人教版七年级数学上册第二章整式复习试题二(含答案) (1)
人教版数学七年级上册第二章整式的加减单元检测卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b2.去括号后结果错误的是( )A (a+2b)=a+2b B. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-14.在去括号时,下列各式错误的是( )A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n5.若多项式32281x x x-+-与多项式323253x mx x+-+的差不含二次项,则m等于()A 2 B. -2 C. 4 D. -46.若多项式11x5+16x2-1与多项式3x3+4mx2-15x+13的和不含二次项,则m等于( )A 2 B. -2 C. 4 D. -47.一个多项式加上x2y-3xy2得2x2y-xy2,则这个多项式是()A 3x2y-4xy2 B. x2y-4xy2 C. x2y+2xy2 D. -x2y-2xy28.单项式2x4-m y与6xy2的次数相同,则m的值为()A. 1B. 2C. 3D. 4二、填空题9.单项式−32πab c3的系数是_____,次数是_____.10.系数为-5,只含字母m、n的三次单项式有_____个,它们是______.11.单项式−22x y3的系数与次数之积为___________.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.13.化简:-[-(a+b)]-[-(a-b)]=_____.14.已知单项式6x2y4与-3a2b m+2的次数相同,则m2-2m的值为_____.15.观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是_____.16.化简:3(a-13b)-2(a+12b)=_____.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?答案与解析一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b【答案】A【解析】试题分析:根据有理数a、b在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a-b<0则=(a+b)+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值2.去括号后结果错误的是( )A. (a+2b)=a+2bB. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b【答案】D【解析】【分析】根据去括号法则判断:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】A.(a+2b)=a+2b,故本选项正确;B.-(x-y+z)=-x+y-z,故本选项正确;C.2(3m-n)=6m-2n,故本选项正确;D.-(a-b)=-a+b,故本选项错误;故选D.【点睛】本题考查了去括号的法则,解题的关键是牢记法则,并能熟练运用,去括号时特别要注意符号的变化.3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-1 【答案】A【解析】试题分析:利用同类项的定义求解即可.解:∵单项式﹣x 2a ﹣1y 4与2xy 4是同类项,∴2a ﹣1=1,解得a=1,∴(1﹣a)2015=0,故选A .考点:同类项.4.在去括号时,下列各式错误的是( )A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n 【答案】D【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A 、原式=(m+n )-m=n ,计算正确,故本选项错误;B 、原式=m-2m-3n=-m-3n ,计算正确,故本选项错误;C 、原式=-(4m-n )-2n=-4m+n-2n=-4m-n ,计算正确,故本选项错误;D 、原式=m-m+n=n ,计算错误,故本选项正确;故选D .