湖北省来凤县2015年中考第二次模拟考试数学试题及答案

合集下载

2015年中考名校第二次模拟考试数学试题(卷)及答案

2015年中考名校第二次模拟考试数学试题(卷)及答案

2015年中考名校第二次模拟考试 数 学 试 题 (卷)时间120分钟 满分120分 2015.6.12一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,恰有一项是符合要求的,请将正确选择项前的字母代号填涂在答题卷相应位置.......上) 1、31-的绝对值数是( ) A . 3- B .3 C .31-D .31 2、当地时间4月25日12时许,尼泊尔中部地区突发7.9级(中国地震台网测定为8.1级)强烈地震。

据尼官方最新数字,地震已经造成尼境内至少6000人遇难,另有5000余人受伤。

为表达中国政府和人民对尼泊尔抗震救灾的坚定支持,中国政府决定向尼泊尔政府提供2000万元人民币紧急人道主义物资援助,包括帐篷、毛毯、发电机等灾区急需物资,帮助尼方开展救灾安置工作,请把2000万元用科学记数法表示为( )元。

A .4200010⨯ B .8210⨯ C .7210⨯ D .62010⨯ 3、下列计算正确的是( )A .623x x x =+B .3a ·62a a = C .3223=- D .27714=⨯ 4、如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB ,∠BEF=80º,则∠ABD 的度数为( )A .60ºB .50ºC .40ºD .30°5、在实数范围内分解因式328a a -的结果是( )A 、22(4)a a - B 、 )2)(2(2-+a a a C 、2(4)(4)a a a +- D 、)2)(2(-+a a a 6、九年级某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80.对这 组数据表述错误的是( )A .众数是80B .极差是15C .平均数是80D .中位数是757、将不等式组⎩⎨⎧-≤-+xx x x 316148 的解集在数轴上表示出来,正确的是( )P D CBAA B C D8、如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B→C→D作匀速运动,那么△ABP 的面积y 与点P 运动的路程x 之间的函数图象大致是( ) A B C D 9、分式方程 的解为( )A.B.C.D.无解10、在半径为1的⊙O 中,弦AB 、AC 分别是2、3,则∠BAC 的度数为( )A.15° B .15°或75° C.75° D.15°或65°11、已知二次函数)0(122≠--=k x kx y 的图象与x 轴有两个交点,则k 的取值范围是A 、1->k 且0≠kB 、1->kC 、1<k 且0≠kD 、1<k12、如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A 、B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( ) A.4π-8 B. 16π-16 C.16π-32 D. 8π-16二、填空题(每小题3分,共12分) 13、9的平方根是 。

