n 2 +1.(1) 它的前五项依次是; (2)0.98 是其中的第项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则 a 4=.9. 数列{a }的通项公式为 a =1(n ∈N *),则 a =.n1+ 2 + 3 + + (2n -1)310. 数列{a n }的通项公式为 a n =2n 2-15n +3,则它的最小项是第 项.三、解答题11. 已知数列{a n }的通项公式为 a n =14-3n .(1) 写出数列{a n }的前 6 项; (2)当 n ≥5 时,证明 a n <0.n 2 + n -112. 在数列{a n }中,已知 a n =(n ∈N *).3(1)写出 a 10,a n +1, a n 2 ;(2) 79 2 是否是此数列中的项?若是,是第几项?313. 已知函数 f (x ) = x - 1,设 a n =f (n )(n ∈N ).x+nnn(1)写出数列{a n}的前4 项;(2)数列{a n}是递增数列还是递减数列?为什么?测试四等差数列Ⅰ学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题.2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ基础训练题一、选择题1.数列{a n}满足:a1=3,a n+1=a n-2,则a100等于( )(A)98 (B)-195 (C)-201 (D)-1982.数列{a n}是首项a1=1,公差d=3 的等差数列,如果a n=2008,那么n 等于( )(A)667 (B)668 (C)669 (D)6703.在等差数列{a n}中,若a7+a9=16,a4=1,则a12的值是( )(A)15 (B)30 (C)31 (D)644.在a 和b(a≠b)之间插入n 个数,使它们与a,b 组成等差数列,则该数列的公差为( )(A)b -an (B)b -an +1(C)b +an +1(D)b -an + 25.设数列{a n}是等差数列,且a2=-6,a8=6,S n是数列{a n}的前n 项和,则( )(A)S4<S5(B)S4=S5(C)S6<S5(D)S6=S5二、填空题6.在等差数列{a n}中,a2与a6的等差中项是.7.在等差数列{a n}中,已知a1+a2=5,a3+a4=9,那么a5+a6=.8.设等差数列{a n}的前n 项和是S n,若S17=102,则a9=.9.如果一个数列的前n 项和S n=3n2+2n,那么它的第n 项a n=.10.在数列{a n}中,若a1=1,a2=2,a n+2-a n=1+(-1)n(n∈N*),设{a n}的前n 项和是S n,则S10=.三、解答题11.已知数列{a n}是等差数列,其前n 项和为S n,a3=7,S4=24.求数列{a n}的通项公式.12.等差数列{a n}的前n 项和为S n,已知a10=30,a20=50.(1)求通项a n;(2)若S n=242,求n.13.数列{a n}是等差数列,且a1=50,d=-0.6.(1)从第几项开始a n<0;(2)写出数列的前n 项和公式S n,并求S n的最大值.Ⅲ拓展训练题14.记数列{a n}的前n 项和为S n,若3a n+1=3a n+2(n∈N*),a1+a3+a5+…+a99=90,求S100.测试五等比数列Ⅰ学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题.2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ基础训练题一、选择题.在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.1. 数列{a n }满足:a 1=3,a n +1=2a n ,则 a 4 等于( )(A) 38(B)24 (C)48(D)542. 在各项都为正数的等比数列{a n }中,首项 a 1=3,前三项和为 21,则 a 3+a 4+a 5 等于()(A)33 (B)72 (C)84 (D)1893. 在等比数列{a n }中,如果 a 6=6,a 9=9,那么 a 3 等于()(A)4 (B) 3 2 (C) 169 (D)3 4. 在等比数列{a n }中,若 a 2=9,a 5=243,则{a n }的前四项和为( )(A)81(B)120(C)168(D)1925. 若数列{a n }满足 a n =a 1q n -1(q >1),给出以下四个结论:①{a n }是等比数列;②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列;④{a n }可能是递减数列. 其中正确的结论是( )(A)①③(B)①④(C)②③(D)②④二、填空题6. 在等比数列{a n }中,a 1,a 10 是方程 3x 2+7x -9=0 的两根,则 a 4a 7= . 7.在等比数列{a n }中,已知 a 1+a 2=3,a 3+a 4=6,那么 a 5+a 6= .8.在等比数列{a }中,若 a =9,q = 1,则{a }的前 5 项和为 .n59 8 27 2n3 210. 设等比数列{a n }的公比为 q ,前 n 项和为 S n ,若 S n +1,S n ,S n +2 成等差数列,则 q = .三、解答题11. 已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前 n 项和为 S n .(1) 求数列{a n }的通项公式; (2)若 S n =242,求 n .12. 在等比数列{a n }中,若 a 2a 6=36,a 3+a 5=15,求公比 q .13. 已知实数 a ,b ,c 成等差数列,a +1,b +1,c +4 成等比数列,且 a +b +c =15,求 a ,b ,c .Ⅲ 拓展训练题14. 在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于 q ,每列上的数从上到1 5下都成等差数列.a ij 表示位于第 i 行第 j 列的数,其中 a 24=,a 42=1,a 54=.(1) 求 q 的值;(2) 求 a ij 的计算公式.2 + 13 + 24 + 3n + 1 + n测试六 数列求和Ⅰ 学习目标1. 会求等差、等比数列的和,以及求等差、等比数列中的部分项的和.2. 会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1. 已知等比数列的公比为 2,且前 4 项的和为 1,那么前 8 项的和等于( )(A)15 (B)17 (C)19 (D)212. 若数列{a }是公差为 1 的等差数列,它的前 100 项和为 145,则 a +a +a +…+a的值为()n21 3 5 99(A)60 (B)72.5 (C)85 (D)120 3. 数列{a n }的通项公式 a n =(-1)n -1·2n (n ∈N *),设其前 n 项和为 S n ,则 S 100 等于( )(A)100 (B)-100 (C)200 (D)-200⎧ 1 ⎫ 4.数列⎨(2n -1)(2n +1) ⎬ 的前n 项和为( ) (A) ⎩ n 2n + 1 ⎭ (B)2n2n + 1 (C)n 4n + 2(D)2nn + 1 5.设数列{a n }的前 n 项和为 S n ,a 1=1,a 2=2,且 a n +2=a n +3(n =1,2,3,…),则 S 100 等于( )(A)7000 (B)7250 (C)7500 (D)14950 二、填空题 6.1 +1 +1 + +1 = .17.数列{n +2n }的前n 项和为 .8.数列{a n }满足:a 1=1,a n +1=2a n ,则 a 2 +a 2 +…+a 2 = .12n9.设 n ∈N *,a ∈R ,则 1+a +a 2+…+a n =. 1 1 1 1 10.1⨯ 2 + 2 ⨯ 4 + 3⨯ 8 + + n ⨯ 2n =.三、解答题11. 在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前 n 项和 S n .12. 已知函数 f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数 n 都有 f (1)=n 2 成立.(1) 求数列{a n }的通项 a n ;1 (2) 求a a + 1 + + 1 . a a a a1 22 3n n +113.在数列{a }中,a =1,当 n ≥2 时,a =1 + 1 + 1+ +1,求数列的前 n 项和 S .n1n2 42n -1nⅢ 拓展训练题14. 已知数列{a n }是等差数列,且 a 1=2,a 1+a 2+a 3=12.(1) 求数列{a n }的通项公式;(2) na n - 3 3a n +133一、选择题测试七 数列综合问题Ⅰ 基础训练题1.等差数列{a n }中,a 1=1,公差 d ≠0,如果 a 1,a 2,a 5 成等比数列,那么 d 等于( )(A)3 (B)2 (C)-2 (D)2 或-2 2.等比数列{a n }中,a n >0,且 a 2a 4+2a 3a 5+a 4a 6=25,则 a 3+a 5 等于( ) (A)5 (B)10 (C)15 (D)20 3. 如果 a 1,a 2,a 3,…,a 8 为各项都是正数的等差数列,公差 d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5(C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 5 4. 一给定函数 y =f (x )的图象在下列图中,并且对任意 a 1∈(0,1),由关系式 a n +1=f (a n )得到的数列{a n }满足 a n +1>a n (n ∈N *),则该函数的图象是( )5. 已知数列{a }满足 a =0, a= (n ∈N *),则 a 等于()n1n +120 (A)0 (B)- (C) (D)3 2二、填空题⎧1a ,n 且且且 ,1⎪ 2 n6.设数列{a n }的首项 a 1= ,且 a n +1 = ⎨ ⎪a ⎩n+ 1, 4 n 且且且则 a 2=,a 3= ..7. 已知等差数列{a n }的公差为 2,前 20 项和等于 150,那么 a 2+a 4+a 6+…+a 20=.8. 某种细菌的培养过程中,每20 分钟分裂一次(一个分裂为两个),经过3 个小时,这种细菌可以由1 个繁殖成 个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则 a n = .10. 在数列{a n }和{b n }中,a 1=2,且对任意正整数 n 等式 3a n +1-a n =0 成立,若 b n 是 a n 与 a n +1 的等差中项,则{b n }的前 n 项和为 . 三、解答题11. 数列{a n }的前 n 项和记为 S n ,已知 a n =5S n -3(n ∈N *).(1)求 a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求 a 1+a 3+…+a 2n -1 的和.2 12.已知函数 f (x )=(x >0),设 a =1,a 2 ·f (a )=2(n ∈N *),求数列{a }的通项公式.x 2+ 41 n +1 n n13.设等差数列{a n }的前 n 项和为 S n ,已知 a 3=12,S 12>0,S 13<0. (1) 求公差 d 的范围;(2) 指出 S 1,S 2,…,S 12 中哪个值最大,并说明理由.⎪ 4a +a +a n +1 nⅢ 拓展训练题14.甲、乙两物体分别从相距 70m 的两地同时相向运动.甲第 1 分钟走 2m ,以后每分钟比前 1 分钟多走 1m ,乙每分钟走 5m .(1) 甲、乙开始运动后几分钟相遇?(2) 如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走 1m ,乙继续每分钟走 5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若 a 1,a 2 是正整数,且 a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”. (1) 举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项 a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.一、选择题测试八 数列全章综合练习Ⅰ 基础训练题1.在等差数列{a n }中,已知 a 1+a 2=4,a 3+a 4=12,那么 a 5+a 6 等于( ) (A)16 (B)20 (C)24 (D)36 2. 在 50 和 350 间所有末位数是 1 的整数和( ) (A)5880 (B)5539 (C)5208 (D)4877 3. 若 a ,b ,c 成等比数列,则函数 y =ax 2+bx +c 的图象与 x 轴的交点个数为( ) (A)0 (B)1 (C)2 (D)不能确定 4. 在等差数列{a n }中,如果前 5 项的和为 S 5=20,那么 a 3 等于( ) (A)-2 (B)2 (C)-4 (D)45. 若{a n }是等差数列,首项 a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前 n 项和 S n >0 成立的最大自然数 n 是( ) (A)4012(B)4013 (C)4014 (D)4015二、填空题6. 