八年级数学上册《变量》课件

合集下载

八年级数学上册 变量与函数(6)-函数图象的画法课件 新人教版

八年级数学上册 变量与函数(6)-函数图象的画法课件 新人教版
3、第一次休息时离家多远?
30 25 20
4、11:00到12:00他骑了多少千米?
5、他在9:00到10:00和10:00到 10:30的平均速度是多少? 7、他在停止前进后的返回途中,骑了多少
15
10 5 9 10 11 12 13 14 15 时间/小时
6、他在何时到何时停止前进并休息用午餐?
(1)该学生在第一次测验的成 绩是多少?
100 90 80
(2)哪次测验的成绩比上次高?70
60
(3)5次测验中,最高分是多 少?最低分多少?分别是第几 次考试的成绩?
50 40
30
20 10 0 1 2 3 4
5 X(次数)
2.某图书馆开展两种方式的租书业务:一种是使用会员 卡,另一种是使用租书卡.使用这两种卡租书,租书金额 y(元)与租书时间x(天)之间的关系如图所示. (1)当租书时间为多少时选择两种方式都一样?
8 4 3 14 24小时
(1)这一天的最高气温是多少?是在几时? (2)最低气温是多少?是在几时? (3)变化的趋势是什么?
下图所示的曲线表示某人骑自行车离家的距离与时间的关系, 骑车者九时离开家,十五时回到家,根据这个曲线图,回答 下列总问题。
1、到达离家最远的地方是什么时间?离家多远? 距离/千米 2、何时开始第一次休息?休息多长时间?
(1)这是一次多少米的赛跑?
(2)甲,乙两人跑完全程分别用了多少时间?
(3)甲,乙两人谁先达到终点?
(4)甲、乙在这次赛跑中的速度分别是多少?
s(米) 100 50 甲 0 12 12.5 t(秒) 乙
(2)当租书时间在什么范围内选择会员卡较便宜?
(3)当租书时间在什么范围内选择租书卡较便宜?