2015年中考数学模拟考试卷(二)含答案

2015年中考数学模拟考试卷(二)含答案

2015年中考数学模拟考试卷(二)(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.-15的倒数是( )A.5 B.-5 C.15D.-152.下列运算正确的是( )A.3a-2a=1 B.x8-x4=x2C.()222-=-=-2 D.-(2x2y)3=-8x6y33.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.4.如图,直线l1∥l2,则∠a为( )A.150°B.140°C.130°D.120°5.一个多边形的每个内角均为140°,则这个多边形是( )A.七边形B.八边形C.九边形D.十边形6.如图,在△ABC中,AE交BC于点D,∠C=∠E,AD=3,BD=5,DC=2,则DE的长等于( )A.152B.103C.65D.567.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分8.下列图中阴影部分的面积与算式2131242-⎛⎫-++⎪⎝⎭的结果相同的是( )9.在平面直角坐标系中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有( )A.1个B.2个C.3个D.4个10.对于正数x,规定f(x)=1xx+,例如f(3)=33134=+=,f(13)=1131413=+,计算f12014⎛⎫⎪⎝⎭+f12013⎛⎫⎪⎝⎭+f12012⎛⎫⎪⎝⎭+…+f13⎛⎫⎪⎝⎭+ f12⎛⎫⎪⎝⎭+f(1)+f(2)+f(3)+…+f(2012)+f(2013)+f(2014)的结果是( )A.2013 B.2013.5 C.2014 D.2014.5二、填空题(本大题共8小题,每小题3分,共24分)11.人的眼睛可以看见的红光的波长是0.000077 cm,请把这个数用科学记数法表示,其结果是_______cm.12.函数y=23xyx+=-中自变量x的取值范围是_______.13.分解因式:a3-2a2b+ab2=_______.14.圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥的母线长为_______m.15.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的对应点B'的横坐标是2,则点B的横坐标是_______.16.如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于_______.17.已知M、N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则y=-abx2+(a+b)x的顶点坐标为_______.18.如图,图①为一个长方体,AD=AB=10,AE=6,M为所在棱的中点,图②为图①的表面展开图,则图②中△BCM的面积为_______.三、解答题(本大题共11小题,共76分) 19.(本题满分5分)计算:()()32cos60332π-︒--+---20.(本题满分5分)先化简()222211121a a a a a a +-÷++--+,然后a 在-1、1、2三个数中任选一个合适的数代入求值.21.(本题满分5分)求不等式组()3112323x x x ⎧+>-⎪⎨-+≥⎪⎩的整数解.22.(本题满分6分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2 km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5 min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度.(结果精确到0.1km/h ,参考数据:3≈1.73, sin76°≈0.97,cos76°0.24,tan76°≈4.01)23.(本题满分6分)如图,锐角三角形ABC 的两条高BE 、CD 相交于点O ,且OB =OC . (1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.24.(本题满分6分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.(本题满分7分)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某果园组织30辆汽车装运A、B、C三种水果共84 t到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的汽车辆数不超过装运的A、C两种水果的汽车辆数之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并直接写出自变量x的取值范围;(2)设此次外销活动的利润为Q(百元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.26.(本题满分8分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于点P,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=2,NP=23,求NQ的长.27.(本题满分8分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A.B两点,与双曲线y=kx(x>0)交于点D,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为12.(1)如果b=-2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.28.(本题满分10分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA =2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,求OG的长;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与线段AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.29.(本题满分10分)企业的工业废料处理有两种方式:一种是运送到垃圾厂进行集中处理,另一种是通过企业的自身设备进行处理,某企业去年每月的工业废料均为120 t,由于垃圾厂处于调试阶段,处理能力有限,该企业采取两种处理方式同时进行.1至6月,该企业向垃圾厂运送的工业废料y1(t)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的工业废料y2(t)与月份x(7≤x≤12,且x取整数)之间满足y2=ax2+c(a ≠0),其图像如图所示.1至6月,垃圾厂处理每吨工业废料的费用z1(元)与月份x之间满足函数关系式:z1=60x,该企业自身处理每吨工业废料的费用z2(元)与月份x之间满足函数关系式:z2=45x-5x2;7至12月,垃圾厂处理每吨工业废料的费用均为120元,该企业自身处理每吨工业废料的费用均为90元.(1)请观察题中的表格和图像,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1、y2与x之间的函数关系式;(2)求该企业去年哪个月用于工业废料处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于企业的自身设备的全面运行,该企业决定扩大产能并将所有工业废料全部自身处理,估计扩大产能后今年每月的工业废料量都将在去年每月的基础上增加m%,同时每吨工业废料处理的费用将在去年12月份的基础上增加m%.为鼓励节能降耗,减轻企业负担,国家财政对该企业处理工业废料的费用进行了50%的补助,若该企业每月的工业废料处理费用为12150元,求m的值.参考答案1—10 BDCDC BCBDB11.7.7×10-512.x>313.a(a-b)214.615.-2.516.6.517.(3,92)18.50或8019.1 2720.31aa+-原式=5.21.-2<x≤32-1,0,1.22.(1)3km (2)40.6 km/h23.(1)略(2)点O在∠BAC的角平分线上24.(1)200(人).(2)60(人).(3)1 625.(1)92≤x≤10,且x为整数.(2)Q=-14x+636,此时应这样安排:A种水果用5辆车,B种水果用14辆车,C种水果用11辆车.26.(1)略(2)NQ=3.27.(1)k=12.(2)y=4 3 x28.(1)y=-56x2+136x+1.(2)1.(3)存在三个满足条件的点Q,即Q(2,2)或Q(1,73)或Q(125,75).29.y1=120x(1≤x≤6,且x取整数).y2=x2-30(7≤x≤12,且x取整数).(2)去年5月份用于污水处理的费用最多,最多费用是16800元.(3)50.。

中考专题 来凤县 适应性考试

中考专题  来凤县 适应性考试

2015年来凤县中考适应性考试语文试题卷本试题卷共8页,全卷满分120分,考试用时150分钟。

注意事项:1.考生答题全部在答题卷上,答在本试题卷上无效。

2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、准考证号码是否与本人相符合,再将自己的姓名、准考证号码用0.5毫米黑色墨水签字笔填写在答题卷及本试题卷上。

3.选择题的作答:每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

4.非选择题用0.5毫米黑色墨水签字笔将答案直接答在答题卷上对应的答题区域内。

5.考生不得折叠答题卷,保持答题卷的整洁。

考试结束后,请将本试题卷和答题卷一并上交。

一、基础知识(14分)1、下列加点字的注音全都正确的一项是A、菜畦.(qí) 睥.睨(pì) 味同嚼.蜡(jiáo) 心宽体胖.(pán)B、荸.荠(pǔ)砭.骨(fā) 五行.缺土(xíng)浑身解.数(xiè)C、悲怆.(chuàng)羸.弱(yíng) 气冲斗.牛(dǒu) 龙吟凤哕.(suì)D、慰藉.(jiè) 恣睢.(suī) 断壁残垣.(gèng) 猝.然长逝(cù)2、下列选项中,没有错别字的一项是A、侧隐滥竽充数震摄苦心孤旨B、脸夹余音绕梁精采兴至勃勃C、籍贯抑扬顿挫恫吓谈笑风生D、清辙腐草为萤分岐消声匿迹3、关于下面汉字的结构及笔顺规则表述正确的一项是A、“米”“日”“凶”“匀”都是独体结构。