已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项 a n = . 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前 20 项和 S 20= .8. 数列{a n }的前 n 项和记为 S n ,若 S n =n 2-3n +1,则 a n = .9. 等差数列{a n }中,公差 d ≠0,且 a 1,a 3,a 9 成等比数列,则 a 3 + a 6 + a9 = .47 1010. 设数列{a n }是首项为 1 的正数数列,且(n +1)a 2 -na 2 +a n +1a n =0(n ∈N *),则它的通项公式 a n = .三、解答题11. 设等差数列{a n }的前 n 项和为 S n ,且 a 3+a 7-a 10=8,a 11-a 4=4,求 S 13.12. 已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数 f (x )=2x +1 的图象上.(1) 求数列{a n }的通项公式;(2)求数列{a n }的前 n 项和 S n ;(3)设 c n =S n ,求数列{c n }的前 n 项和 T n .13. 已知数列{a n }的前 n 项和 S n 满足条件 S n =3a n +2.(1) 求证:数列{a n }成等比数列;(2)求通项公式 a n .14. 某渔业公司今年初用 98 万元购进一艘渔船,用于捕捞,第一年需各种费用 12 万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4 万元,该船每年捕捞的总收入为50 万元.n(1) 写出该渔船前四年每年所需的费用(不包括购买费用);(2) 该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3) 若当盈利总额达到最大值时,渔船以 8 万元卖出,那么该船为渔业公司带来的收益是多少万元?115. 已知函数 f (x )=Ⅱ 拓展训练题(x <-2),数列{a }满足 a =1,a =f (- 1)(n ∈N *).(1) 求 a n ;n 1 na n +1 (2) 设b =a 2 +a 2 +…+a 2,是否存在最小正整数 m ,使对任意 n ∈N *有 b < m成立?若存在,求出 mnn +1n +22n +125的值,若不存在,请说明理由.16. 已知 f 是直角坐标系平面 xOy 到自身的一个映射,点 P 在映射 f 下的象为点 Q ,记作 Q =f (P ).设 P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点 P n (x n ,y n )(n ∈N *) 都在这个圆内或圆上,那么称这个圆为点 P n (x n ,y n )的一个收敛圆.特别地,当 P 1=f (P 1)时,则称点 P 1 为映射 f 下的不动点.1若点 P (x ,y )在映射 f 下的象为点 Q (-x +1, y ).2(1) 求映射 f 下不动点的坐标;(2) 若 P 1 的坐标为(2,2),求证:点 P n (x n ,y n )(n ∈N *)存在一个半径为 2 的收敛圆.x 2 - 4bb 第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1. 了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小.2. 理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题 1. 设 a ,b ,c ∈R ,则下列命题为真命题的是( ) (A) a >b ⇒ a -c >b -c (B)a >b ⇒ ac >bc (C)a >b ⇒ a 2>b 2 (D)a >b ⇒ ac 2>bc 2 2.若-1<<<1,则- 的取值范围是( ) (A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0) 3. 设 a >2,b >2,则 ab 与 a +b 的大小关系是( ) (A) ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定4. 使不等式 a >b 和 1 > 1同时成立的条件是( )a b (A)a >b >0 (B)a >0>b (C)b >a >0(D)b >0>a5.设 1<x <10,则下列不等关系正确的是()(A) lg 2x >lg x 2>lg(lg x )(B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x )(D)lg x 2>lg(lg x )>lg 2x二、填空题6. 已知 a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c(b -2)c ; (2) cac ; (3)b -ab|a |-|b |. 7. 已知 a <0,-1<b <0,那么 a 、ab 、ab 2 按从小到大排列为 .a8. 已知 60<a <84,28<b <33,则 a -b 的取值范围是; 的取值范围是.b9. 已知 a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③ a > b;④a -c >b -c .以其中一个论断作条件,另c c 一个论断作结论,写出你认为正确的两个命题是 ⇒ ;⇒ .(在“ ⇒ ”的两侧填上论断序号).10.设 a >0,0<b <1,则 P = b 三、解答题a + 32 与Q = b 的大小关系是 .b b + m11.若 a >b >0,m >0,判断 与的大小关系并加以证明.aa + m12.设 a >0,b >0,且 a ≠b , p = a 2+ a , q = a + b .证明:p >q .注:解题时可参考公式 x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知 a >0,且 a ≠1,设 M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较 a 5 和 b 5 的大小.(a +1)(a +2)2ab ab ab bc y1. 了解基本不等式的证明过程.测试十 均值不等式Ⅰ 学习目标2. 会用基本不等式解决简单的最大(小)值问题.一、选择题1. 已知正数 a ,b 满足 a +b =1,则 ab ( )Ⅱ 基础训练题(A) 有最小值 1 4 (B) 有最小值 12 (C) 有最大值 14(D) 有最大值 122.若 a >0,b >0,且 a ≠b ,则()a + ba +b (A) <<2(B) <<2(C) << a + b 2(D) (D )< a + b2 3. 若矩形的面积为 a 2(a >0),则其周长的最小值为( )(A) a(B)2a (C)3a (D)4a4. 设 a ,b ∈R ,且 2a +b -2=0,则 4a +2b 的最小值是()(A) 2 (B)4 (C) 4 (D)85. 如果正数 a ,b ,c ,d 满足 a +b =cd =4,那么() (A)ab ≤c +d ,且等号成立时 a ,b ,c ,d 的取值唯一(B)ab ≥c +d ,且等号成立时 a ,b ,c ,d 的取值唯一(C)ab ≤c +d ,且等号成立时 a ,b ,c ,d 的取值不唯一(D)ab ≥c +d ,且等号成立时 a ,b ,c ,d 的取值不唯一二、填空题6. 若 x >0,则变量 x + 9的最小值是x;取到最小值时,x = . 4x7. 函数 y =x 2+1(x >0)的最大值是;取到最大值时,x =.8. 已知 a <0,则 a + 16 a - 3的最大值是 .9. 函数 f (x )=2log 2(x +2)-log 2x 的最小值是 . 10. 已知 a ,b ,c ∈R ,a +b +c =3,且 a ,b ,c 成等比数列,则 b 的取值范围是 .三、解答题11. 四个互不相等的正数 a ,b ,c ,d 成等比数列,判断 a + d 和 的大小关系并加以证明.212. 已知 a >0,a ≠1,t >0,试比较 1log t 与log2aat +1 2的大小.13. 若正数 x ,y 满足 x +y =1,且不等式Ⅲ 拓展训练题+ ≤ a 恒成立,求 a 的取值范围. a 14.(1)用函数单调性的定义讨论函数 f (x )=x + (a >0)在(0,+∞)上的单调性;xaa 2 +b 22 a 2 + b 22a 2 +b 2 2 a 2 + b 2 2 22x(2)设函数f(x)=x+(a>0)在(0,2]上的最小值为g(a),求g(a)的解析式.x测试十一 一元二次不等式及其解法Ⅰ 学习目标1. 通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系.2. 会解简单的一元二次不等式.一、选择题 1. 不等式 5x +4>-x 2 的解集是( )(A){x |x >-1,或 x <-4} Ⅱ 基础训练题(B){x |-4<x <-1} (C){x |x >4,或 x <1}(D){x |1<x <4}2. 不等式-x 2+x -2>0 的解集是()(A){x |x >1,或 x <-2}(B){x |-2<x <1} (C)R (D) ∅3. 不等式 x 2>a 2(a <0)的解集为( )(A){x |x >±a } (B){x |-a <x <a }(C) {x |x >-a ,或 x <a }(D) {x |x >a ,或 x <-a }4. 已知不等式 ax 2+bx +c >0 的解集为{x | - 1< x < 2},则不等式 cx 2+bx +a <0 的解集是()31(A){x |-3<x < }21(B){x |x <-3, 或 x > } 2 1(C){x -2<x < }31(D){x |x <-2, 或 x > }35. 若函数 y =px 2-px -1(p ∈R )的图象永远在 x 轴的下方,则 p 的取值范围是( )(A)(-∞,0)(B)(-4,0](C)(-∞,-4) (D)[-4,0)二、填空题 6. 不等式 x 2+x -12<0 的解集是. 7. 不等式 3x -1≤ 0 的解集是. 2x + 58.不等式|x 2-1|<1 的解集是 .9. 不等式 0<x 2-3x <4 的解集是.10. 已知关于 x 的不等式 x 2-(a + 1 )x +1<0 的解集为非空集合{x |a <x < 1},则实数 a 的取值范围是.a a三、解答题11. 求不等式 x 2-2ax -3a 2<0(a ∈R )的解集.⎧x 2 + y 2 - 2x = 012.k 在什么范围内取值时,方程组⎨ ⎩3x - 4 y + k = 0有两组不同的实数解?Ⅲ 拓展训练题13.已知全集 U =R ,集合 A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1) 求实数 a 的取值范围,使 C (2) 求实数 a 的取值范围,使 C ⊇ (A ∩B ); ⊇ ( U A )∩( U B ).14.设 a ∈R ,解关于 x 的不等式 ax 2-2x +1<0.测试十二不等式的实际应用Ⅰ学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ基础训练题一、选择题11.函数y =( )(A){x|-2<x<2} (B){x|-2≤x≤2}(C){x|x>2,或x<-2} (D){x|x≥2,或x≤-2}2.某村办服装厂生产某种风衣,月销售量x(件)与售价p(元/件)的关系为p=300-2x,生产x 件的成本r=500+30x(元),为使月获利不少于8600 元,则月产量x 满足( )(A)55≤x≤60 (B)60≤x≤65(C)65≤x≤70 (D)70≤x≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70 元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100 元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112 万元,那么r 的取值范围为( )(A)2≤r≤10 (B)8≤r≤10(C)2≤r≤8 (D)0≤r≤84.若关于x 的不等式(1+k2)x≤k4+4 的解集是M,则对任意实常数k,总有( )(A)2∈M,0∈M (B)2∉M,0∉M(C)2∈M,0∉M (D)2∉M,0∈M二、填空题5.已知矩形的周长为36cm,则其面积的最大值为.6.不等式2x2+ax+2>0 的解集是R,则实数a 的取值范围是.7.已知函数f(x)=x|x-2|,则不等式f(x)<3 的解集为.8.若不等式|x+1|≥kx 对任意x∈R 均成立,则k 的取值范围是.三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m,乙车的刹车距离略超过10m.已知甲乙两种车型的刹车距离s(km)与车速x(km/h)之间分别有如下关系:s 甲=0.1x+0.01x2,s 乙=0.05x+0.005x2.问交通事故的主要责任方是谁?Ⅲ拓展训练题11.当x∈[-1,3]时,不等式-x2+2x+a>0 恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm2.如何选择纸张的尺寸,才能使纸的用量最小?