【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A. 2B. -2C. 4D. -4 【答案】D【解析】【分析】用减法列式,即()32281x x x -+--()323253x mx x +-+,去括号合并同类项后,令二次项的系数等于0,即可求出m 的值.【详解】()32281x x x -+--(323253)x mx x +-+ =32322813253x x x x mx x -+---+-=()328264x m x x -+--+- ∵差不含二次项,∴820m --=,∴m =-4.故选D.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x 的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.6.若多项式11x 5+16x 2-1与多项式3x 3+4mx 2-15x+13的和不含二次项,则m 等于( )A. 2B. -2C. 4D. -4【答案】D【解析】【分析】不含二次项,说明二次项的系数为0.【详解】(11x 5+16x 2-1)+(3x 3+4mx 2-15x+13)= 11x 5+16x 2-1+3x 3+4mx 2-15x+13= 11x 5+3x 3+(16+4m )x 2-15x+13,因为上式不含二次项,所以16+4m=0,解得m=-4,故选D .【点睛】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m 的方程是解答此题的关键.7.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( )A. 3x 2y-4xy 2B. x 2y-4xy 2C. x 2y+2xy 2D. -x 2y-2xy 2 【答案】C【解析】试题分析:列代数式(2x 2y-xy 2)-(x 2y-3xy 2),然后去括号、合并同类项即可化简.即(2x 2y-xy 2)-(x 2y-3xy 2)=2x 2y-xy 2-x 2y+3xy 2=x 2y+2xy 2.故选C .考点:去括号,合并同类项8.单项式2x 4-m y 与6xy 2的次数相同,则m 的值为( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据两单项式的次数相同列出关于m 的方程,求出m 的值即可.【详解】∵单项式2x 4−m y 与6xy 2的次数相同,∴4−m=1,∴m=3,故答案选C.【点睛】本题考查了单项式,解题的关键是熟练的掌握单项式的相关知识点. 二、填空题9.单项式−32πab c 3的系数是_____,次数是_____. 【答案】3π-,6. 【解析】试题分析:∵单项式323ab c π-数字因数是3π-,所有字母指数的和=1+3+2=6,∴此单项式的系数是3π-,次数是6.故答案为3π-,6. 考点:单项式.10.系数为-5,只含字母m 、n 的三次单项式有_____个,它们是______.【答案】两个;-5m 2n 或-5mn 2.【解析】试题分析:单项式中前面的数字因数是单项式的系数 ,单项式中所有字母的指数和是单项式的次数,因此系数为-5,只含字母m 、n 的三次单项式可以是-5m 2n 或-5mn 2.共有两个.考点:单项式的系数与次数.11.单项式−22x y3的系数与次数之积为___________.【答案】-2【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.【详解】解:根据单项式定义得:单项式的系数是﹣23,次数是3;其系数与次数之积为﹣23×3=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.【答案】-2c【解析】【分析】根据数轴得出a<b<0<c,去掉绝对值符号,最后合并即可.【详解】∵从数轴可知:a<b<0<c,∴|a-b|+|a+b|-2|c-a|=b-a-a-b-2(c-a)=b-a-a-b-2c+2a=-2c.故答案为-2c.【点睛】本题考查了整式的加减,绝对值,数轴的应用,解此题的关键是能正确去掉绝对值符号.13.化简:-[-(a+b)]-[-(a-b)]=_____.【答案】2a【解析】【分析】先去小括号,再去中括号,最后合并整式中的同类项即可.【详解】-[-(a+b)]-[-(a-b)]=-[-a-b]-[- a+b]=a+b+a-b=2a.故答案为2a【点睛】本题考查了整式的加减、去括号法则,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.