新人教版八年级上册数学课件

新人教版八年级上册数学课件

新人教版八年级上册数学课件注:直接按Ctrl键点击你所要下载的课件即可.可以长期关注11.1 全等三角形PPT课件.ppt11.2 三角形全等的判定PPT课件1.ppt11.2 三角形全等的判定PPT课件2.ppt11.2 三角形全等的判定(ASA AAS) PPT课件.ppt11.2 三角形全等的判定(SAS) PPT课件.ppt11.2 三角形全等的判定(SSS) PPT课件.ppt11.2 三角形全等的判定2PPT课件.ppt11.2 三角形全等的条件PPT课件.ppt11.3 角的平分线的性质PPT课件1.ppt11.3 角的平分线的性质PPT课件2.ppt12.1 轴对称 PPT课件1a.ppt12.1 轴对称 PPT课件2a.ppt12.1 轴对称 PPT课件3a.ppt12.2 作轴对称图形PPT课件1.ppt12.2 作轴对称图形PPT课件2.ppt12.2 作轴对称图形PPT课件3.ppt12.2 作轴对称图形PPT课件4.ppt12.2.1 作轴对称图形PPT课件.ppt 12.2.2 用坐标表示轴对称PPT课件.ppt 12.3.1 等腰三角形PPT课件1.ppt12.3.1 等腰三角形PPT课件2.ppt12.3.1 等腰三角形的判定课件.ppt 12.3.1 等腰三角形的性质课件1.ppt 12.3.1 等腰三角形的性质课件2.ppt 12.3.1 等腰三角形的性质课件3.ppt 12.3.2 等边三角形PPT课件1.ppt12.3.2 等边三角形PPT课件2.ppt12.3.2 等边三角形PPT课件3.ppt13.1 平方根PPT课件1.ppt13.1 平方根PPT课件2.ppt13.1 平方根PPT课件3.ppt13.1 平方根PPT课件4.ppt13.1 平方根PPT课件5.ppt13.1 算术平方根PPT课件.ppt13.1 习题讲解PPT课件.ppt13.2 立方根PPT课件1.ppt13.2 立方根PPT课件2.ppt13.2 立方根PPT课件3.ppt13.2 平方根、立方根习题课课件.ppt13.2 习题讲解PPT课件.ppt13.3 实数PPT课件1.ppt13.3 实数PPT课件2.ppt13.3 实数PPT课件3.ppt13.3 实数(实数的概念)课件.ppt13.3 实数习题讲解课件.ppt14.1 变量与函数的初步认识课件.ppt14.1.1 变量PPT课件.ppt14.1.2 变量与函数PPT课件1.ppt 14.1.2 变量与函数PPT课件2.ppt 14.1.2 函数PPT课件.ppt14.1.3 函数的图象PPT课件1.ppt 14.1.3 函数的图象PPT课件2.ppt 14.2 一次函数_待定系数法PPT课件.ppt 14.2 一次函数_复习课PPT课件.ppt 14.2 一次函数_实际问题PPT课件.ppt 14.2 一次函数_正比例函数PPT课件.ppt 14.2 一次函数的图象和性质课件.ppt 14.2.1正比例函数(第1课时)课件.ppt 14.2.1正比例函数(第2课时)课件.ppt 14.3 一次函数与一元一次方程(1课时).ppt 14.3 一次函数与一元一次方程(2课时).ppt14.3 一次函数与一元一次方程(3课时).ppt 14.3.1一次函数与一元一次方程课件.ppt 14.3.2一次函数与与一元一次不等式.ppt 14.3.3一次函数与二元一次方程组.ppt14.3.4用函数观点看方程(组)与不等式1.ppt 14.3.4用函数观点看方程(组)与不等式2.ppt14.3.4用函数观点看方程(组)与不等式3.ppt15.1 整式的乘法PPT课件1.ppt15.1 整式的乘法PPT课件2.ppt15.1 整式的乘法(1)PPT课件.ppt15.1 整式的乘法(2)PPT课件.ppt15.1.1 单项式乘以单项式PPT课件.ppt 15.1.2 单项式与多项式相乘课件1.ppt 15.1.2 单项式与多项式相乘课件2.ppt 15.1.3 多项式与多项式相乘课件.ppt15.1.4 同底数幂的乘法PPT课件.ppt15.2 乘法公式(第1课时)PPT课件.ppt 15.2 乘法公式(第2课时)PPT课件.ppt 15.2 乘法公式(第3课时)PPT课件.ppt 15.2 乘法公式_平方差公式课件.ppt15.2.1 平方差公式PPT课件.ppt15.2.2 完全平方公式PPT课件.ppt15.3 整式的除法(第1课时)课件.ppt 15.3 整式的除法(第2课时)课件.ppt 15.3.2 单项式除单项式PPT课件.ppt 15.3.2 整式的除法PPT课件.ppt15.4 因式分解.ppt15.4 因式分解(1).ppt15.4 因式分解(2)(平方差公式).ppt 15.4 因式分解(3)(完全平方公式法).ppt 15.4《因式分解》复习ppt课件.ppt。

《19.1 变量与函数》课件(含习题)

《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.