⎨ ⎩ ⎨ ⎨ ⎩⎩⎩⎩⎨ ⎩ ⎨y < 0⎨ ⎩ ⎨ ⎩⎨ ⎩测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1. 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2. 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题 1.已知点 A (2,0),B (-1,3)及直线 l :x -2y =0,那么( ) (A)A ,B 都在 l 上方 (B)A ,B 都在 l 下方 (C)A 在 l 上方,B 在 l 下方(D)A 在 l 下方,B 在 l 上方⎧x ≥ 0,2. 在平面直角坐标系中,不等式组⎪y ≥ 0, 所表示的平面区域的面积为()⎪x + y ≤ 2(A)1(B)2 (C)3(D)43. 三条直线 y =x ,y =-x ,y =2 围成一个三角形区域,表示该区域的不等式组是()⎧ y ≥ x ,⎧ y ≤ x , ⎧ y ≤ x , ⎧ y ≥ x , (A) ⎪ y ≥ -x , ⎪(B) ⎨ y ≤ -x ,(C) ⎪ y ≥ -x , ⎪(D) ⎨ y ≤ -x ,⎪ y ≤ 2. ⎪ y ≤ 2.⎧x - y + 5 ≥ 0, ⎪ y ≤ 2. ⎪ y ≤ 2. 4. 若 x ,y 满足约束条件⎪x + y ≥ 0, ⎪x ≤ 3,则 z =2x +4y 的最小值是()(A)-6 (B)-10 (C)5 (D)10 5. 某电脑用户计划使用不超过 500 元的资金购买单价分别为 60 元,70 元的单片软件和盒装磁盘.根据需要,软件至少买 3 片,磁盘至少买 2 盒,则不同的选购方式共有( ) (A)5 种 (B)6 种 (C)7 种 (D)8 种 二、填空题6. 在平面直角坐标系中,不等式组⎧x > 0所表示的平面区域内的点位于第 象限.⎩ 7. 若不等式|2x +y +m |<3 表示的平面区域包含原点和点(-1,1),则 m 的取值范围是.⎧x ≤ 1,8. 已知点 P (x ,y )的坐标满足条件⎪y ≤ 3, 那么 z =x -y 的取值范围是.⎪3x + y - 3 ≥ 0,⎧x ≤ 1,9.已知点 P (x ,y )的坐标满足条件⎪ y ≤ 2,⎪2x + y - 2 ≥ 0,那么 y 的取值范围是 .x10. 方程|x |+|y |≤1 所确定的曲线围成封闭图形的面积是.三、解答题11. 画出下列不等式(组)表示的平面区域:⎧x ≤ 1, (1)3x +2y +6>0(2) ⎪y ≥ -2,⎪x - y + 1 ≥ 0.2 2 2 ⎨ ⎩12. 某实验室需购某种化工原料 106kg ,现在市场上该原料有两种包装,一种是每袋 35kg ,价格为 140 元;另一种是每袋 24kg ,价格为 120 元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13. 商店现有 75 公斤奶糖和 120 公斤硬糖,准备混合在一起装成每袋 1 公斤出售,有两种混合办法:第一种每袋装 250 克奶糖和 750 克硬糖,每袋可盈利 0.5 元;第二种每袋装 500 克奶糖和 500 克硬糖,每袋可盈利 0.9 元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向 A ,B 两镇运送大米,已知甲库可调出 100 吨,乙库可调出 80 吨,而 A 镇需大米 70 吨,B 镇需大米 110 吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往 A 、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题 1. 设 a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( )(A)ac 2>bc 2 (B) 1 < 1(C)a -c >b -c(D)|a |>|b |a b⎧x + y - 4 ≤ 0, 2.在平面直角坐标系中,不等式组⎪2x - y + 4 ≥ 0, 表示的平面区域的面积是()⎪ y ≥ 2(A) 32(B)3 (C)4 (D)63. 某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为 10m ,则这个矩形的面积最大值是( ) (A)50m 2(B)100m 2 (C)200m 2 (D)250m 2x 2 - x + 2 4. 设函数 f (x )=x 2,若对 x >0 恒有 xf (x )+a >0 成立,则实数 a 的取值范围是()(A)a <1-2 (B)a <2 -1 (C)a >2 -1 (D)a >1-2 5.设 a ,b ∈R ,且 b (a +b +1)<0,b (a +b -1)<0,则( ) (A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题222x +2ax -⋅a-1 12 n6. 已知 1<a <3,2<b <4,那么 2a -b 的取值范围是 a, 的取值范围是.b7. 若不等式 x 2-ax -b <0 的解集为{x |2<x <3},则 a +b = .8. 已知 x ,y ∈R +,且 x +4y =1,则 xy 的最大值为.9. 若函数 f (x )=的定义域为 R ,则 a 的取值范围为.10. 三个同学对问题“关于 x 的不等式 x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数 a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量 x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于 x 的函数,作出函数图象.” 参考上述解题思路,你认为他们所讨论的问题的正确结论,即 a 的取值范围是 .三、解答题11.已知全集 U =R ,集合 A ={x | |x -1|<6} ,B ={x |(1) 求 A ∩B ; (2) 求(U A )∪B .x - 8>0}.2x - 112. 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本 1000 元,运费 500 元,可得产品 90 千克;若采用乙种原料,每吨成本 1500 元,运费 400 元,可得产品 100 千克.今预算每日原料总成本不得超过 6000 元, 运费不得超过 2000 元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题a j 13. 已知数集 A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质 P :对任意的 i ,j (1≤i ≤j ≤n ),a i a j 与两a i数中至少有一个属于 A .(1) 分别判断数集{1,3,4}与{1,2,3,6}是否具有性质 P ,并说明理由;(2)证明:a =1,且a 1 + a 2 + + a n= a .1a -1+a -1+ +a -1 nab 3 3 ⎨ ⎩一、选择题1.函数 y = 测试十五 必修 5 模块自我检测题的定义域是()(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2] (D)(-∞,-2]∪[2,+∞) 2.设 a >b >0,则下列不等式中一定成立的是( )(A)a -b <0 (B)0< a<1b a + b(C) <(D)ab >a +b2 ⎧x ≤ 1, 3.设不等式组⎪y ≥ 0, 所表示的平面区域是 W ,则下列各点中,在区域 W 内的点是()⎪x - y ≥0(A) ( 1 2 , 1)3 (B) (- 1 , 1)2 3 (C) (- 1 ,- 1)(D) ( 1 ,- 1)2 32 34. 设等比数列{a n }的前 n 项和为 S n ,则下列不等式中一定成立的是() (A)a 1+a 3>0 (B)a 1a 3>0 (C)S 1+S 3<0 (D)S 1S 3<0 5. 在△ABC 中,三个内角 A ,B ,C 的对边分别为 a ,b ,c ,若 A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )(A)1∶ ∶2(B)1∶2∶3(C)2∶ ∶1(D)3∶2∶16.已知等差数列{a n }的前 20 项和 S 20=340,则 a 6+a 9+a 11+a 16 等于( )(A)31 (B)34 (C)68 (D)707. 已知正数 x 、y 满足 x +y =4,则 log 2x +log 2y 的最大值是() (A)-4 (B)4 (C)-2 (D)28. 如图,在限速为 90km/h 的公路 AB 旁有一测速站 P ,已知点 P 距测速区起点 A 的距离为 0.08 km ,距测速区终点 B 的距离为 0.05 km ,且∠APB =60°.现测得某辆汽车从 A 点行驶到 B 点所用的时间为 3s ,则此车的速度介于 ( )(A)60~70km/h (B)70~80km/h (C)80~90km/h (D)90~100km/h二、填空题 9. 不等式 x (x -1)<2 的解集为 . 10. 在△ABC 中,三个内角 A ,B ,C 成等差数列,则 cos(A +C )的值为 . 11. 已知{a n }是公差为-2 的等差数列,其前 5 项的和 S 5=0,那么 a 1 等于.12. 在△ABC 中,BC =1,角 C =120°,cos A = 2 ,则 AB =.3x 2 - 43 ⎨⎩⎧x ≥ 0, y ≥ 013.在平面直角坐标系中,不等式组⎪2x +y - 4 ≤ 0 ,所表示的平面区域的面积是;变量z=x+3y 的最大⎪x +y - 3 ≤ 0值是.14.如图,n2(n≥4)个正数排成n 行n 列方阵,符号a ij(1≤i≤n,1≤j≤n,i,j∈N)表示位于第i 行第j 列的正数.已1 1知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若a11=2,a24=1,a32=4,则q=;a ij=.三、解答题15.已知函数f(x)=x2+ax+6.(1)当a=5 时,解不等式f(x)<0;(2)若不等式f(x)>0 的解集为R,求实数a 的取值范围.16.已知{a n}是等差数列,a2=5,a5=14.(1)求{a n}的通项公式;(2)设{a n}的前n 项和S n=155,求n 的值.17.在△ABC 中,a,b,c 分别是角A,B,C 的对边,A,B 是锐角,c=10,且cos A=b=4.cos B a 3(1)证明角C=90°;(2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56 吨,供电至多45 千瓦,问该厂如何安排生产,使得该厂日产值最大?用煤(吨) 用电(千瓦) 产值(万元) 甲种产品7 2 8乙种产品 3 5 1119.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且cos A=1.3(1)求sin 2B +C+ cos 2 A的值;2(2)若a=,求bc 的最大值.20.数列{a n}的前n 项和是S n,a1=5,且a n=S n-1(n=2,3,4,…).(1)求数列{a n}的通项公式;(2)求证:1+1a1 a2+1+ +1a3 a n<3⋅53 3 7 (5 - 0)2+ (2 - 0)2 29 3 2 44 参考答案一、选择题 第一章 解三角形测试一 正弦定理和余弦定理1.B 2.C 3.B4.D 5.B提示:4.由正弦定理,得 sin C =3,所以 C =60°或 C =120°,2当 C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当 C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形.5.因为 A ∶B ∶C =1∶2∶3,所以 A =30°,B =60°,C =90°,由正弦定理a = sin Ab sin B = csin C=k , 得 a =k ·sin30°= 1 k ,b =k ·sin60°= 2所以 a ∶b ∶c =1∶ ∶2.3k ,c =k ·sin90°=k ,2二、填空题 6.2 6 提示:7.30° 8.等腰三角形 9. 3 + 3710. 5 2 8. ∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1,∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即 B =C .9. 利用余弦定理 b 2=a 2+c 2-2ac cos B .10. 由 tan A =2,得sin A =,根据正弦定理,得AC sin B = BC sin A ,得 AC = 5 2.三、解答题11.c =2 ,A =30°,B =90°.12.(1)60°;(2)AD = .13. 如右图,由两点间距离公式,得 OA = = ,同理得OB = 145, AB = .由余弦定理,得cos A = OA 2 + AB 2 - OB 2 22⨯OA ⨯AB = 2 , ∴A =45°.25232310137(5 - 0)2+ (2 - 0)22923214.(1)因为2cos(A+B)=1,所以A+B=60°,故C=120°.(2)由题意,得a+b=2 ,ab=2,又AB2=c2=a2+b2-2ab cos C=(a+b)2-2ab-2ab cos C=12-4-4×( -1)=10.2所以AB=.