B、“廿”字是独体结构,共4画;“及”字第二笔是横折折撇。

C、“敝”字是左右结构,共12画。

D、“为”字的笔顺是撇、横折钩、点、点。

4、依次填入下列横线处的词语,最恰当的一组是从出土的楚乐器看,编钟与编磬往往在一起,以构成“金石之声”。

编钟音色丰富优美,重击如▲,轻敲若▲,闻之令人心旷神怡;编磬至今仍有优美的音质,并刻有以凤鸟为主题的凹凸纹饰。

2015中考模拟试卷数学卷和答案

2015中考模拟试卷数学卷和答案

2015年中考模拟试卷数学卷和答案
2015年中考模拟试卷数学卷
考生须知:
1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。

2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷
试题卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.
1.如果,那么,两个实数一定是()
A.一正一负
B.相等的数
C.互为相反数
D.互为倒数
2.下列调查适合普查的是()
A.调查2011年3月份市场上西湖龙井茶的质量
B.了解萧山电视台188热线的收视率情况
C.网上调查萧山人民的生活幸福指数
D.了解全班同学身体健康状况
3.函数,一次函数和正比例函数之间的包含关系是()
4.已知下列命题:①同位角相等;②若a0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等。

从中任选一个命题是真命题的概率为()
A.B.C.D.
精心整理,仅供学习参考。

___2015届九年级中考二模数学试题及答案

___2015届九年级中考二模数学试题及答案

___2015届九年级中考二模数学试题及答案2015年初三数学调研卷本试卷共有选择题、填空题和解答题三部分。

共29小题,总分130分,考试时间为120分钟。

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是正确的,请将答案填在答题卷上。

)1.实数4的算术平方根是(B)。

2.如图所示,根据有理数a、b、c在数轴上的位置,下列关系正确的是(D)。

3.下列计算正确的是(A)。

4.如图所示的几何体的主视图是(B)。

5.要使式子 $\frac{623}{x+1}$ 有意义,x的取值范围是(C)。

6.点P(2m-1,3)在第二象限,则m的取值范围是(C)。

7.已知⊙O的直径AB与弦∠C的夹角为30°,过C点的切线PC与AB长线交于点P。

PC=5,则⊙O的半径为(A)。

8.直线 $y=k_1x+b$ 与直线 $y=k_2x+c$ 在同一平面直角坐标系中的图象如图所示,则关于x的不等式$k_1x+b<k_2x+c$ 的解集为(D)。