浙教版数学八年级上71《常量和变量》ppt课件

浙教版数学八年级上71《常量和变量》ppt课件

04 常量与变量的实际意义
生活中的常量与变量
总结词
生活中的常量与变量无处不在,它们影响着我们的日常生活和决策。
详细描述
在日常生活中,有些事物是固定不变的,如地球的周长、光速等,这些被称为常量。而有些事物则随 着时间、环境或其他因素的变化而变化,如温度、价格、距离等,这些被称为变量。了解和区分常量 与变量有助于我们更好地理解和预测事物的发展趋势。
常量与变量的转换
在编程中,有时需要将常量转换为变 量或将变量转换为常量。例如,在数 学运算中,有时需要将常数作为变量 参与运算,或者将变量表示的值赋给 常量。
转换过程可以通过赋值语句或函数调 用实现。例如,在Python中,可以使 用赋值语句将常量值赋给变量,如 `x = 5`;同样地,也可以将变量的值赋 给常量,如 `const_pi = 3.14159`。
常量和变量
contents
目录
• 常量和变量的定义 • 常量和变量的应用 • 常量和变量的关系 • 常量与变量的实际意义 • 常量与变量的总结与思考
01 常量和变量的定义
常量的定义和特性
定义
常量是在程序运行过程中其值不能被 改变的量。
特性
常量的值是固定的,一旦被定义后就 不能再被修改。常用于表示一些固定 不变的数值,如数学常数、物理常数 等。
的准确性和实用性至关重要。
05 常量与变量的总结与思考
常量与变量的意义和作用
常量
在程序运行过程中,其值不会改变的量。常量的作用是提供固定的值,以便在程序中进 行计算和比较。
变量
在程序运行过程中,其值可以改变的量。变量的作用是存储数据,以便在程序中进行修 改和引用。
常量与变量的关系和转换
要点一

浙教版八年级数学上册课件:5.2 函数 (共19张PPT)

浙教版八年级数学上册课件:5.2  函数 (共19张PPT)

辨一辨
下列各情景分别可以用哪一幅图来近似的刻画 (1)汽车紧急刹车(速度与时间的关系)( (2)人的身高变化(身高与年龄的关系)( ) D ) B
(3)跳高运动员跳跃横杆(高度与时间的关系)(
(4)一面冉冉上升的红旗(高度与时间的关系)(
C) ) A
y是 x 的函数吗? 下列图象关系中,
P( x ,y )
填写下表(精确到0.01):
助跑速度v(米/秒) 跳远的距离s(米)
7.5
8
8.5
4.78
5.44
6.14
如果v取定一个值,那么s相应的可以取几个值?
变量x 的值一经确定,变量y的值也随之唯一确定.
3.按照如图5-2的数值转 换器,请你任意输入一个 x的值,根据y与x的数量 关系求出相应的y的值.
y 0.53 x ,当x=40时,函数值为________ 为_____________ 21.2 ,
用40千瓦时电需付电费21.2元 它的实际意义是________________________________ 。
下表是一年内某城市月份与相应的平均气温。
月份m
1
2
5.1
3
4
5
6
7
8
9
10
11 12
2、跳远运动员按一定的起跳姿势,其跳远的距离s(米) 与助跑的速度v(米/秒)有关。根据经验,跳远的距离 s=0.085v2 (0<v<10.5) s是v的函数, v是自变量。
例:某市民用水费的价格是1.2元/立方米,小红准备收 取她所居住大楼各用户这个月的水费。设用水量为n立 方米,应付水费为m元。 m,n ,其中_____ n 的函数, (1)题中变量有________ m 是_____ n 自变量是_________ m=1.2n (2)m关于n的函数解析式为__________

北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件

北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件
① ② 一看式:y不能带平方或绝对值。 二看图:左右走时不回头,上下看时不. 判断下列各量之间的关系是否函数关系
① ② ③ ④ 圆的半径r=2 , 圆的面积S与半径r的关系。 长方形的宽一定时,其长与周长。 王成的年龄与身高。 汽车行驶过程中,路程一定,其速度与时间。
① ② 根据变化过程中变量的实际意义确定。 根据纯代数关系式确定:一看分母不为0;二看 根号内非负(开平方被开方数是非负数); 定义:对于自变量在可取值范围内每一个确定的 值a,函数有唯一确定的对应值,这个对应值称 为“当自变量等于a的函数值“。 函数值与自变量的取值是对应的、相互依赖的。 求法:有表查表;有式代入;有图看图。
2.
函数值:

② ③
【例4】做一做
1. 求当x=-2时,函数 y=x2-√x2的函数值. 3x 2. 函数y= —— 中,求自变量 x的取值范围。 √x-2 3. 当x取( 意义。 )时,函数y= ————有
√x -2 4x
五. (补充)函数的图象
1. 定义:把一个函数的自变量的每一个值与对应的函数值分别 做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对 应的点,所有这些点组成的图形叫做该函数的图象。 作法:列表(选值计算画表);描点(对应值为点的坐标); 连线(平滑的直线或曲线)。画出的是近似图象。 作用(学会看图象):
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 一看对应:(变量互求:有关系式用关系式。) 二看趋势:(如何变化) 三看范围:(最大最小局部整体区别看) 四看增减;(上坡下坡) 五看快慢:(陡快缓慢平不变) 六解方程:(组)不等式( 交点-扫描-投影法) 七比大小:(两函数,比大小,找交点,横分段,看变化,求得 解) 八出方案:(寻求生活中最优选择最佳方案) 九取特值:(结合字母常量的几何意义确定常量之间的关系)。 十设坐标:(设横表纵——永远不变的真理)。

人教版数学八年级上册14.1《变量与函数》说课稿

人教版数学八年级上册14.1《变量与函数》说课稿一. 教材分析人教版数学八年级上册14.1《变量与函数》是学生在学习了初中数学基础知识后,进一步深入研究数学的一个关键章节。

本章主要介绍变量的概念,函数的定义及表示方法,函数的性质等。

通过本章的学习,使学生能够理解变量与函数之间的关系,掌握函数的基本性质,培养学生解决实际问题的能力。

二. 学情分析学生在进入八年级后,已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。

但是,对于变量与函数这一部分内容,由于其抽象性较强,学生可能存在一定的理解难度。

因此,在教学过程中,需要针对学生的实际情况,采取适当的教学方法,帮助学生理解和掌握。

三. 说教学目标1.知识与技能:使学生理解变量与函数的概念,掌握函数的表示方法,了解函数的性质。

2.过程与方法:通过观察、分析和探究,培养学生发现和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:变量与函数的概念,函数的表示方法,函数的性质。

2.教学难点:函数的抽象理解,函数的图像分析。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、讨论法等,引导学生主动参与,积极思考。

2.教学手段:利用多媒体课件,生动形象地展示函数的图像,帮助学生理解和掌握。

六. 说教学过程1.导入:通过生活中的实例,引出变量与函数的概念,激发学生的学习兴趣。

2.新课导入:介绍变量的概念,引导学生理解变量之间的关系。

3.案例分析:通过具体的案例,讲解函数的定义和表示方法,使学生掌握函数的基本知识。

4.课堂互动:学生进行小组讨论,分享对函数性质的理解,培养学生的团队合作意识。

5.知识拓展:引导学生探究函数的图像特点,进一步理解函数的性质。

6.课堂练习:布置相关的练习题,检测学生对知识的掌握情况。

7.总结:对本节课的主要内容进行总结,强调重点知识点。

九年义务教育 八年级(上册)数学 《变量》

4、引导学生探索实际问题中的数量关系,增强数学建模意识,培养对学习数学的兴趣和积极参与数学活动的热情。
重点
对变量与常量的概念的理解
难点
实际问题中函数关系式的建立和对变量的准确判断
教学过程设计
问题与情境
师生行为
设计意图
活动1:创设情景
“万物皆变”
一个量随另一个量的变化而变化的现象
教师依次展示三个函数问题的实例;
课题:第十四章一次函数
§14.1.1变量
学校:库尔勒市和什力克乡中学年级:八年级(上)学科:数学
授课人:早拉古丽•艾买提




1、通过丰富的实例,使学生在具体环境中领悟学习函数的意义。
2、了解常量与变量的含义。能分清实例中的常量与变量。
3、通过实际问题的解决,引导学生经历从具体到抽象认识函数的过程,发展符号感。
1.确定事物变化中的变量与常量.
2.尝试运算寻求变量间存在的规律.
3.利用学过的有关知识确定关系式.
2、对自己说,你有什么收获?
对同学说,你有什么温馨提示?
对老师说,你有什么疑惑?
作业:
必做题
1.n边形的内角和公式y=(n-2)180°其中变量是。
2.书上P106第1,2题(只求关系式,常量与变量)
③一辆汽车行驶50千米的路程,写出行驶速度V千米/小时与行驶时间t(小时)之间的关系式。
2、某地某天气温变化图
图中的A点表示的是什么?B点呢?
这一天的最高温度是多少?是在几时达到的?最低温度呢
在什么时间范围内温度在上升?在什么时间范围内温度Байду номын сангаас下降?
活动4:比一比,谁最棒
1、在计算器上按照下面的程序进行操作:

苏科版八年级上册数学 第6章 变量


感悟新知
(1)能形象直观地表达两各变量之间的关系;(2)观察 图象能得到两个变量之间的对应值,但往往是不完
知2-讲
全准确.
表示方法 说明
优缺点
用一个关系 (1)能准确地反映两个变量在整
关系式法 式(等式)表 个变化过程中的关系;(2)有些 示两个变量 实际问题不一定能用关系式表
ห้องสมุดไป่ตู้
列表法
之间的关系
示出来.
A.y=0.1x
C
B.y=0.2+0.1x
C.y=0.2+0.1(x-3)
D.y=0.1x+0.5
课堂小结
变量
判断一个量是常量还是变量的方法: 看这个量所在的变化过程中.该量的值是否发生 改变(或者说是否会取不同的数值).其中在变化过程 中,数值始终不变的量是常量,可以取不同数值的 量是变量.
课后作业
(2)设圆柱的底面半径R不变,请写圆柱的体积V与 圆柱的高h的关系式,并指出关系式中的变量与 常量.
感悟新知
解析:(1)常量是在整个变化过程中保持不变的量,千 知2-练 万不能认为式中出现的字母就是变量,如π,它是常 量,而不是变量. (2)判断常量与变量的标准是看这个量是否保持不变. (3)常量、变量与字母的指数没有关系,如(2)中不能 说常量是R2
解:
感悟新知
归纳
知1-讲
判断一个量是常量还是变量的方法: 看在这个量所在的变化过程中,该量的值是否 发生改变 (或者说是否会取不同的数值),其中在变 化过程中不变的量是常量, 可以取不同数值的量是 变量.
感悟新知
1
指出下列问题中的变量和常量: (1)某市的自来水价为4元/t.现要抽取若干户居民调查水知费1-练
第6章一次函数

八年级上册数学ppt课件


分式的混合运算和应用
总结词
掌握分式的混合运算法则,能够正确进 行分式的混合运算,解决实际问题。
VS
详细描述
介绍分式的混合运算法则,包括分式的乘 方、通分、约分等,通过例子演示分式的 混合运算过程,让学生理解分式的混合运 算法则和应用。同时,通过实际问题的解 决,让学生理解分式运算的应用价值。
05
奇偶性
函数的奇偶性是指函数是 否具有奇偶性,即函数图 像是否关于原点对称。
凹凸性
函数的凹凸性是指函数图 像是凹形还是凸形。
02
第二章:一元一次不等式与不 等式组
一元一次不等式的概念与解法
总结词:掌握基础 总结词:掌握解法
详细描述:首先需要了解一元一次不 等式的定义,明确一元一次不等式的 形式及其特点,例如一元一次不等式 的定义域和取值范围等。
详细描述
因式分解是指将一个多项式化为几个整式的积的形式,它是数学中重要的恒等 变形,广泛应用于解方程、求根式值等问题的解决中。
因式分解的方法与技巧
总结词
多种方法,需掌握技巧
详细描述
因式分解的方法有提取公因式法、公式法、分组分解法、十字相乘法等,技巧包括拆项、添项、配方等,需要学 生逐步学习并熟练掌握。
介绍分式的基本性质,包括约分、通 分的定义和操作方法,通过例子演示 约分、通分的操作过程,让学生理解 约分、通分的意义和作用。
分式的加减乘除运算
总结词
掌握分式的加减乘除运算法则,能够正确进行分式的加减乘 除运算。
详细描述
介绍分式的加减乘除运算法则,包括同分母分式加减法、异 分母分式加减法、分式的乘除法等,通过例子演示分式的加 减乘除运算过程,让学生理解分式的加减乘除运算法则和应 用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L=10+0.5x
八年级 数学
第十四章 函数
14.1 变量与函数
14.1.1 变