(3)S△ABC=1ab sin C=1·2· 3 =3 .2 2 2 2测试二解三角形全章综合练习1.B 2.C 3.D 4.C 5.B提示:5.化简(a+b+c)(b+c-a)=3bc,得b2+c2-a2=bc,由余弦定理,得cos A=b2+c2-a22bc=1,所以∠A=60°.2因为sin A=2sin B cos C,A+B+C=180°,所以sin(B+C)=2sin B cos C,即sin B cos C+cos B sin C=2sin B cos C.所以sin(B-C)=0,故B=C.故△ABC 是正三角形.二、填空题6.30°7.120°8.24559.510.三、解答题11.(1)由余弦定理,得c=;(2)由正弦定理,得sin B=239 .1312.(1)由a·b=|a|·|b|·cos〈a,b〉,得〈a,b〉=60°;(2)由向量减法几何意义,知|a|,|b|,|a-b|可以组成三角形,所以|a-b|2=|a|2+|b|2-2|a|·|b|·cos〈a,b〉=7,故|a-b|=.13.(1)如右图,由两点间距离公式,得OA ==,同理得OB = 145, AB =.由余弦定理,得329 29 29 48t 2 - 24t +7 cos A = OA 2 + AB 2 - OB 2 2⨯OA ⨯AB = 2 ,2 所以 A =45°.故 BD =AB ×sin A =2 .(2)S1 1 = ·OA ·BD = · ·2 =29. △OAB 2 214.由正弦定理aa = sin Ab b sin B = csin Cc= 2R , 得 = sin A , 2R 2R = sin B , 2R= sin C . 因为 sin 2A +sin 2B >sin 2C ,所 以 ( a )2 + ( b )2 > ( c)2 ,2R 2R 2R 即 a 2+b 2>c 2.a 2 +b 2 -c 2所以 cos C = 2ab>0, 由 C ∈(0,π),得角 C 为锐角.15.(1)设 t 小时后甲、乙分别到达 P 、Q 点,如图,3则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以 t = h 时,P 与 O 重合. 43故当 t ∈[0, ]时,4|PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°;3当 t > h 时 ,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°.4故得|PQ |= (t ≥0).(2)当 t = -- 24 = 2 ⨯ 48 1 h 时,两人距离最近,最近距离为 2km .416.(1)由正弦定理a = sin Ab sin B = csin C= 2R , 得 a =2R sin A ,b =2R sin B ,c =2R sin C .所以等式 cos B = - cos C b 2a + c可化为 cos B = - cos C 2R sin B ,2 ⋅ 2R sin A + 2R sin C 即 cos B = - cos Csin B ,2 sin A + sin C 2sin A cos B +sin C cos B =-cos C ·sin B ,故 2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为 A +B +C =π,所以 sin A =sin(B +C ), 1故 cos B =- ,2所以 B =120°.⎨ ⎨n1 23(2)由余弦定理,得 b 2=13=a 2+c 2-2ac ×cos120°, 即 a 2+c 2+ac =13 又 a +c =4,⎧a = 1 解得 ⎩c = 3 ⎧a = 3 ,或 . ⎩c = 1所以 S1 1 = ac sin B = ×1×3× 3 = 3 3 .△ABC2 22 4一、选择题1.C 2.B 3.C4.C5.B二、填空题第二章 数列测试三 数列6.(1) a = 2 (或其他符合要求的答案)(2) a = nn + 1n 1 + (-1)n2 (或其他符合要求的答案)7.(1) 1 , 4 , 9 , 16 , 25 (2)7 8.679. 1 10.42 5 10 17 26 15提示:9.注意 a n 的分母是 1+2+3+4+5=15.10.将数列{a n }的通项 a n 看成函数 f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前 6 项依次是 11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当 n ≥5 时,a n =14-3n <0.12.(1) a 10 = 109 3 , a n +1 = n 2 + 3n +13 , a 2 = n4 + n 2 -1 ; 3 (2)79 2是该数列的第 15 项.313.(1)因为 a =n - 1 ,所以 a =0,a = 3 ,a = 8 ,a =15 ;n2 344(2)因为 a-a =[(n +1) -1]-(n - 1)=1+1n +1nn + 1 nn (n + 1)又因为 n ∈N +,所以 an +1-a n >0,即 a n +1>a n . 所以数列{a n }是递增数列.测试四 等差数列一、选择题 1.B 2.D3.A4.B5.B二、填空题 6.a 4 7.13 8.6 9.6n -1 10.35 提示:10. 方法一:求出前 10 项,再求和即可;方法二:当 n 为奇数时,由题意,得 a n +2-a n =0,所以 a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当 n 为偶数时,由题意,得 a n +2-a n =2, 即 a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *).n。
新课程高中数学测试题组(必修5)含答案
数教5必建第一章:解三角形[前提锻炼A组]之阳早格格创做一、采用题)1.正在△ABCA△ABC的内角,则下列函数中一定与正值的是()2A△ABC的形状是3.正在△ABC()A.曲角三角形 B.钝角三角形 C.钝角三角形 D.等腰三角形4为()A)5A6)A二、挖空题1ABC_______________.2.正在△ABC3.正在△ABC4.正在△ABC5.正在△ABC________.三、解问题1.正在△ABC△ABC的形状是什么?2.正在△ABC3.正在钝角△ABC4.正在△ABC.(数教5必建)第一章:解三角形[概括锻炼B组]一、采用题1.正在△ABC)A2.正在△ABC)A.大于整 B.小于整 C.等于整 D.没有克没有及决定3.正在△ABC)A4.正在△ABC中,则△ABC的形状是()A.曲角三角形 B.等边三角形 C.没有克没有及决定 D.等腰三角形5.正在△ABCA6.正在△ABC)A7.正在△ABC△ABC的形状是()A.曲角三角形 B.等腰三角形 C.等腰曲角三角形 D.等腰三角形或者曲角三角形二、挖空题1.若正在△ABC2>或者<). 3.正在△ABC4.正在△ABC_________.5.正在△ABC6.正在钝角△ABC_________.三、解问题1.正在△ABC2.正在钝角△ABC3.正在△ABC4.正在△ABC5.正在△ABC(数教5必建)第一章:解三角形[普及锻炼C组]一、采用题1△ABC)A2.正在△ABC)A3.正在△)A4.正在△ABC)A5.正在△ABC)A6.正在△ABC△ABC的形状是()A.曲角三角形B.等腰或者曲角三角形C.没有克没有及决定D.等腰三角形二、挖空题1.正在△ABC_________(对付或者错)2.正在△ABC中,若则△ABC的形状是______________.3.正在△ABC中,∠C4.正在△ABC5.正在△ABC中,若则B的与值范畴是_______________.6.正在△ABC_________.三、解问题1.正在△ABC状.2.如果△ABC供△ABC的里积的最大值.3.已知△ABC4.正在△ABC数教5(必建)第二章:数列[前提锻炼A组]一、采用题1)A2)AB C D3)A4)5( )项A6)A二、挖空题1______________. 2.数列34,5.正在等比数, 假二根,6333 (3)=1.数.2..3.4.数教5(必建)第二章:数列[概括锻炼B 组]一、采用题1,)A2n )3)A4.已知三角形的三边形成等比数列,()A5,则那个三角形是()6.正在等好数列中,设,,)7)二、挖空题12的一个通项公式是______________________.34.等好数列中,56.等比数列前项的战为,则数列前项的战为______________.三、解问题1数列,那么本三数为什么? 23.4.5C 组]一、采用题1AC2) AC3)A4.正在等好数( )A5等于()A B C6( )A二、挖空题123.三个分歧的真数成等好数列,且成等比数列,则4.正在等好数列中,公好,前项的战,则56.一个等比数列各项均为正数,且它的所有一项皆等于它的后里二项的_______________.三、解问题1.2..3.的前几项战为最4..根据最新课程尺度,参照独家里里资料,粗心编写而成;本套资料分必建系列战选建系列及部分选建4系列.欢迎使用本资料!数教5(必建)第三章:没有等式[前提锻炼A组]一、采用题1)A2.下列各对付没有等式中共解的是()AC3)A4则下列没有等式中恒创造的是 ( )A5( )A 1 B.最大值1C D.最大值1而无最小值6,,( )A二、挖空题12则那个二位数为________________.3.4_______值,且最值是_________.5用没有等号从小到大连结起去为____________.三、解问题1.解没有等式(1(22.3.(1(24新课程下中数教锻炼题组数教5(必建)第三章:没有等式[概括锻炼B 组] 一、采用题1).2)AC3( )AC4( ) AC5( ) AC6,( ) AC二、挖空题 1___________.23___________.4________.5________.6__________________.三、解问题1{|B x =2.函数=y3.已知函数.4新课程下中数教锻炼题组数教5(必建)第三章:没有等式[普及锻炼C组]一、采用题1).A BCD2)ABCD3 ( )AC(100,+∞4.若没有等式2x, ( ) A1B.116C116D.0<5,( )AC6( )AC二、挖空题1_______________.____________.23________.时,有最小值__________.45________________.三、解问题1.2.已知△ABC34.5..新课程下中数教锻炼题组参照问案(数教5必建)第一章 [前提锻炼A组]一、采用题4.D 做出图形6.B二、挖空题三、解问题1.所以△ABC是曲角三角形.2.3.说明:∵△ABC4.参照问案(数教5必建)第一章 [概括锻炼B 组]一、采用题二、挖空题3.钝角三角形6三、解问题 1.3.4∴本式创造.5参照问案(数教5必建)第一章 [普及锻炼C组]一、采用题S=ABCcosA=90,sin二、挖空题1.2.46三、解问题1.∴等腰或者曲角三角形2.3.4.新课程下中数教锻炼题组参照问案参照问案(数教5必建)第二章 [前提锻炼A组]一、采用题二、挖空题6333...3log n=三、解问题1.解:设四数为3,a d a --1333,222d =-或,2.3. 解:本式4.参照问案(数教5必建)第二章 [概括锻炼B 组]一、采用题4.D7.二、挖空题3456三、解问题1.2.∴本式3.4.参照问案(数教5必建)第二章 [普及锻炼C组]一、采用题二、挖空题三、解问题1.2.2..3.新课程下中数教锻炼题组参照问案参照问案(数教5必建)第三章 [前提锻炼A 组]一、采用题2.B对付于C对付于D4.C 对付于A ,B5.B6.C二、挖空题23三、解问题1. 解:(1(22.3.解:(1)做出可止域;(24()1log a a - 1)lg(1)a ⎡+<⎢⎣参照问案(数教5必建)第三章 [概括锻炼B 组] 一、采用题1.D22k k -+4.D 对付于A B :没有克没有及包管1sin x, 对付于C对付于D5.D二、挖空题6三、解问题1.2.3.4.参照问案(数教5必建)第三章[普及锻炼C 组]一、采用题2.A(另可绘图干) 5.B 创造造!6.D 绘出可止域 二、挖空题三、解问题1.2.a b c+>而a 3.10xx<++45。
人教版高中数学必修5测试题与答案全套