9.若关于x的一元二次方程 $kx^2-2x-1=0$ 有两个不相等的实数根,则k的取值范围是(B)。

10.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于(C)。

二、填空题(本大题共8小题,每小题3分,共24分。

把答案填在答题卷相应的空格内。

)11.已知∠a与∠β互余,且∠α=40°,则∠β为50°。

12.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=20°。

13.半径为2的圆的内接正六边形边长为4.14.若一次函数的图象经过点(1,-3)与(2,1),则它的解析式为 $y=2x-5$。

15.用科学记数法表示xxxxxxxx为$1.304\times10^7$。

2015年中考二模名校考试数学试题及答案

2015年中考二模名校考试数学试题及答案

2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。

2015年区二模数学答案


3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=

2015中考模拟考试试题数学科参考答案

2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。

(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。

2015届中考二模数学试题含答案

第二学期第二次模拟题九 年 级 数 学说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数为( ▲ ) A .21-B .21C .2D .12.已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为( ▲ )A .0. 000124B .0.0124C .一0.00124D .0.00124 3.如图是一个几何体的三视图,则这个几何体的形状是( ▲ ).A .圆柱B .圆锥C .圆台D .长方体4.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是( ▲ )A .等边三角形B .矩形C .菱形D .正方形5.直线2y x =-不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 6.下列计算正确的是( ▲ )A .532a a a =+ B .1234)(a a =C .632a a a =⋅D .326a a a =÷7.不等式421->+x x 的解集是( ▲ ) A .5<x B .5>x C .1<xD .1>x8.如图,已知AB ∥CD ,E 是AB 上一点,DE 平分∠BEC交CD 于D ,∠BEC=100°,则∠D 的度数是( ▲ ) A .100° B .80° C .60° D .50°9.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ▲ )第8题图A . AD⌒ =BD ⌒ B .AF=BF C .OF=CF D .∠DBC=90° 10.若x y ,为实数,且30x +=,则2014⎪⎭⎫ ⎝⎛x y 的值为( ▲ )A .1B . 1-C . 2D . 2-二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.若一个多边形外角和与内角和相等,则这个多边形是 ▲ . 12.分式方程312=+x x的解是 ▲ . 13.如图,DE 是△ABC 的中位线,若BC 的长是10cm ,则DE 的长是 ▲ .14.一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 ▲ .15.若关于x 的一元二次方程022=-+k x x 没有实数根,则k 的取值范围是 ▲.16.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点. 若四边形EFDC 与矩形ABCD 相似,则AD = ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:011134-⎛⎫⎛⎫︒+ ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:)1)(1()2(2a a a +-++,其中43-=a19.如图,在Rt △ABC 中,∠C =90°.(1)根据要求用尺规作图:过点C 作斜边AB 边上的高CD ,垂足为D(不写作法,只保留作图痕迹); (2)证明:△CAD ∽△BCD第16题图第9题图E ABCD 第13题图四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,AC 是操场上直立的一个旗杆,从旗杆上的B 点到地面C 涂着红色的油漆,用测角仪测得地面上的D 点到B 点的仰角是∠BDC=45°,到A 点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,求旗杆的高度?21.在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是31. (1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).22.某种仪器由1种A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图, 抛物线c bx x y ++=221与x 轴交于A (-4,0) 和B(1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q 点,当P 点运动到什么位置时,线段PQ 的长最大,并求此时P 点的坐标.24.如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC . (1)求证:AB =AC ;(2)若AD =4, cos ∠ABF =54,求DE 的长.25.如图,在平面直角坐标系xoy 中,抛物线c bx ax y ++=2交y 轴于点C (0,4), 对称轴2=x 与x 轴交于点D ,顶点M 的纵坐标为6. (1)求该抛物线的解析式;(2)设点P (x ,y )是第一象限内该抛物线上的一个动点,△PCD 的面积为S ,求S 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,若经过点P 的直线PE 与y 轴交于点E ,是否存在以O 、P 、E 为顶点的三角形与△OPD 全等?若存在,请求出直线PE 的解析式;若不存在,请说明理由.九年级数学第二次模拟题参考答案和评分标准一、ADBDC BADCA二、11、四边形 12、3-=x 13、5 cm 14、2 15、1-<k 16 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解:原式=11242+⨯+ ······················· 4分 =6 ·························· 6分18.