也考查了数轴与绝对值.14.已知单项式6x 2y 4与-3a 2b m+2次数相同,则m 2-2m 的值为_____.【答案】0【解析】分析】根据两个单项式的次数相同可得2+4=2+m+2,再解即可得到m 的值,进而可得答案.【详解】由题意得:2+4=2+m+2,解得:m=2,则m 2-2m=0.故答案为0.【点睛】此题主要考查了单项式,关键是掌握一个单项式中所有字母的指数的和叫做单项式的次数. 15.观察下列单项式:3a 2、5a 5、7a 10、9a 17、11a 26…它们是按一定规律排列的,那么这列式子的第n 个单项式是_____.【答案】(2n+1)21na + 【解析】【分析】先找出前3项的规律,然后通过后面的几项进行验证,找到规律得到答案即可.【详解】3a 2=(2×1+1)211a +, 5a 5=(2×2+1)221a +,7a 10=(2×3+1)231a +,… 第n 个单项式是:(2n+1)21na +, 故答案为(2n+1)21n a +.【点睛】本题考查了规律题——数字的变化类,根据前几项发现规律,通过观察发现每一项的系数与次数都与该项的序数有关是解题的关键.16.化简:3(a-13b)-2(a+12b)=_____. 【答案】a-2b【解析】【分析】先去括号,再合并同类项即可.【详解】原式=3a-b-2a-b= a-2b.故答案为a-2b【点睛】此题考查了整式的加减,即去括号,合并同类项,注意去括号时各项符号的变化.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.【答案】(1)各项的系数分别为:-5,14-,13;各项的指数分别为:21a+, ,;(2)2a=.【解析】试题分析:(1)根据多项式次数、系数的定义即可得出答案;(2)根据次数是7,可得出关于a的方程,解出即可.试题解析:解:(1)-5x2a+l y2的系数是-5,次数是2a+3;14-x3y3的系数是14-,次数是6;13x4y的系数是13,次数是5;(2)因为多项式的次数是7次,可知-5x2a+1y2的次数是7, 即2a+1+2=7,解这个方程,得a=2.考点:多项式.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示) 【答案】乙旅行社收费比甲旅行社贵0.2a元.【解析】【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴3230 aba⎧⎪-⎨⎪-≠⎩==,解得:32 ab-⎧⎨-⎩==,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.【答案】k=3.【解析】【分析】先合并同类项得2x2+(k-3)xy-3y2-8,再根据题意得到k-3=0,然后解方程即可.【详解】合并同类项得2x2+(k-3)xy-3y2-8,因代数式2x2+kxy-3y2-3xy-8不含xy项,所以k-3=0,所以k=3.【点睛】本题考查了合并同类项:合并同类项就是把同类项的系数相加减,字母和字母的指数不变.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.【答案】a=0.【解析】【分析】根据题意得出3A-6B的表达式,再令x的系数为0即可.【详解】3A-6B=3(2x2+3ax-2x-1)-6(x2-x+1)=6x2+9ax-6x-3-6x2+6x-6=9ax-9,因为3A-6B的值与x取值无关,所以9a=0,所以a=0.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?【答案】(1)256x9y;(2)(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【解析】试题分析:(1)通过观察可得:n为偶数时,单项式的系数为负数,x的指数为n时,系数的绝对值是2n-1,由此即可解答本题;(2)先根据已知确定出第n个单项式,然后再根据单项式的系数是指单项式的数字因数,次数是所有字母指数的和解答即可.试题解析:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y;(2)∵n为偶数时,单项式的系数为负数,x的指数为n时,系数为2n﹣1,单项式为-2n﹣1x n y,当n为奇数时的单项式为2n﹣1x n y,所以第n个单项式为(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【点睛】本题考查的是单项式,根据题意找出各式子的规律是解答此题的关键.23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.