第一章解三角形测试一正弦定理和余弦定理Ⅰ学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ基础训练题一、选择题1.在△ABC 中,若BC= 2 ,AC=2,B=45°,则角 A 等于( )(A)60 °(B)30°(C)60°或120°(D)30 °或150°2.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=3,cosC=-(A)2 (B)3 (C)4 (D)5 14,则 c 等于( )3.在△ABC 中,已知3 2cosB ,sin C ,AC=2,那么边AB 等于( )5 3(A) 54(B)53(C)209(D)1254.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,已知B=30°,c=150,b=50 3 ,那么这个三角形是( )(A) 等边三角形(B) 等腰三角形(C)直角三角形(D) 等腰三角形或直角三角形5.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,如果A∶B∶C=1∶2∶3,那么a∶b∶ c 等于( )(A)1 ∶2∶ 3 (B)1 ∶ 3 ∶ 2 (C)1 ∶4∶9 (D)1 ∶ 2 ∶ 3二、填空题6.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,B=45°,C=75°,则b=________.7.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=2 3 ,c=4,则A=________.8.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若2cosBcosC=1-cosA,则△ABC 形状是________三角形.9.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=3,b=4,B=60°,则c=________.10.在△ABC 中,若tanA=2,B=45°,BC= 5 ,则AC=________.三、解答题11.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=4,C=60°,试解△ABC.12.在△ABC 中,已知AB=3,BC=4,AC=13 .(1)求角 B 的大小;(2)若D 是BC 的中点,求中线A D 的长.13.如图,△OAB 的顶点为O(0,0),A(5,2) 和B(-9,8),求角 A 的大小.12-2 3 x+2=0 的两根,2cos(A+B)=1. 14.在△ABC 中,已知BC=a,AC=b,且a,b 是方程x(1)求角 C 的度数;(2)求AB 的长;(3)求△ABC 的面积.测试二解三角形全章综合练习Ⅰ基础训练题一、选择题2+c2-a2=bc,则角 A 等于( ) 1.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若b(A) π6(B)π3(C)2π3(D)5π62.在△ABC 中,给出下列关系式:①sin( A+B)=sinC ②cos(A+B)=cosC ③其中正确的个数是( )A Bsin cos2C2(A)0 (B)1 (C)2 (D)33.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c. 若a=3,sinA=23,sin( A+C)=34,则 b 等于( )(A)4 (B) 83(C)6 (D)2784.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=3,b=4,sinC=(A)8 (B)6 (C)4 (D)3 23,则此三角形的面积是( )5.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若(a+b+c)(b+c-a)=3bc,且sin A=2sinBcosC,则此三角形的形状是( )(A) 直角三角形(B) 正三角形(C)腰和底边不等的等腰三角形(D) 等腰直角三角形二、填空题6.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a= 2 ,b=2,B=45°,则角A=________. 7.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=3,c=19 ,则角C=________.8.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若b=3,c=4,cosA=9.已知△ABC 的顶点A(1,0),B(0,2),C(4,4),则cosA=________. 35,则此三角形的面积为________.10.已知△ABC 的三个内角A,B,C 满足2B=A+C,且AB=1,BC=4,那么边BC 上的中线AD 的长为________.三、解答题11.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且a=3,b=4,C=60°.(1)求c;(2)求sin B.12.设向量a,b满足a·b=3,|a|=3,|b|=2.(1)求〈a,b〉;(2)求|a-b|.13.设△OAB 的顶点为O (0,0),A(5,2)和B(-9,8),若BD⊥OA 于D.(1)求高线BD 的长;(2)求△OAB 的面积.14.在△ABC 中,若sin2A+sin2B>sin2C,求证:C 为锐角.2a b c(提示:利用正弦定理2Rsin A sin B sin C,其中R 为△ABC 外接圆半径)Ⅱ拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX、OY 上的A、B 两点,| OA |=3km,|OB |=1km,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向.问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且(1)求角 B 的值;c osBcosCb2a c.(2)若b=13 ,a+c=4,求△ABC 的面积.3第二章数列测试三数列Ⅰ学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数. 2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ基础训练题一、选择题1.数列{ a n} 的前四项依次是:4,44,444,4444,⋯则数列{ a n} 的通项公式可以是( )n(A) a n=4n (B) a n=4(C) a n=49n-1) (D) an=4×11n (102.在有一定规律的数列0,3,8,15,24,x,48,63,⋯⋯中,x 的值是( )(A)30 (B)35 (C)36 (D)423.数列{ a n} 满足:a1=1,a n=a n-1+3n,则a4 等于( )(A)4 (B)13 (C)28 (D)434.156 是下列哪个数列中的一项( )2+1} (B){ n2-1} (C){ n2+n} (D){ n2+n-1}(A){ n5.若数列{a n} 的通项公式为a n=5-3n,则数列{ a n} 是( )(A) 递增数列(B) 递减数列(C)先减后增数列(D)以上都不对二、填空题6.数列的前 5 项如下,请写出各数列的一个通项公式:2 1 2 1(1) 1,, , , , ,a n =________;3 2 5 3(2)0,1,0,1,0,⋯,a n=________.7.一个数列的通项公式是a n=2nn21.(1)它的前五项依次是________;(2)0 . 98 是其中的第________项.8.在数列{a n} 中,a1=2,a n+1=3a n+1,则a4=________.19.数列{ a n} 的通项公式为a n (n∈N1 2 3 (2n 1)*),则a3=________.2-15n+3,则它的最小项是第________项. 10.数列{ a n} 的通项公式为a n=2n三、解答题11.已知数列{ a n} 的通项公式为a n=14-3n.(1)写出数列{a n} 的前6 项;(2)当n≥ 5 时,证明a n<0.12.在数列{ a n} 中,已知a n=2 nn31(n∈N* ).(1)写出a10,a n+1, a ;2n(2)79 23是否是此数列中的项?若是,是第几项?13.已知函数 f1( ,设a n=f (n)(n∈N+). x) x( ,设a n=f (n)(n∈N +).x4(1)写出数列{a n} 的前4 项;(2)数列{ a n}是递增数列还是递减数列?为什么?测试四等差数列Ⅰ学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题.2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ基础训练题一、选择题1.数列{ a n} 满足:a1=3,a n+1=a n-2,则a100 等于( )(A)98 (B) -195 (C)-201 (D)-1982.数列{ a n} 是首项a1=1,公差d=3 的等差数列,如果a n=2008,那么n 等于( )(A)667 (B)668 (C)669 (D)6703.在等差数列{ a n} 中,若a7+a9=16,a4=1,则a12 的值是( )(A)15 (B)30 (C)31 (D)644.在 a 和b( a≠b)之间插入n个数,使它们与a,b 组成等差数列,则该数列的公差为()b a(A) (B)n bna1(C)bna1(D)bna25.设数列{a n} 是等差数列,且a2=-6,a8=6,S n 是数列{ a n} 的前n 项和,则( )(A) S4<S5 (B) S4=S5 (C) S6<S5 (D) S6=S5二、填空题6.在等差数列{ a n} 中,a2与a6 的等差中项是________.7.在等差数列{ a n} 中,已知a1+a2=5,a3+a4=9,那么a5+a6=________.8.设等差数列{ a n} 的前n 项和是S n,若S17=102,则a9=________.2+2n,那么它的第n 项a n=________.9.如果一个数列的前n 项和S n=3n10.在数列{ a n} 中,若a1=1,a2=2,a n+2-a n=1+(-1)n(n∈N*),设{ a n} 的前n 项和是S n,则S10=________.三、解答题11.已知数列{ a n} 是等差数列,其前n 项和为S n,a3=7,S4=24.求数列{ a n}的通项公式.12.等差数列{ a n}的前n 项和为S n,已知a10=30,a20=50.(1)求通项a n;(2)若S n=242,求n.13.数列{ a n} 是等差数列,且a1=50,d=-0. 6.(1)从第几项开始a n<0;(2)写出数列的前n 项和公式S n,并求S n 的最大值.Ⅲ拓展训练题14.记数列{ a n} 的前n 项和为S n,若3a n+1=3a n+2(n∈N*),a1+a3+a5+⋯+a99=90,求S100.测试五等比数列Ⅰ学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题.2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ基础训练题一、选择题51.数列{ a n} 满足:a1=3,a n+1=2a n,则a4等于( )(A) 38(B)24 (C)48 (D)542.在各项都为正数的等比数列{ a n} 中,首项a1=3,前三项和为21,则a3+a4+a5 等于( )(A)33 (B)72 (C)84 (D)1893.在等比数列{ a n} 中,如果a6=6,a9=9,那么a3等于( )(A)4 (B) 32(C)169(D)34.在等比数列{ a n} 中,若a2=9,a5=243,则{ a n} 的前四项和为( )(A)81 (B)120 (C)168 (D)192n-15.若数列{a n} 满足a n=a1q(q>1),给出以下四个结论:①{ a n}是等比数列;②{ a n} 可能是等差数列也可能是等比数列;③{ a n}是递增数列;④{ a n} 可能是递减数列.其中正确的结论是( )(A) ①③(B) ①④(C)②③(D)②④二、填空题2+7x-9=0 的两根,则a4a7=________.6.在等比数列{ a n} 中,a1,a10 是方程3x7.在等比数列{ a n} 中,已知a1+a2=3,a3+a4=6,那么a5+a6=________.8.在等比数列{ a n} 中,若a5=9,q=12,则{ a n} 的前5 项和为________.9.在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{ a n}的公比为q,前n 项和为S n,若S n+1,S n,S n+2 成等差数列,则q=________.三、解答题11.已知数列{ a n} 是等比数列,a2=6,a5=162. 设数列{ a n} 的前n 项和为S n.(1)求数列{ a n} 的通项公式;(2)若S n=242,求n.12.在等比数列{ a n}中,若a2a6=36,a3+a5=15,求公比q.13.已知实数a,b,c 成等差数列,a+1,b+1,c+4 成等比数列,且a+b+c=15,求a,b,c.Ⅲ拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q,每列上的数从上到下都成等差数列. a ij 表示位于第i 行第j 列的数,其中a24=18,a42=1,a54=516.a11 a12 a13 a14 a15 ⋯a1j ⋯a21 a22 a23 a24 a25 ⋯a2j ⋯a31 a32 a33 a34 a35 ⋯a3j ⋯a41 a42 a43 a44 a45 ⋯a4j ⋯⋯⋯⋯⋯⋯⋯⋯⋯a i1 a i2 a i3 a i 4 a i5 a ij⋯⋯⋯⋯⋯⋯⋯⋯(1)求q 的值;(2)求a ij 的计算公式.6测试六数列求和Ⅰ学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ基础训练题一、选择题1.已知等比数列的公比为2,且前 4 项的和为1,那么前8 项的和等于( )(A)15 (B)17 (C)19 (D)211 2.若数列{a n} 是公差为2 的等差数列,它的前100 项和为145,则a1+a3+a5+⋯+a99 的值为( )(A)60 (B)72 . 5 (C)85 (D)120n-1·2n(n∈N*),设其前n 项和为S n,则S100 等于( ) 3.