解:原式=22144a a a -+++ ···················· 3分=54+a ························· 4分当43-=a 时,原式=54+a =5)43(4+-⨯=2 ············ 6分 19.(1)正确尺规作图. ························ 3分(2)证明:∵Rt △ABC 中,CD 是斜边AB 边上的高,∴∠ADC =∠BDC =90°, ················· 4分 ∴∠ACD +∠A =∠ACD +∠BCD =90°,∴∠A =∠BCD , ····················· 5分 ∴△CAD ∽△BCD , ····················· 6分 四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:在Rt △BDC 中, ∵∠BDC=45°, ∴DC=BC=3米, ························· 3分 在Rt △ADC 中, ∵∠ADC=60°,∴AC=DCtan60° ························· 5分=3× (米). ························ 6分 答:旗杆的高度为3米 ························ 7分 21.解:(1)设红球有x 个,根据题意得,31111=++x ······················ 2分解得1=x ····················· 3分(2)根据题意画出树状图如下:一共有9种情况, ························· 5分 两次摸到的球颜色不同的有6种情况, ·················· 6分 所以,P (两次摸到的球颜色不同)3296==··············· 7分 22.解:设安排x 人生产A 部件,安排y 人生产B 部件,由题意,得 ······· 1分⎩⎨⎧==+y x y x 600100016··························· 4分 解得:⎩⎨⎧==106y x ···························· 6分答:设安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B部件配套. ···························· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 解:(1)由二次函数c bx x y ++=221与x 轴交于(4,0)A -、(1,0)B 两点可得:⎪⎩⎪⎨⎧=++⨯=+--⨯012104)4(2122c b c b ················· 2分解得: ⎪⎩⎪⎨⎧-==223c b 故所求二次函数的解析式为223212-+=x x y . ·· 3分 (2) 由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2). ····· 4分若设直线AC 的解析式为b kx y +=,则有⎩⎨⎧+-=+=-b k b 4002 解得:⎪⎩⎪⎨⎧-=-=221b k故直线AC 的解析式为221--=x y . ·············· 5分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭, ············· 6分又Q 点是过点P 所作y 轴的平行线与直线AC 的交点, 则Q 点的坐标为(1,2)2a a --.则有: )22321()221(2-+---=a a a PQ =a a 2212-- ····················· 7分=2)2(212++-a ················· 8分当2-=a 时,线段PQ 的长取最大值,此时P 点的坐标为(-2,-3) ·· 9分24.(1)证明:连接BD , ························· 1分 由AD ⊥AB 可知BD 必过点O ···················· 2分∵BF 相切于⊙O ,∴∠ABD 十∠ABF =90º∵AD ⊥AB ,∴∠ABD +∠ADB =90º,∴∠ABF =∠ADB ········· 3分 ∵∠ABC =∠ABF ,∴∠ABC =∠ADB ················· 4分 又∠ACB =∠ADB ,∴∠ABC =∠ACB ,∴AB =AC ············ 5分 (2)在Rt △ABD 中,∠BAD =90ºcos ∠ADB =BD AD ,∴BD =ADB AD ∠cos =ABFAD∠cos =544=5 ···· 6分∴AB =3 ·························· 7分 在Rt △ABE 中,∠BAE=90º Cos ∠ABE =BE AB ,∴BE =ABE AB∠cos =543=415∴AE =223)415(-=49················· 8分∴DE =AD -AE =4-49=47·················· 9分25.解:(1)由题意得:顶点M 坐标为(2,6). ············ 1分设抛物线解析式为:6)2(2+-=x a y ∵点C (0,4)在抛物线上,∴644+=a 解得21-=a ···················· 2分 ∴抛物线的解析式为:6)2(212+--=x y =42212++-x x ····· 3分(2)如答图1,过点P 作PE ⊥x 轴于点E∵ P (x ,y ),且点P 在第一象限, ∴PE=y ,OE=x ,∴DE=OE﹣OD=2-x ·························· 4分 S=S 梯形PEOC ﹣S △COD ﹣S △PDE=y x x y ⋅--⨯⨯-⋅+)2(214221)4(21 42-+=x y将42212++-=x x y 代入上式得:S=x x 4212+- ············ 5分 在抛物线解析式42212++-=x x y 中,令0=y ,即422102++-=x x ,解得322±=x设抛物线与x 轴交于点A 、B ,则B (322+,0), ∴3220+<<x∴S 关于x 的函数关系式为:S=x x 4212+-(3220+<<x ). ····· 6分 (3)存在.若以O 、P 、E 为顶点的三角形与△OPD 全等,可能有以下情形: (I )OD=OP .由图象可知,OP 最小值为4,即OP≠OD,故此种情形不存在. ······· 7分 (II )OD=OE .若点E 在y 轴正半轴上,如答图2所示: 此时△OPD ≌△OPE , ∴∠OPD=∠OPE ,即点P 在第一象限的角平分线上, ∴直线PE 的解析式为:221+=x y 若点E 在y 轴负半轴上,易知此种情形下,两个三角形不可能全等, 故不存在. ······························ 8分(III )OD=PE . ∵OD=2, ∴第一象限内对称轴右侧的点到y 轴的距离均大于2,则点P 只能位于对称轴左侧或与顶点M 重合. 若点P 位于第一象限内抛物线对称轴的左侧,易知△OPE 为钝角三角形, 而△OPD 为锐角三角形,则不可能全等; 若点P 与点M 重合,如答图3所示,此时△OPD ≌OPE ,四边形PDOE 为矩形, ∴直线PE 的解析式为:6=y综上所述,存在以O 、P 、E 为顶点的三角形与△OPD 全等, 直线PE 的解析式为221+=x y 或6=y . ················ 9分。