【答案】x=±3,y=-2.【解析】【分析】直接利用同类项法则得出|x|=3,|y|=2,y-2≠0,求出即可.【详解】因为5a|x|b2与(y-2)a3b|y|是同类项,所以|x|=3,|y|=2,y-2≠0,所以x=±3,y=-2.【点睛】此题主要考查了同类项,正确把握定义是解题关键.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?【答案】共有(105x-45)人,需付(276x-126)元的租车费用.【解析】【分析】需租用x辆60座的大客车,再租用比大客车少1辆的小客车,所以共有60x+45(x-1)人,再由大客车的租金为 150元,租一辆45座的小客车的租金为126元可得出租车费用.【详解】由题意得60x+45(x-1)=(105x-45)人;150x+126(x-1)=(276x-126)(元).答:实验中学七年级师生共有(105x-45)人,需付(276x-126)元的租车费用.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。
人教版七年级数学第二章整式练习题(含答案)

七年级数学第二章整式习题(含答案)一.解答题(共26小题)1.化简:x +(5x ﹣3y )﹣(x ﹣2y ).2.化简下列各式:(1)3xy ﹣6xy +2xy ;(2)2a +(4a 2﹣1)﹣(2a ﹣3).3.计算:14a 2b ﹣0.4ab 2−12a 2b +25ab 2.4.计算:2(x 2﹣2x +5)﹣3(2x 2﹣5).5.计算:(1)(﹣1)×(﹣4)+(﹣9)÷3×13+(﹣2);(2)﹣12022+(﹣2)3×(−12)﹣|﹣1﹣5|;(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3;(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].6.先化简,再求值:5x2﹣2(y2+4xy)+(2y2﹣5x2),其中x=−18,y=1.7.先化简,再求值:﹣3a2+3b+8﹣10b+5a2,其中a=﹣5,b=﹣1.8.先化简,再求值:2x2+4y2+(2y2﹣3x2)﹣2(y2﹣2x2),其中x=﹣1,y=1 2.9.先化简,再求值:(4a+3a2﹣3﹣3a3)﹣(﹣a+4a3),其中a=﹣1.10.先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+4x2],其中x=﹣2.11.先化简,再求值:(3x2y﹣5xy)﹣[x2y﹣2(xy﹣x2y)],其中(x+1)2+|y−13|=0.12.代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.13.已知:|x+1|+(y﹣5)2=0,求代数式3x2y﹣[5xy2﹣2(4xy2﹣3)+2x2y]的值.14.已知|a−2|+(b+12)2=0,求a2b﹣(3ab2﹣a2b)+2(2ab2﹣a2b)的值.15.先化简,再求值:3x2y−[2xy2−2(xy−32x2y)]+3xy2−xy,其中x,y满足(x−3)2+|y+13|=0.16.先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(−12a2+4ab−32b2),其中a=3,b=﹣2.17.先化简再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中|a+2|+|b﹣3|=0.18.先化简,再求值:3a2b+2(ab−32a2b)﹣[2ab2﹣(3ab2﹣ab)],其中a,b满足(a﹣2)2+|b+12|=0.19.已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5(1)求A﹣3B;(2)若(x+y−45)2+|xy+1|=0,求A﹣3B的值;(3)若A﹣3B的值与y的取值无关,求x的值.20.已知A=3b2﹣2a2+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.21.