数列{ a n} 的通项公式a n=(-1)(A)100 (B) -100 (C)200 (D)-2004.数列(2n11)( 2n 1)的前n 项和为()(A)n2n 1(B)2n2n 1(C)n4n 2(D)2nn 15.设数列{a n} 的前n 项和为S n,a1=1,a2=2,且a n+2=a n+3(n=1,2,3,⋯),则S100 等于( )(A)7000 (B)7250 (C)7500 (D)14950二、填空题1 1 1 16.=________.2 13 24 3 n 1 n17.数列{ n+n2} 的前n 项和为________.2 8.数列{ a n} 满足:a1=1,a n+1=2a n,则a1 +a 22 +⋯+a2n =________.9.设n∈N*,a∈R,则1+a+a2+⋯+a n=________.1 1 1 12 310.1n n =________.2 4 8 2 三、解答题11.在数列{ a n}中,a1=-11,a n+1=a n+2(n∈N*),求数列{| a n|}的前n 项和S n.2+a3x3+⋯+a n x n(n∈N*,x∈R),且对一切正整数n 都有f(1)=n2 成立. 12.已知函数f(x)=a1x+a2x(1)求数列{ a n} 的通项a n;(2)求1a a1 21a a2 31a n an1.13.在数列{ a n} 中,a1=1,当n≥ 2 时,a n=112141n ,求数列的前n 项和S n.12Ⅲ拓展训练题14.已知数列{ a n}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{ a n} 的通项公式;(2)令b n=a n xn(x∈R),求数列{ b n}的前n 项和公式.7测试七数列综合问题Ⅰ基础训练题一、选择题1.等差数列{ a n} 中,a1=1,公差d≠0,如果a1,a2,a5 成等比数列,那么 d 等于( )(A)3 (B)2 (C)-2 (D)2 或-22.等比数列{ a n} 中,a n>0,且a2a4+2a3a5+a4a6=25,则a3+a5 等于( )(A)5 (B)10 (C)15 (D)203.如果a1,a2,a3,⋯,a8为各项都是正数的等差数列,公差d≠0,则( )(A) a1a8>a4a5 (B) a1a8<a4a5(C) a1+a8>a4+a5 (D) a1a8=a4a54.一给定函数y=f(x )的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f( a n)得到的数列{a n} 满足a n+1>a n(n∈N*),则该函数的图象是( )5.已知数列{ a n} 满足a1=0,a 3na (n∈Nn 1 a3 1n*),则a20 等于( )(A)0 (B) - 3 (C) 3 (D)3 2二、填空题6.设数列{a n} 的首项a1=14,且12a , n为偶数,na n 则a2=________,a3=________.11a , n为奇数.n47.已知等差数列{ a n} 的公差为2,前20 项和等于150,那么a2+a4+a6+⋯+a20=________.8.某种细菌的培养过程中,每20 分钟分裂一次(一个分裂为两个),经过 3 个小时,这种细菌可以由 1 个繁殖成________个.9.在数列{a n} 中,a1=2,a n+1=a n+3n(n∈N*),则a n=________. 10.在数列{ a n}和{ b n}中,a1=2,且对任意正整数n 等式3a n+1-a n=0 成立,若b n是a n 与a n+1 的等差中项,则{b n} 的前n 项和为________.三、解答题11.数列{ a n} 的前n 项和记为S n,已知a n=5S n-3( n∈N(1)求a1,a2,a3;* ).(2)求数列{ a n} 的通项公式;(3)求a1+a3+⋯+a2n-1 的和.12.已知函数f(x)=2x 24(x>0),设a1=1,a 2 * ),求数列{a n} 的通项公式.n ·f(a n)=2(n∈N113.设等差数列{ a n}的前n 项和为S n,已知a3=12,S12>0,S13<0.(1)求公差 d 的范围;(2)指出S1,S2,⋯,S12 中哪个值最大,并说明理由.8Ⅲ拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动. 甲第1 分钟走2m,以后每分钟比前 1 分钟多走1m,乙每分钟走5m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走1m,乙继续每分钟走5m,那么开始运动几分钟后第二次相遇?15.在数列{ a n} 中,若a1,a2 是正整数,且a n=|a n-1-a n-2|,n=3,4,5,⋯则称{ a n}为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项);(2)若“绝对差数列”{ a n} 中,a1=3,a2=0,试求出通项a n;(3)* 证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八数列全章综合练习Ⅰ基础训练题一、选择题1.在等差数列{ a n} 中,已知a1+a2=4,a3+a4=12,那么a5+a6 等于( )(A)16 (B)20 (C)24 (D)362.在50 和350 间所有末位数是 1 的整数和( )(A)5880 (B)5539 (C)5208 (D)48772+bx+c 的图象与x轴的交点个数为( )3.若a,b,c 成等比数列,则函数y=ax(A)0 (B)1 (C)2 (D)不能确定4.在等差数列{ a n} 中,如果前 5 项的和为S5=20,那么a3 等于( )(A) -2 (B)2 (C)-4 (D)45.若{ a n} 是等差数列,首项a1>0,a2007+a2008>0,a2007·a2008<0,则使前n 项和S n>0 成立的最大自然数n 是( )(A)4012 (B)4013 (C)4014 (D)4015二、填空题6.已知等比数列{ a n} 中,a3=3,a10=384,则该数列的通项a n=________.7.等差数列{ a n} 中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20 项和S20=________.2-3n+1,则 a8.数列{ a n} 的前n 项和记为S n,若S n=n n=________.9.等差数列{ a n} 中,公差d≠0,且a1,a3,a9 成等比数列,则a3a4aa67a9a10=________.10.设数列{ a n} 是首项为 1 的正数数列,且(n+1)a 2n -na1 2*),则它的通项公式a n=________. n +a n+1a n=0(n∈N三、解答题11.设等差数列{ a n} 的前n 项和为S n,且a3+a7-a10=8,a11-a4=4,求S13.12.已知数列{ a n}中,a1=1,点(a n,a n+1+1)( n∈N*)在函数f(x)=2x+1 的图象上.(1)求数列{ a n} 的通项公式;(2)求数列{ a n} 的前n 项和S n;(3)设c n=S n,求数列{ c n} 的前n 项和T n.13.已知数列{ a n}的前n 项和S n 满足条件S n=3a n+2.(1)求证:数列{ a n} 成等比数列;(2)求通项公式a n.14.某渔业公司今年初用98 万元购进一艘渔船,用于捕捞,第一年需各种费用12 万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50 万元.(1)写出该渔船前四年每年所需的费用(不包括购买费用);9(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ拓展训练题15.已知函数f(x)=12x 4(x<-2),数列{ a n} 满足a1=1,a n=f(-1an1)( n∈N*).(1)求a n;(2)设b n=a 2n +a1 2 2n +⋯+a2n,是否存在最小正整数m,使对任意n∈N2 1*有bn<n<m25成立?若存在,求出m的值,若不存在,请说明理由.16.已知 f 是直角坐标系平面x Oy 到自身的一个映射,点P 在映射 f 下的象为点Q,记作Q=f(P).*) 设P1(x1,y1),P2=f( P1),P3=f( P2),⋯,P n=f( P n-1),⋯. 如果存在一个圆,使所有的点P n(x n,y n)(n∈N 都在这个圆内或圆上,那么称这个圆为点P n(x n,y n)的一个收敛圆. 特别地,当P1=f( P1)时,则称点P1 为映射 f 下的不动点.若点P( x,y)在映射 f 下的象为点Q(-x+1,12 y).(1)求映射 f 下不动点的坐标;(2)若P1 的坐标为(2,2),求证:点P n(x n,y n)( n∈N*)存在一个半径为 2 的收敛圆.10第三章不等式测试九不等式的概念与性质Ⅰ学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小. 2.理解不等式的基本性质及其证明.Ⅱ基础训练题一、选择题1.设a,b,c∈R,则下列命题为真命题的是( )(A) a>b a-c>b-c (B) a>b ac>bc2>b2 (D) a>b ac2>bc2(C) a>b a2.若-1<<<1,则-的取值范围是( )(A)( -2,2) (B)( -2,-1) (C)( -1,0) (D)( -2,0)3.设a>2,b>2,则ab 与a+b 的大小关系是( )(A) ab>a+b (B) ab<a+b (C) ab=a+b (D)不能确定4.使不等式a>b 和1a1b同时成立的条件是( )(A) a>b>0 (B) a>0>b (C) b>a>0 (D) b>0>a 5.设1<x<10,则下列不等关系正确的是( )(A)lg 2x>lg x2>lg(lg x) (B)lg 2x>lg(lg x)>lg x22>lg2x>1g(lg x) (D)lg x2>lg(lg x)>lg2x (C)lg x二、填空题6.已知a<b<0,c<0,在下列空白处填上适当不等号或等号:c c;(3) b-a________|a|-|b |. (1)( a-2) c________( b-2) c;(2) ________a b2 按从小到大排列为________. 7.已知a<0,-1<b<0,那么a、ab、ab8.已知60<a<84,28<b<33,则a-b 的取值范围是________;ab的取值范围是________.2>bc2;③9.已知a,b,c∈R,给出四个论断:①a>b;②ac acbc;④a-c>b-c. 以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________ ________;________ ________. (在“”的两侧填上论断序号).10.设a>0,0<b<1,则P=32ab 与( a 1)( a 2)Q b 的大小关系是________.三、解答题11.若a>b>0,m>0,判断ba与bamm的大小关系并加以证明.2 2a b12.设a>0,b>0,且a≠b, a q a bp ,b注:解题时可参考公式x3+y3=(x+y)( x2-xy+y2).3+y3=(x+y)( x2-xy+y2).. 证明:p>q.Ⅲ拓展训练题3-a+1),N=log a(a2-a+1). 求证:M>N. 13.已知a>0,且a≠1,设M=log a(a14.在等比数列{ a n}和等差数列{ b n}中,a1=b1>0,a3=b3>0,a1≠a3,试比较a5 和b5 的大小.11测试十均值不等式Ⅰ学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ基础训练题一、选择题1.已知正数a,b 满足a+b=1,则ab( )(A) 有最小值14(B) 有最小值12(C)有最大值14(D)有最大值122.若a>0,b>0,且a≠b,则( )2 b2a b aab(A) 2 2 (B) aba b a22 b22(C)2 b2 a baab (D)22a2 a b2bab2 23.若矩形的面积为a2(a>0),则其周长的最小值为()(A) a (B)2 a (C)3 a (D)4 a a+2b 的最小值是() 4.设a,b∈R,且2a+b-2=0,则4(A) 2 2 (B)4 (C) 4 2 (D)85.如果正数a,b,c,d 满足a+b=cd=4,那么( )(A) ab≤c+d,且等号成立时a,b,c,d 的取值唯一(B) ab≥c+d,且等号成立时a,b,c,d 的取值唯一(C) ab≤c+d,且等号成立时a,b,c,d 的取值不唯一(D) ab≥c+d,且等号成立时a,b,c,d 的取值不唯一二、填空题6.若x>0,则变量x 9x的最小值是________;取到最小值时,x=________.7.函数y=4x2x 1(x>0)的最大值是________;取到最大值时,x=________.8.已知a<0,则16a 的最大值是________.a 39.函数f(x)=2log2(x+2)-log 2x 的最小值是________.10.已知a,b,c∈R,a+b+c=3,且a,b,c 成等比数列,则 b 的取值范围是________.三、解答题a d和bc 的大小关系并加以证明. 11.四个互不相等的正数a,b,c,d 成等比数列,判断21 12.已知a>0,a≠1,t>0,试比较2 log a t 与logt 1a 的大小.2Ⅲ拓展训练题13.若正数x,y 满足x+y=1,且不等式x y a 恒成立,求 a 的取值范围.14.