2015年九年级第二次质量预测数学(含答案)

2015年九年级第二次质量预测数学试题卷注意事项:本试卷分试题卷和答题卡两部分.考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标为(24,24b ac b a a--). 一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 2015的倒数是( )A .2015-B .12015-C .12015D .20152. PM2.5是指大气中直径小于等于2.5微米,即0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( ) A .72.510-⨯B .62.510-⨯C .72510-⨯D .50.2510-⨯3. 如图,从左面观察这个立体图形,能得到的平面图形是( )A .B .C .D .4. 如图,直线l m ∥,等边三角形ABC 的顶点B 在直线m 上,∠1=25°,则∠2的度数为( ) A .35°B .25°C .30°D .45°21ml CBA第4题图 第5题图5. 如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则这些车的车速的众数、中位数分别是( ) A .8,6B .8,5C .32,32D .32,336.如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC,垂足为点E,则AE的长是()A.B.C.485D.245O ED CBAlB'DCBA第6题图第7题图7.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,使点B旋转到B′点,则点B在两次旋转过程中经过的路径的长是()A.25πB.254πC.252πD.132π8.如图1,四边形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向向点D移动.已知△PAD的面积S(单位:cm2)与点P移动的时间t(单位:s)的函数如图2所示,则点P从开始移动到停止共用时()A.8秒B.(4+秒C.(4+秒D.(4)秒图2图1PD C BA二、填空题(每小题3分,共21分)9.2=-___________.10.如图,四边形ABCD内接于圆O,若∠B=77°,则∠D=___________°.C11. 若关于x 的一元二次方程220x x m ++=有实数解,则m 的取值范围是___________.12. 如图,Rt △ABC 中,∠ACB =90°,AC =3cm ,BC =6cm ,以斜边AB 上的一点O 为圆心所作的半圆分别与AC ,BC 相切于点D ,E ,则圆O 的半径为__________cm .13. 在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是___________.14. 如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD =5,BC =9,则EF =___________.FED CB A第14题图 第15题图15. 如图,在一张长为6cm ,宽为5cm 的矩形纸片上,现要剪下一个腰长为4cm等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为___________cm 2. 三、解答题(本题共8道小题,共75分)16. (8分)先化简221111x x x ⎛⎫÷+ ⎪--⎝⎭,再从23x -<<中选一个合适的整数代入求值.17. (9分)2014年郑州市城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2014年月平均收入随机抽样调查,将抽样的数据按“2 000元以内”、“2 000元~4 000元”、“4 000元~6 000元”和“6 000元以上”分为四组,进行整理,分别用A ,B ,C ,D 表示,得到下列两幅不完整的统计图.D x % C 20%B 60%A 月平均收入(元)由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有_____人,在扇形统计图中x 的值为____,表示 “月平均收入在2 000元以内”的部分所对应扇形的圆心角的度数是_____; (2)将不完整的条形图补充完整,并估计我市2014年城镇民营企业20万员 工中,每月的收入在“2 000元~4 000元”的约多少人?(3)统计局根据抽样数据计算得到,2014年我市城镇民营企业员工月平均 收入为4 872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情 况是否合理?18. (9分)如图,分别以Rt △ABC 的直角边AC 和斜边AB 向外分别作等边△ACD ,等边△ABE .已知∠BAC =30°,BC =1,EF ⊥AB ,垂足为F ,连接DF .(1)线段EF 是多少?答:___________,请写出求解过程; (2)请判断四边形ADFE 的形状,并说明理由.F EDCBA19. (9分)大河网报道“郑州东风渠再添4座新桥”.如图,某座桥的两端位于A ,B 两点,小华为了测量A ,B 之间的河宽,在垂直于桥AB 的直线型道路l 上测得如下数据:∠BDA =76.1°,∠BCA =68.2°,CD =24米,求AB 的长.(精确到1米,参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5)lA BC D20. (9分)如图,一次函数y kx b =+的图象l 与坐标轴分别交于点E ,F ,与双曲线2(0)y x x=-<交于点P (-1,n ),且F 是PE 的中点.(1)求直线l 的解析式;(2)若直线x a =与l 交于点A ,与双曲线交于点B (不同于A ),问a 为何值时,P A =PB ?21.(10分)我市正大力倡导“垃圾分类”,2015年第一季度某企业按A类垃圾处理费25元/吨,B类垃圾处理费16元/吨的收费标准,共支付垃圾处理费520元.从2015年4月起,收费标准上调为:A类垃圾处理费100元/吨,B 类垃圾处理费30元/吨.若该企业2015年第二季度需要处理的A类,B类垃圾的数量与第一季度相同,就要多支付垃圾处理费880元.(1)该企业第一季度处理的两类垃圾各多少吨?(2)该企业计划第二季度将上述两种垃圾总量减少到24吨,且B类垃圾处理量不超过A类垃圾处理量的3倍,则该企业第二季度最少需要支付两种垃圾处理费共多少元?22.(10分)在正方形ABCD中,对角线AC,BD相交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1),求证:△BOG≌△POE;(2)结合图2,通过观察、测量,猜想:BFPE=__________,并证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若AC=8,BD=6,直接写出BFPE的值.图3图2图1A DGOFEB P CPA DGOFEB CC(P)GFE ODB A23.(11分)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2-4x-2经过A,B两点.(1)求点A的坐标及线段AB的长.(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿A-O-C-B的方向向点B移动.当其中一个点到达终点时,另一个点也停止移动,设点P的移动时间为t秒.①当PQ⊥AC时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,当点H的纵坐标满足条件________时,存在∠HOQ<∠POQ.(直接写出答案)2015年郑州二检试卷参考答案一、选择题二、填空题 9. 010.103°11.1m ≤12.213.5814.15.8或三、解答题 16.原式1x x =+,当2x =时,原式=23. 17.(1)500,14,21.6;(2)统计图略,每月的收入在“2 000元~4 000元”的约12万人;(3)不合理,理由略.18.(1(2)平行四边形,理由略. 19.160米.20.(1)1y x =-+;(2)2a =-21.(1)该企业第一季度处理的A 类垃圾为8吨,B 类垃圾20吨; (2)该企业第二季度最少需要支付两种垃圾处理费共1 140元.22.(1)证明略;(2)12,证明略;(3)38. 23.(1)A (0,-2);AB =4(2)①43②14223H y -<<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年来凤县九年级第二次模拟考试数 学 试 题 卷本试卷共6页,24个小题,满分120分,考试时间120分钟★ 祝 考 试 顺 利 ★注意事项:1. 考生答题全部在答题卷上,答在试题卷上无效.2. 请认真核对监考教师在答题卷上所粘贴条形码的姓名.准考证号是否与本人相符合,再将自己的姓名.准考证号用0.5毫米的黑色墨水签字笔填写在答题卷及试题卷上. 3. 选择题作答必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案.非选择题作答必须用0.5毫米黑色墨水签字笔写在答题卷上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.5. 考生不得折叠答题卷,保持答题卷的整洁.考试结束后,将试题卷和答题卷一并上交.一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,恰有一项是符合要求的,请将正确选择项前的字母代号填涂在答题卷相应位置.......上) 1、31-的绝对值数是( ) A . 3- B .3 C .31-D .31 2、当地时间4月25日12时许,尼泊尔中部地区突发7.9级(中国地震台网测定为8.1级)强烈地震。

据尼官方最新数字,地震已经造成尼境内至少6000人遇难,另有5000余人受伤。

为表达中国政府和人民对尼泊尔抗震救灾的坚定支持,中国政府决定向尼泊尔政府提供2000万元人民币紧急人道主义物资援助,包括帐篷、毛毯、发电机等灾区急需物资,帮助尼方开展救灾安置工作,请把2000万元用科学记数法表示为( )元。