问题四
用10 m 长的绳子围成长方形,长方形的长为 3m时面积为多少? 当长方形的长为3时,面积 =3×(10-2×3)÷2 = 6 各组讨论:改变长方形的长,观察长方形的面积怎样变化? 设长方形的边长为 x m,面积为S m2,怎样用含x的式子表示 s ?
4

八年级 数学
第十四章 函数
14.1 变量与函数
14.1.1 变

快速抢答
1、如图1正方形的周长与边长为x的关系式为 C= 4x C、X 常量是: 4 变量是: ;
6a2 , 2、如图2正方体的棱长为a,表面积S=
体积V=
a3
.xa图1源自图2八年级 数学第十四章 函数
14.1 变量与函数
14.1.1 变
八年级 数学
第 第十 四章
函数
14.1 变量与函数
14.1.1 变

探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6 (2) y= x
(3) y= 4X2+5x-7
(4) S =∏ r2
解:(1)5和-6是常量,x和y是变量。
(2)6是常量,x、y是变量。
(3)4、5、-7是常量,x、y是变量。 (4)兀是常量,s、r是变量。

小结:谈谈这节课你有什么收获?
作业:
1.在一个变化过程中,数值发生变化的量称为变量, 数 • 值始终保持不变的量称为常量. 2.常量和变量是两个对立而又统一的量.它们是对 “某一过程”而言的,• 相对的,“某一过程”的条件 是 不同,常量和变量就可能不同.
1、购买一些铅笔,单价为0.2元/枝,用铅笔数x,表示 总价y元,并指出哪些是常量?哪些是变量? 2、设路程为 s (km),速度为v(km/h)时间为 t(h),指出下列各式中的变量与常量。 (1) v = s/6 (2) t = 50/v (3) S =15t+t2
14.1.1 变

问题二
每张电影票的售价为10元,如果早场售出票150张, 日场售出205张,晚场售出310张,三场电影票的票房 收入各多少元? 早场票房收入 = 10×150 = 1500 (元) 日场票房收入 = 10×205 = 2050 (元) 晚场票房收入 = 10×310 = 3100 (元) 请说明道理: 票房收入 = 售价×售票张数
S=x(10-2x)÷2 S=
1 2
x(10-2x)
八年级 数学
第十四章 函数
14.1 变量与函数
14.1.1 变

剖析
S = 60t
S=
y = 10x
1 2
x(10-2x)
L=10+0.5x
变量:在一个变化过程中,数值发生变化的量为变量。
常量:在一个变化过程中,数值始终不变的量为常量。 请指出上面各个变化过程中的常量、变量。
八年级 数学
第十四章 函数
14.1 变量与函数
14.1.1 变

问题一
汽车以60千米/时的速度匀速行驶,行驶里程 为 s 千米,行驶时间为 t 小时,填下面的表:
60
请说明你的道理
120
180
240
300
路程 = 速度×时间
试用含的 t 式子表示 s
S = 60t
八年级 数学
第十四章 函数
14.1 变量与函数
巩固练习
• 填空: • 1、计划购买50元的乒乓球,所能购买的总数 • n(个)与单价 a(元)的关系式为 n= 50/a • 其中的变量是 n、a ,常量是 。
50

• 2、某位教师为学生购买数学辅导书,书的单价是1元, • 则总金额y(元)与学生数n(个)的关系式是 y=4n 其中的变量是 y、n 。常是 。
若设一场电影售出票 x 张,票房收入为 y 元, 怎样用含 x 的式子表示 y ?
y = 10x
八年级 数学
第十四章 函数
14.1 变量与函数
14.1.1 变

问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm, 怎样用含重物质量m(单位:kg)的式子表示受力后的 弹簧长度 L(单位:cm)? 分析:挂重1千克时弹簧长=10+0.5×1=10.5(cm) 挂重2千克时弹簧长=10+0.5×2=11(cm) 挂重3千克时弹簧长=10+0.5×3=11.5(cm) 挂重x千克时弹簧长=10+0.5×x (cm)
相关文档
最新文档