(1)用函数单调性的定义讨论函数 f (x)=x+ax(a>0)在(0,+∞)上的单调性;(2)设函数f(x)=x+ax(a>0)在(0,2]上的最小值为g(a),求g(a)的解析式.12测试十一一元二次不等式及其解法Ⅰ学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系.2.会解简单的一元二次不等式.Ⅱ基础训练题一、选择题2 的解集是( ) 1.不等式5x+4>-x(A){ x|x>-1,或x<-4} (B){ x|-4<x<-1}(C){ x |x>4,或x<1} (D){ x|1<x<4}2+x-2>0 的解集是( )2.不等式-x(A){ x|x>1,或x<-2} (B){ x|-2<x<1}(C)R(D)2>a2(a<0)的解集为( )3.不等式x(A){ x|x>±a} (B){ x|-a<x<a}(C){ x |x>-a,或x<a} (D){ x|x>a,或x<-a}12+bx+c>0 的解集为2} 2+bx+a<0 的解集是( ) 4.已知不等式ax { x|x ,则不等式cx31 1(A){ x|-3<x<} (B){ x|x<-3,或x>}2 21 1(C){ x-2<x<} (D){ x|x<-2,或x>}3 32-px-1(p∈R)的图象永远在x 轴的下方,则p 的取值范围是( )5.若函数y=px(A)( -∞,0) (B)( -4,0] (C)( -∞,-4) (D)[ -4,0)二、填空题2+x-12<0 的解集是________.6.不等式x3x 1 7.不等式02x 5 的解集是________.2-1|<1 的解集是________. 8.不等式|x2-3x<4 的解集是________. 9.不等式0<x2-(a+10.已知关于x 的不等式x三、解答题1a)x+1<0 的解集为非空集合{x|a<x<1a} ,则实数 a 的取值范围是________.2-2ax-3a2<0(a∈R)的解集. 11.求不等式x12.k 在什么范围内取值时,方程组2x3x2y4y2xk有两组不同的实数解?Ⅲ拓展训练题2-x-6<0} ,B={ x|x2+2x-8>0} ,C={ x|x2-4ax+3a2<0} .13.已知全集U=R,集合A={ x|x(1)求实数 a 的取值范围,使C(A∩B);(2)求实数 a 的取值范围,使C( U A)∩( U B).a∈R,解关于x 的不等式ax2-2x+1<0. 14.设13测试十二不等式的实际应用 Ⅰ 学习目标 会使用不等式的相关知识解决简单的实际应用问题. Ⅱ 基础训练题一、选择题 1.函数1y的定义域是 ()24 x(A){ x|-2<x < 2} (B){ x|-2≤ x ≤ 2} (C){ x |x >2,或 x <- 2}(D){ x|x ≥ 2,或 x ≤ - 2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价 p(元 /件)的关系为 p =300-2x ,生产 x 件的成本 r =500+30x(元),为使月获利不少于 8600 元,则月产量x 满足( )(A)55 ≤ x ≤ 60 (B)60 ≤ x ≤ 65 (C)65≤ x ≤ 70(D)70 ≤ x ≤ 753.国家为了加强对烟酒生产管理,实行征收附加税政策. 现知某种酒每瓶70 元,不征收附加税时,每年大约产销100 万瓶;若政府征收附加税,每销售 100 元征税 r 元,则每年产销量减少 10r 万瓶,要使每年在此项经营中所收附加税不少于 112 万元,那么 r 的取值范围为 ()(A)2 ≤ r ≤ 10 (B)8 ≤ r ≤ 10 (C)2≤ r ≤ 8(D)0 ≤ r ≤ 84.若关于 x 的不等式 (1+k2)x ≤k 4+4 的解集是 M ,则对任意实常数k ,总有 ()(A)2 ∈M , 0∈M (B)2 M ,0 M (C)2∈M ,0 M(D)2M ,0∈ M二、填空题 5.已知矩形的周长为36cm ,则其面积的最大值为________.2+ax +2>0 的解集是R ,则实数 a 的取值范围是 ________.6.不等式 2x7.已知函数 f(x)=x|x -2|,则不等式 f(x)<3 的解集为 ________. 8.若不等式 |x + 1|≥ kx 对任意 x ∈R 均成立,则 k 的取值范围是 ________. 三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中, 由于惯性作用, 刹车后还要继续滑行一段距离才能停住, 我们称这段距离为 “刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为 40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过 12m ,乙车的刹车距离略超过 10m. 已知甲乙两种车型的刹车距离s(km)与车速x (km/h) 之间分别有如下关系:s甲 =0. 1x + 0. 01x 2,s 2,s乙=0. 05x +0. 005x 2.问交2.问交 通事故的主要责任方是谁?Ⅲ 拓展训练题2+2x +a >0 恒成立,求实数a 的取值范围.11.当 x ∈[-1,3]时,不等式- x12.某大学印一份招生广告,所用纸张(矩形 )的左右两边留有宽为 4cm 的空白,上下留有都为 6cm 的空白,中间排版面积为 2400cm2. 如何选择纸张的尺寸,才能使纸的用量最小?14测试十三二元一次不等式(组)与简单的线性规划问题Ⅰ学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ基础训练题一、选择题1.已知点 A (2,0),B(-1,3)及直线l:x-2y=0,那么( )(A) A,B 都在l 上方(B) A,B 都在l 下方(C) A 在l 上方,B 在l 下方(D) A 在l 下方,B 在l 上方x 0,y 0, 所表示的平面区域的面积为( )2.在平面直角坐标系中,不等式组x y 2(A)1 (B)2 (C)3 (D)43.三条直线y=x,y=-x,y=2 围成一个三角形区域,表示该区域的不等式组是( ) y x, y x,y x, y x,(A) (B) y x, (C) y x,y x,(D) y x,y 2. y 2. y 2.y 2.x y 5 0,x y 0, 则z=2x+4y 的最小值是()4.若x,y 满足约束条件x 3,(A) -6 (B) -10 (C)5 (D)105.某电脑用户计划使用不超过500 元的资金购买单价分别为60 元,70 元的单片软件和盒装磁盘. 根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )(A)5 种(B)6 种(C)7 种(D)8 种二、填空题6.在平面直角坐标系中,不等式组xy所表示的平面区域内的点位于第________象限.7.若不等式|2x+y+m|<3 表示的平面区域包含原点和点(-1,1),则m 的取值范围是________.x 1,y 3, 那么z=x-y 的取值范围是________.8.已知点P (x,y)的坐标满足条件3x y 3 0,9.已知点P (x,y)的坐标满足条件xy2x1,2,y那么y 的取值范围是________.x2,10.方程|x |+|y |≤ 1 所确定的曲线围成封闭图形的面积是________.三、解答题11.画出下列不等式(组)表示的平面区域:x 1,(1)3 x+2y+6>0 (2) y 2,x y 1 0.1512.某实验室需购某种化工原料106kg,现在市场上该原料有两种包装,一种是每袋35kg,价格为140 元;另一种是每袋24kg,价格为120 元. 在满足需要的前提下,最少需要花费多少元?Ⅲ拓展训练题13.商店现有75 公斤奶糖和120 公斤硬糖,准备混合在一起装成每袋 1 公斤出售,有两种混合办法:第一种每袋装250 克奶糖和750 克硬糖,每袋可盈利0. 5 元;第二种每袋装500 克奶糖和500 克硬糖,每袋可盈利0. 9 元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A,B 两镇运送大米,已知甲库可调出100 吨,乙库可调出80 吨,而 A 镇需大米70 吨,B 镇需大米110 吨,两个粮库到两镇的路程和运费如下表:路程(千米) 运费(元/吨·千米)甲库乙库甲库乙库A 镇20 15 12 12B 镇25 20 10 8问:(1)这两个粮库各运往A、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四不等式全章综合练习Ⅰ基础训练题一、选择题1.设a,b,c∈R,a>b,则下列不等式中一定正确的是( )2>bc2 (B) (A) ac 1a1b(C) a-c>b-c (D)| a|>|b|x y 4 0,2.在平面直角坐标系中,不等式组2x y 4 0,表示的平面区域的面积是( )y 2(A) 32(B)3 (C)4 (D)63.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场. 若圆的半径为10m,则这个矩形的面积最大值是( )(A)50m 2 (B)100m2 (C)200m 2 (D)250m 22 2x x4.设函数f( x)= 2x,若对x>0 恒有xf(x)+a>0 成立,则实数a的取值范围是( )(A) a<1-2 2 (B) a<2 2 -1 (C) a>2 2 -1 (D) a>1-2 25.设a,b∈R,且b(a+b+1)<0,b( a+b-1)<0,则( )(A) a>1 (B) a<-1 (C)-1<a<1 (D)| a|>1二、填空题16a的取值范围是________. 6.已知1<a<3,2<b<4,那么2a-b 的取值范围是________,b2-ax-b<0 的解集为{ x |2<x<3} ,则a+b=________.7.若不等式x8.已知x,y∈R+,且x+4y=1,则x y 的最大值为________.2 ax ax 2 的定义域为R,则a的取值范围为________.9.若函数f( x)= 2 12+25+|x3-5x2|≥ax 在[1,12]上恒成立,求实数 a 的取值范围”提出各自10.三个同学对问题“关于x 的不等式x的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值. ”乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值. ”丙说:“把不等式两边看成关于x 的函数,作出函数图象.”参考上述解题思路,你认为他们所讨论的问题的正确结论,即a的取值范围是________.三、解答题11.已知全集U=R,集合A={x| |x-1|<6} ,B={ x|(1)求A∩B;x2x81>0} .(2)求( U A)∪B.12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000 元,运费500 元,可得产品90 千克;若采用乙种原料,每吨成本1500 元,运费400 元,可得产品100 千克. 今预算每日原料总成本不得超过6000 元,运费不得超过2000 元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ拓展训练题13.已知数集A={ a1,a2,⋯,a n}(1 ≤a1<a2<⋯<a n,n≥2)具有性质P:对任意的i,j (1≤i≤j≤n),a i a j 与ajai两数中至少有一个属于 A.(1)分别判断数集{1 ,3,4} 与{1 ,2,3,6} 是否具有性质P,并说明理由;(2)证明:a1=1,且a a a1 2 n a .a a 1 1 n1a1 2 n17测试十五必修 5 模块自我检测题一、选择题 21.函数 y x 4 的定义域是 ( )(A)( -2,2) (B)( -∞,- 2)∪(2,+∞ ) (C)[ -2,2](D)( -∞,- 2]∪[2,+∞ ) 2.设 a >b >0,则下列不等式中一定成立的是 ()(A) a -b <0(B)0 < a b<1a b(C) ab <(D) ab >a +b2x 1, y 0,所表示的平面区域是W ,则下列各点中,在区域W 内的点是 () 3.设不等式组x y 01 1 1 1(A) ( , )(B) ( , )2 3 2 3 1 1 1 1 (C) ( , )(D) ( , )2 3 2 34.设等比数列 { a n } 的前 n 项和为 S n ,则下列不等式中一定成立的是() (A) a 1+a 3>0(B) a 1a 3>0(C) S 1+S 3<0(D) S 1S 3<05.在△ ABC 中,三个内角 A ,B ,C 的对边分别为 a , b ,c ,若 A ∶ B ∶ C =1∶ 2∶ 3,则 a ∶ b ∶ c 等于 ()(A)1 ∶3 ∶ 2(B)1 ∶ 2∶ 3 (C)2 ∶3 ∶ 1(D)3 ∶ 2∶ 16.已知等差数列 { a n } 的前 20 项和S 20=340,则 a 6+a 9+a 11+a 16 等于 () (A)31 (B)34 (C)68 (D)707.已知正数 x 、 y 满足x +y =4,则 log 2x +log 2y 的最大值是 ()(A) -4 (B)4(C)-2(D)28.如图,在限速为90km/h 的公路 AB 旁有一测速站P ,已知点 P 距测速区起点 A 的距离为 0. 08 km ,距测速区终点 B 的距离为 0. 05 km ,且∠ APB =60°. 现测得某辆汽车从A 点行驶到B 点所用的时间为 3s ,则此车的速度介于()(A)60 ~70km/h (B)70 ~80km/h (C)80~90km/h (D)90 ~100km/h二、填空题9.