当多项式﹣5x3﹣(m﹣2)x2﹣2x+6x2+(n﹣3)x﹣1不含二次项和一次项时,求m、n的值.22.若12a 6+x b 3y 与3a 4b 6是同类项, 试求3y 3﹣4x 3y ﹣4y 3+2x 3y 的值.23.已知:A =3x 2+2xy +3y ﹣1,B =3x 2﹣3xy .(1)计算:A +B ;(2)若A +B 的值与y 的取值无关,求x 的值.24.已知A =3x 2+xy +y ,B =2x 2﹣xy +2y .(1)化简2A ﹣3B .25.已知关于x的多项式mx3﹣2x2+3x﹣2x3+5x2﹣nx不含三次项和一次项,求m n的值.26.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n的值.整式练习题1参考答案与试题解析一.解答题(共26小题)1.化简:x +(5x ﹣3y )﹣(x ﹣2y ).【解答】解:原式=x +5x ﹣x ﹣3y +2y=5x ﹣y .2.化简下列各式:(1)3xy ﹣6xy +2xy ;(2)2a +(4a 2﹣1)﹣(2a ﹣3).【解答】解:(1)原式=(3﹣6+2)xy=﹣xy ;(2)原式=2a +4a 2﹣1﹣2a +3=4a 2+2.3.计算:14a 2b ﹣0.4ab 2−12a 2b +25ab 2. 【解答】解:原式=(14a 2b −12a 2b )+(﹣0.4ab 2+25ab 2) =−14a 2b .4.计算:2(x 2﹣2x +5)﹣3(2x 2﹣5).【解答】解:2(x 2﹣2x +5)﹣3(2x 2﹣5)=2x 2﹣4x +10﹣6x 2+15=﹣4x 2﹣4x +25.5.计算:(1)(﹣1)×(﹣4)+(﹣9)÷3×13+(﹣2);(2)﹣12022+(﹣2)3×(−12)﹣|﹣1﹣5|;(3)4a 3﹣3a 2b +5ab 2+a 2b ﹣5ab 2﹣3a 3;(4)5x 2﹣7x ﹣[3x 2﹣2(﹣x 2+4x ﹣1)].【解答】解:(1)(﹣1)×(﹣4)+(﹣9)÷3×13+(﹣2) =4﹣3×13−2=4﹣1﹣2(2)﹣12022+(﹣2)3×(−12)﹣|﹣1﹣5| =﹣1﹣8×(−12)﹣6=﹣1+4﹣6=﹣3;(3)4a 3﹣3a 2b +5ab 2+a 2b ﹣5ab 2﹣3a 3=(4﹣3)a 3+(﹣3+1)a 2b +(5﹣5)ab 2 =a 3﹣2a 2b ;(4)5x 2﹣7x ﹣[3x 2﹣2(﹣x 2+4x ﹣1)]=5x 2﹣7x ﹣(3x 2+2x 2﹣8x +2)=5x 2﹣7x ﹣3x 2﹣2x 2+8x ﹣2=x ﹣2.6.先化简,再求值:5x 2﹣2(y 2+4xy )+(2y 2﹣5x 2),其中x =−18,y =1.【解答】解:原式=5x 2﹣2y 2﹣8xy +2y 2﹣5x 2 =﹣8xy ,当x =−18,y =1时,原式=﹣8×(−18)×1=1.7.先化简,再求值:﹣3a 2+3b +8﹣10b +5a 2,其中a =﹣5,b =﹣1.【解答】解:原式=2a 2﹣7b +8,当a =﹣5,b =﹣1时,原式=2×25+7+8=65.8.先化简,再求值:2x 2+4y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =12.【解答】解:原式=2x 2+4y 2+2y 2﹣3x 2﹣2 y 2+4x 2 =3x 2+4y 2;当x =﹣1,y =12时,原式=3×(﹣1)2+4×(12)2 =3+1=4.233=5a+3a2﹣7a3﹣3,当a=﹣1时,原式=5×(﹣1)+3×1﹣7×(﹣1)﹣3=﹣5+3+7﹣3=2.10.先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+4x2],其中x=﹣2.【解答】解:原式=5x2﹣(3x﹣4x+6+4x2)=5x2+x﹣6﹣4x2=x2+x﹣6,当x=﹣2时,原式=(﹣2)2+(﹣2)﹣6=4﹣2﹣6=﹣4.11.先化简,再求值:(3x2y﹣5xy)﹣[x2y﹣2(xy﹣x2y)],其中(x+1)2+|y−13|=0.【解答】解:原式=3x2y﹣5xy﹣(x2y﹣2xy+2x2y)=3x2y﹣5xy﹣x2y+2xy﹣2x2y=﹣3xy,∵(x+1)2+|y−13|=0,且(x+1)2≥0,|y−13|≥0,∴x+1=0,y−13=0,解得:x=﹣1,y=1 3,∴原式=﹣3xy=﹣3×(﹣1)×1 3=1.12.