A .4200010⨯ B .8210⨯ C .7210⨯ D .62010⨯ 3、下列计算正确的是( )A .623x x x =+B .3a ·62a a = C .3223=- D .27714=⨯4、如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB ,∠BEF=80º,则∠ABD 的度数为( )A .60ºB .50ºC .40ºD .30°P D CBA5、在实数范围内分解因式328a a -的结果是( )A 、22(4)a a -B 、 )2)(2(2-+a a aC 、2(4)(4)a a a +-D 、)2)(2(-+a a a 6、九年级某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80.对这 组数据表述错误的是( )A .众数是80B .极差是15C .平均数是80D .中位数是757、将不等式组⎩⎨⎧-≤-+xx x x 316148 的解集在数轴上表示出来,正确的是( )A B C D8、如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B→C→D作匀速运动,那么△ABP 的面积y 与点P 运动的路程x 之间的函数图象大致是( ) A B CD 9、 分式方程的解为( )A.B.C.D.无解10、在半径为1的⊙O 中,弦AB 、AC 分别是2、3,则∠BAC 的度数为( )A.15° B .15°或75° C.75° D.15°或65°11、已知二次函数)0(122≠--=k x kx y 的图象与x 轴有两个交点,则k 的取值范围是A 、1->k 且0≠kB 、1->kC 、1<k 且0≠kD 、1<k12、如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A 、B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( )(第12题图)A.4π-8B. 16π-16C.16π-32D. 8π-16二、填空题(每小题3分,共12分) 13、9的平方根是 。

14、若直线42--=x y 与b x y +=4的交点在第三象限,则b 的取值范围是 。

15、如图,恩施州某大桥有一段抛物线的拱梁,抛物线的表达式为bx ax y +=2,小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需要 秒。

16、将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(15,7)表示的两数之积是 .三、解答题(共72分)17、(本题8分)先化简,再求值:211111x x x x -÷-+-(),其中12-=x。

18、(本题8分)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q . (1)求证:OP=OQ ;(2)若AD=8厘米,AB=6厘米,点P 从点A 出发,以1厘米/秒的速度向点D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.(第16题图)111122663263323第1排第2排第3排第4排第5排(第15题图)19、(本题8分)现代社会是一个高度信息化的社会,2013年12月4日工信部正式向三大运营商中国移动、中国电信和中国联通发布4G 牌照,使得手机上网更快捷,更流畅。

来凤县某中学九年级(1)班全体同学参加了平均每周使用手机上网时间的调查,并绘制了下面尚不完整的统计图①和图②。

请你根据相关信息,解答下列问题: (1)该中学九年级(1)班一共有 名学生; (2)求出图②中a 的值,=a ;(3)图①中利用手机上网0~2小时所在扇形的圆心角为 ;(4)用列举法求以下事件的概率:从利用手机上网时间在6~10小时的5名学生中随机选取2人,其中至少有1人利用手机上网时间在8~10小时.图① 图②20、(本题8分)如图所示,已知斜坡AB 长为60米,坡角(即∠BAC )为30º,BC ⊥AC ,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE 。

(结果都精确到0.1米,参考数据:732.13≈) (1)若修建的斜坡BE 的坡角(即∠BEF )不大于45º,则平台DE 的长最多为多少米? (2)一座建筑物GH 距离斜坡A 点27米远(即AG=27米),小明在D 点测得建筑物顶部H 的仰角为(即∠HDM )30º。

点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG ⊥CG ,求建筑物GH 的高。

(第18题图)50%21、(本题8分)庆祝国际五一劳动节,甲、乙两家商场都进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打六折促销。

(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x (400≤x <600)元,优惠后得到商家的优惠率为p (购买商品的总金额优惠金额p ),写出p 与x 之间的函数关系式,并说明p 随x的变化情况。