不等式 x( x -1)<2 的解集为 ________.10.在△ ABC 中,三个内角 A ,B ,C 成等差数列,则 cos( A +C)的值为 ________. 11.已知 { a n } 是公差为- 2 的等差数列,其前 5 项的和S 5=0,那么 a 1 等于 ________.12.在△ ABC 中, BC =1,角 C =120°, cosA =2 3,则 AB =________. 18x 0, y 02x y 4 0 ,所表示的平面区域的面积是________;变量z=x+3y 的最大13.在平面直角坐标系中,不等式组x y 3 0值是________.14.如图,n2(n≥4)个正数排成n 行n 列方阵,符号a ij(1≤i≤n,1≤j≤n,i,j∈N)表示位于第i 行第j 列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q. 若a11=则q=________;a ij =________. 12,a24=1,a32=14,三、解答题2+ax+6. 15.已知函数f(x)=x(1)当a=5 时,解不等式f(x)<0;(2)若不等式f( x)>0 的解集为R,求实数 a 的取值范围.16.已知{ a n} 是等差数列,a2=5,a5=14.(1)求{ a n}的通项公式;(2)设{ a n}的前n 项和S n=155,求n 的值.17.在△ABC 中,a,b,c 分别是角A,B,C 的对边,A,B 是锐角,c=10,且c oscosA b 4 .B a 3(1)证明角C=90°;(2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示. 若每天配给该厂的煤至多56 吨,供电至多45 千瓦,问该厂如何安排生产,使得该厂日产值最大?用煤(吨) 用电(千瓦) 产值(万元) 甲种产品7 2 8乙种产品 3 5 1119.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且cosA=1 . 32 的值;B C(1)求sin cos 2A2(2)若a= 3 ,求bc 的最大值.20.数列{ a n} 的前n 项和是S n,a1=5,且a n=S n-1(n=2,3,4,⋯).(1)求数列{ a n} 的通项公式;1 1 1 1(2)求证:a1 a a a n2 3 351920参考答案第一章解三角形测试一正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B提示:4.由正弦定理,得sinC=3 ,所以C=60°或C=120°,2当C=60°时,∵B=30°,∴A=90°,△ABC 是直角三角形;当C=120°时,∵B=30°,∴A=30°,△ABC 是等腰三角形. 5.因为A∶B∶C=1∶2∶3,所以A=30°,B=60°,C=90°,由正弦定理asin Absin Bcsin C=k,得a=k·sin30°=12 k,b=k·sin60°=32k,c=k·sin90°=k,所以a∶b∶c=1∶ 3 ∶ 2.二、填空题2 63 37 5 2 6.7.30°8.等腰三角形9.10.3 2 4提示:8.∵A+B+C=π,∴-cosA=cos( B+C). ∴2cosBcosC=1-cosA=cos( B+C)+1,∴2cosBcosC=cosBcosC-sinBsinC+1,∴cos(B-C)=1,∴B-C=0,即B=C.2=a2+c2-2accosB.9.利用余弦定理 b10.由tanA=2,得2sin A ,根据正弦定理,得5ACsin BBCsin A5 2,得AC= 4.三、解答题11.c=2 3 ,A=30°,B=90°.12.(1)60°;(2) AD=7 .13.如右图,由两点间距离公式,2 2得OA=(5 0) (20) 29 ,同理得OB 145, AB 232 . 由余弦定理,得cosA=2 2 2OA OB ,AB 22 OA AB 2∴A=45°.2114.(1)因为2cos(A+B)=1,所以A+B=60°,故C=120°.(2)由题意,得a+b=2 3 ,ab=2,又AB2=c2=a2+b2-2abcosC=(a+b)2-2ab-2 a bcosC=12-4-4×( 12)=10.所以AB=10 .(3) S△ABC=12 absinC=1·2·232= 3 .2测试二解三角形全章综合练习1.B 2.C 3.D 4.C 5.B提示:2+c2-a2=bc,5.化简(a+b+c)( b+c-a)=3bc,得b由余弦定理,得cosA=2b2c2bc2a 12,所以∠A=60°.因为sinA=2sin B cosC,A+B+C=180°,所以sin(B+C)=2sinBcosC,即sinB c osC+cosBsinC=2sinBcosC.所以sin(B-C)=0,故B=C.故△ABC 是正三角形.二、填空题6.30°7.120°8.三、解答题2459.5510. 311.(1)由余弦定理,得c=13 ;(2)由正弦定理,得sinB=239 13.12.(1)由a·b=|a|·|b|·cos〈a,b〉,得〈a,b〉=60°;(2)由向量减法几何意义,知|a|,|b|,|a-b|可以组成三角形,所以|a-b|2=|a|2+|b|2-2|a|·|b|·cos〈a,b〉=7,故|a-b|=7 .13.(1)如右图,由两点间距离公式,得OA (5 0)2 (2 0)2 29 ,同理得OB 145 , AB 232 .由余弦定理,得22cos A2OA2ABOA2OBAB222,所以A=45°.故BD=AB×sinA=2 29 .(2) S△OAB=12·OA·BD=12·29 · 2 29 =29.a b c14.由正弦定理2Rsin A sin B sin C,a b c得sin A, sin B, sin C 2R 2R 2R2A+sin2B>sin2C,因为sin.a b c所以 2 2 ) 2 ( ) ( ) (2R 2R 2R 即a2+b2>c2. ,2 2a b2 c所以cosC=>0,2ab由C∈(0,π),得角 C 为锐角.15.(1)设t小时后甲、乙分别到达P、Q 点,如图,则|AP|=4t,|BQ|=4t,因为|OA |=3,所以t=h 时,P 与O 重合.4故当t∈[0,]时,42=(3-4t)2+(1+4t )2-2×(3-4t)×(1+4t)×cos60°; |PQ |当t>42=(4t-3)2+(1+4t)2-2×(4t-3)×(1+4t)×cos120°.h 时,|PQ|2 t故得|PQ |=48t 24 7 (t≥0).24 1(2)当t=h2 48 4时,两人距离最近,最近距离为2km .a b c16.(1)由正弦定理2Rsin A sin B sin C,得a=2RsinA,b=2RsinB,c=2RsinC.所以等式c oscos BCb2a c可化为c os BcosC 2 2R2 Rsinsin AB2R sin C,即c os BcosC 2 sinsinABsin C,2sinA c osB+sinCcosB=-cosC·sin B,故2sinA c osB=-cosCsinB-sinCcosB=-sin(B+C),因为A+B+C=π,所以sin A=sin( B+C),故cosB=-12 ,所以B=120°.232=13=a2+c2-2ac×cos120°,(2)由余弦定理,得 b即a2+c2+ac=13又a+c=4,解得ac13,或ac31.所以S△ABC=12 acsinB=12×1×3×32=3 34.第二章数列测试三数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)n1 ( 1)2a n (或其他符合要求的答案) (2) 2a (或其他符合要求的答案)nn 17.(1) 12,459,10,1617,2526(2)7 8.67 9.11510.4提示:9.注意a n 的分母是1+2+3+4+5=15.2-15n+3,利用二次函数图象可得答案. 10.将数列{ a n} 的通项a n看成函数f(n)=2n三、解答题11.(1)数列{ a n} 的前6 项依次是11,8,5,2,-1,-4;(2)证明:∵n≥5,∴-3n<-15,∴14-3n<-1,故当n≥ 5 时,a n=14-3n<0.12.(1)2 4 2109 n 3n 1 n n 1a ,a n ,a;10 1 2n3 3 3(2)79 23是该数列的第15 项.13.(1)因为a n=n-1n,所以a1=0,a2=32,a3=83,a4=154;+1-a n=[( n+1) (2)因为a n1n 1]-(n-1n)=1+1n(n1)又因为n∈N+,所以a n+1-a n>0,即a n+1>a n.所以数列{ a n} 是递增数列.测试四等差数列一、选择题1.B 2.D 3.A 4.B 5.B二、填空题6.a4 7.13 8.6 9.6n-1 10.35提示:10.方法一:求出前10 项,再求和即可;方法二:当n 为奇数时,由题意,得a n+2-a n=0,所以a1=a3=a5=⋯=a2m-1=1(m∈N*).当n 为偶数时,由题意,得a n+2-a n=2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修5知识点1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C < ;③若222a b c +<,则90C >. 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 12、递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 19、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-. 20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-; ④11n a a n d -=+;⑤n ma a d n m-=-. 21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+. 22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S a S a +=奇偶. ②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶 (其中n S na =奇,()1n S n a =-偶).24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.注意:a 与b 的等比中项可能是G ±26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. 27、通项公式的变形:①n m n m a a q -=;②()11n n a a q--=;③11n n a qa -=;④n mn ma q a -=. 28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅.29、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.30、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.②n n m n m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列. 31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >;⑧)0,1a b n n >>⇒∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系: 判别式24b ac ∆=- 0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程2ax bx +0c +=()0a >的根有两个相异实数根1,22b x a-=()12x x <有两个相等实数根122bx x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式. 36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P .①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方. 39、在平面直角坐标系中,已知直线0x y C A +B +=.①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y . 可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.41、设a 、b 是两个正数,则2a b+称为正数a 、b a 、b 的几何平均数.42、均值不等式定理: 若0a >,0b >,则a b +≥2a b+≥ 43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.44、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060, 则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .06030或 B .06045或 C .060120或 D .015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。