代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【解答】解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.13.已知:|x+1|+(y﹣5)2=0,求代数式3x2y﹣[5xy2﹣2(4xy2﹣3)+2x2y]的值.【解答】解:∵|x+1|+(y﹣5)2=0,∴x=﹣1,y=5,∴原式=3x2y﹣5xy2+8xy2﹣6﹣2x2y=x2y+3xy2﹣6,当x=﹣1,y=5时,原式=(﹣1)2×5+3×(﹣1)×52﹣6=5﹣75﹣6=﹣76.14.已知|a−2|+(b+12)2=0,求a2b﹣(3ab2﹣a2b)+2(2ab2﹣a2b)的值.【解答】解:原式=a2b﹣3ab2+a2b+4ab2﹣2a2b =ab2,∵|a﹣2|+(b+12)2=0,∴a=2,b=−1 2,∴原式=2×1 4=12.15.先化简,再求值:3x2y−[2xy2−2(xy−32x2y)]+3xy2−xy,其中x,y满足(x−3)2+|y+13|=0.【解答】解:3x2y−[2xy2−2(xy−32x2y)]+3xy2−xy=3x2y﹣(2xy2﹣2xy+3x2y)+3xy2﹣xy =3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,因为x,y满足(x−3)2+|y+13|=0,所以x﹣3=0且y+13=0,所以x=3,y=−1 3,所以原式=xy2+xy=3×19+3×(−13)=−23.16.先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(−12a2+4ab−32b2),其中a=3,b=﹣2.【解答】解:(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵(x+2)2+|y﹣1|=0,(x+2)2≥0,|y﹣1|≥0,∴x+2=0,y﹣1=0.∴x=﹣2,y=1.当x=﹣2,y=1时,原式=﹣6×(﹣2)×1=12.(2)(﹣a2+3ab﹣2b)﹣2(−12a2+4ab−32b2)=﹣a2+3ab﹣2b+a2﹣8ab+3b2=﹣5ab+3b2﹣2b,当a=3,b=﹣2时,原式=﹣5×3×(﹣2)+3×(﹣2)2﹣2×(﹣2)=30+3×4+4=30+12+4=46.17.先化简再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中|a+2|+|b﹣3|=0.【解答】解:原式=15a2b﹣5ab2﹣12a2b+4ab2=3a2b﹣ab2,∵|a+2|+|b﹣3|=0,∴a=﹣2,b=3,∴原式=3×(﹣2)2×3﹣(﹣2)×32=3×4×3+2×9=36+18=54.18.先化简,再求值:3a2b+2(ab−32a2b)﹣[2ab2﹣(3ab2﹣ab)],其中a,b满足(a﹣2)2+|b+12|=0.【解答】解:3a2b+2(ab−32a2b)﹣[2ab2﹣(3ab2﹣ab)]=3a2b+2ab﹣3a2b﹣(2ab2﹣3ab2+ab)=3a2b+2ab﹣3a2b﹣2ab2+3ab2﹣ab=ab2+ab.∵(a﹣2)2+|b+12|=0,(a﹣2)2≥0,|b+12|≥0,∴a﹣2=0,b+12=0.∴a=2,b=−1 2.当a=2,b=−12时,原式=2×(−12)2+2×(−12)=2×14−1=12−1=−12.19.已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5(1)求A﹣3B;(2)若(x+y−45)2+|xy+1|=0,求A﹣3B的值;(3)若A﹣3B的值与y的取值无关,求x的值.【解答】解:(1)原式=3x2﹣x+2y﹣4xy﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵(x+y−45)2+|xy+1|=0,(x+y−45)2≥0,|xy+1|≥0,∴x+y−45=0,xy+1=0,∴x+y=45,xy=﹣1,∴原式=5(x+y)﹣7xy+15=5×45−7×(﹣1)+15=4+7+15=26;(3)由(1)知:A﹣3B=5x+5y﹣7xy+15=5x+(5﹣7x)y+15,∵A ﹣3B 的值与y 的取值无关,∴5﹣7x =0,解得:x =57.∴若A ﹣3B 的值与y 的取值无关,x 的值为57. 20.