(3)品牌、质量、规格等都相同的某种商品,在甲、乙两家商场的标价都为x (200≤x <400)元,你认为选择哪家商场购买该商品花钱较少?请说明理由。

22、(本题10分)如图,一次函数的图象与反比例函数的图象相交于A 点,与y 轴、x 轴分别相交于B 、C 两点,且C (2,0).当x <﹣1时,一次函数值大于反比例函数值,当x >﹣1时,一次函数值小于反比例函数值. (1)求一次函数的解析式; (2)设函数y 2=的图象与的图象关于y 轴对称,在y 2=的图象上取一点P (P 点的横坐标大于2),过P 作PQ 丄x 轴,垂足是Q ,若四边形BCQP 的面积等于2,求P 点的坐标.23、(本题10分)如图,⊙O 是△ABC 的外接圆,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连接AD 、BD ,且∠ADB=∠E . (1)求证:AB=AC ;(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB=5,BC=6时,求⊙O 的半径.24、(满分12分) 如图1,在平面直角坐标系xOy 中,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x bx c =++经过点B ,且与直线l 的另一个交点为C (4,n ).(1) 求n 的值和抛物线的解析式;(2) 点D 在抛物线上,且点D 的横坐标为t (0< t <4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3) M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标....图1图22015年来凤县初中九年级模拟考试数学试题参考答案及评分说明一、D C D B D D C B C B A D二、13、 ±3 14、-4<6<8 15、36 16、32三、17、解:原式=)1)(1(1)1)(1(1)1)(1()1(-+÷⎥⎦⎤⎢⎣⎡+---+-+x x x x x x x x x ………………2分 =)1)(1(12+-+x x x ·)1)(1(-+x x ………………2分=12+x ………………6分 当12-=x 时,上式=1)12(2+-=224- ………………8分18、(1)证明:∵四边形ABCD 是矩形∴AD ∥BC ∴∠PDO =∠QBO 又∵O 为BD 的中点∴OB =OD ………………2分 在△POD 和△QOB 中∠PDO =∠QBO OB =OD ∠POD =∠QOB∴△POD ≌△QOB (ASA) ………………3分 ∴OP =OQ ………………4分(2) PD =8-t ………………5分∵四边形PBQD 是菱形∴PD =BP =8-t ∵四边形ABCD 是矩形 ∴∠A =90°在∆Rt ABP 中,由勾股定理可得:AB 2+AP 2=BP 2 即 222)8(6t t -=+ ………………6分解得: 47=t ………………7分 即 运动时间为47秒时,四边形PBQD 是菱形 (8)分19、(1) 50 ………………1分(2) 14 ………………3分 (3) 43.2° ………………5分(4) 记利用手机上网时间在6~8小时的三名同学分别为A 1,A 2,A 3,记利用手机上网时间在8~10小时的两名同学分别为B 1,B 2,则随机选取2人,一共有A 1A 2,A 1A 3,A 1 B 1, A 1 B 2, A 2A 3, A 2 B 1, A 2 B 2, A 3 B 1, A 3 B 2, B 1 B 2,这10种选法,其中至少有1人利用手机上网时间在8~10小时的概率为710P = ……………8分20、解(1)当∠BEF =45°时,EF 最短,此时ED 最长∵∠DAC =∠BDF =30°, AD =BD =30 ∴BF =EF =21BD =153021=⨯ ………………2分 ∴DF =BD ·COS30°=3031523=⨯………………3分∴DE =DF-EF =15153-≈10.9(米) ………………4分 (2)过点D 作DP ⊥AC 于P在∆Rt DPA 中,DP =15302121=⨯=AD ∴PA =AD ·COS30°=3031523=⨯ ………………5分 在矩形DPGM中,MG =DP =15,DM =PG =15273+ ………………6分在∆Rt DMH 中,HM =DM ·tan 30°=33)27315(⨯+ =1539+ ………………7分 ∴GH =HM +MG =15+15+39≈45.6(米)∴即建筑物GH 的高约为45.6米 ………………8分21、解:(1)510-200=310(元)所以付款时应付310元 ………………1分 (2)P 与x 的之间的函数关系式为:xP 200=当400≤x <600时,P 随x 增大而减小 ………………3分 (3)设在甲、乙两家商场购买商品实付款分别为1y ,2y 元 则 101-=x y 0, x y 6.02= ………………5分 1y 1004.06.0)100(2-=--=-x x x y 1y 2y -<0可得 1004.0-x <0 即x <250即当200≤x <250时,1y <2y ,选择甲商场花钱较少 ………………6分当250=x 时,21y y =,选择甲、乙两商场花钱相同 ……………7分当250<x <400时,1y >2y ,选择乙商场花钱较少 ……………8分22、解(1)∵x <-1时,一次函数值在于反比例函数值,当x >-1时,一次函数值小于反比例函数值∴A 点的横坐标为-1 ∴A (-1,3) (2)分设一次函数的解析式为b kx y +=,因直线过A ,C 两点,则⎩⎨⎧=+=+-023b k b k 解得 ⎩⎨⎧=-=21b k ……………4分∴一次函数的解析式为 2+-=x y ……………5分(2)∵x a y =2(x >0)的图象与xy 31-=(x <0)的图象,关于y 轴对称 ∴xy 32=(x >0) ……………6分 ∵点B 是直线2+-=x y 与y 轴的交点∴B(0,2) ……………7分 设P(n ,n3) (n >2) S 2S S O BC O Q PB CQ P =-=四边形四边形 ∆B ……………8分∴21·)32(n +·22221=⨯⨯-n 即 25=n ……………9分∴ )5625( , P ……………10分23、解:(1)证明:∵∠ADB 与∠C 都是⌒AB 所对的圆周角∴∠ADB =∠C又∵∠ADB =∠E∴∠C =∠E ……………1分又∵DE ∥BC∴∠E =∠ABC ……………2分∴∠C =∠ABC∴AB =AC ……………3分(2)当D 运动到⌒BC 的中点时,DE 是⊙O 的切线,理由如下:∵⌒BD =⌒CD∴BD =CD , AB =AC∴AD 是BC 的垂直平分线 ……………4分 ∴AD 是直径且AD ⊥BC∴AD 过圆心O ……………5分又∵DE ∥BC∴AD ⊥ED∴DE 是⊙O 的切线 ……………6分(3)连接AO 并延长交BC 于F ,连接OB ,OC ∵AB =AC , OB =OC∴AO 垂直平分BC ……………7分∴BF =CF =21BC =3621=⨯ 在∆Rt ABF 中,由勾股定理可得 AF =4 设⊙O 的半径为r ,在∆Rt OBF 中,OB =r ,BF =3,OF =4-r ∴222)4(3r r -+=解得 r 258= ……………8分 ∴⊙O 的半径是825 ……………10分24、解:(1)2152,1n y x x ==--……………4分1A 759331(,),(,)12144496-- ……………12分。

相关文档
最新文档