已知A =3b 2﹣2a 2+5ab ,B =4ab +2b 2﹣a 2.(1)化简:2A ﹣3B ;(2)当a =﹣1,b =2时,求2A ﹣3B 的值.【解答】解:(1)∵A =3b 2﹣2a 2+5ab ,B =4ab +2b 2﹣a 2,∴2A ﹣3B=2(3b 2﹣2a 2+5ab )﹣3(4ab +2b 2﹣a 2)=6b 2﹣4a 2+10ab ﹣12ab ﹣6b 2+3a 2=﹣a 2﹣2ab ;(2)当a =﹣1,b =2时,2A ﹣3B=﹣a 2﹣2ab=﹣(﹣1)2﹣2×(﹣1)×2=﹣1+4=3.21.当多项式﹣5x 3﹣(m ﹣2)x 2﹣2x +6x 2+(n ﹣3)x ﹣1不含二次项和一次项时,求m 、n 的值.【解答】解:﹣5x 3﹣(m ﹣2)x 2﹣2x +6x 2+(n ﹣3)x ﹣1=﹣5x 3﹣(8﹣m )x 2+(n ﹣5)x ﹣1, ∵多项式﹣5x 3﹣(m ﹣2)x 2﹣2x +6x 2+(n ﹣3)x ﹣1不含二次项和一次项,∴8﹣m =0,n ﹣5=0,解得m =8,n =5.22.若12a 6+x b 3y 与3a 4b 6是同类项,试求3y 3﹣4x 3y ﹣4y 3+2x 3y 的值. 【解答】解:∵12a 6+x b 3y 与3a 4b 6是同类项, ∴6+x =4,3y =6,解得:x =﹣2,y =2,3y 3﹣4x 3y ﹣4y 3+2x 3y=(3y 3﹣4y 3)+(﹣4x 3y +2x 3y )=﹣y 3﹣2x 3y ,当x =﹣2,y =2,原式=﹣23﹣2×(﹣2)3×2=﹣8+32=24.23.已知:A=3x2+2xy+3y﹣1,B=3x2﹣3xy.(1)计算:A+B;(2)若A+B的值与y的取值无关,求x的值.【解答】解:(1)A+B=3x2+2xy+3y﹣1+3x2﹣3xy=6x2﹣xy+3y﹣1.(2)A+B=6x2+(3﹣x)y﹣1,∵A+B的值与y的取值无关,∴3﹣x=0,解得x=3,∴x的值为3.24.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.【解答】解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.25.已知关于x的多项式mx3﹣2x2+3x﹣2x3+5x2﹣nx不含三次项和一次项,求m n的值.【解答】解:mx3﹣2x2+3x﹣2x3+5x2﹣nx=(m﹣2)x3+3x2+(3﹣n)x,∵关于x的多项式mx3﹣2x2+3x﹣2x3+5x2﹣nx不含三次项和一次项,∴m﹣2=0,3﹣n=0,∴m=2,n=3,∴m n=23=8.26.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n的值.【解答】解:∵关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,∴m+5=0,n﹣1=0,∴m=﹣5,n=1.。
人教版 七年级数学 上册 第二章 2.1整式 (有答案)有答案

12.1 整式【基础知识梳理】1、代数式的有关概念代数式:用基本的运算符号(包括加、减、乘、除、乘方、开方)把数、表示数的字母连结而成的式子叫做代数式,单独一个数或一个字母也是代数式。
说明:代数式书写时需注意:(1)数与字母、字母与字母相乘时乘号省略不写,数字要写在字母前面,如12ab ;数字因数是1或-1时,“1”省略不写,如-mn ;(2)带分数与字母相乘时要化成假分数,如:ab 211要写成ab 23的形式;(3)除号要改写成分数线,如:a ÷b 要写成b a ;(4)书写单位时要把代数式用括号括起来,如(12ab +2R )平方米。
代数式的系数:在代数式中,每一项字母前的数字因数叫做这一项的系数。
2、整式的有关概念(1)单项式的定义:都是数与字母的积的代数式叫做单项式.说明:判断一个代数式是不是单项式,主要是根据代数式中数字和字母间是否都是乘法运算关系.如yx 就不是一个单项式,因为2y 与x 之间是除法运算.但是,12ab 是单项式,因为12是一个数.a 是一个单项式,因为ab 以看作是a ·b 特别地,单独的一个数或单独的一个字母也都是单项式,如-3,0,12,x ,x2等都是单项式(2)单项式次数:一个单项式中,所有字母的指数和叫做这个单项式的次数. 说明:单项式的次数,是指这个单项式中将所有字母指数相加得到的和.如单项式3x 2、2xy 、x 2y 、12x 的次数分别是2、2、3、1.特别地,单独的一个数字,如3,-9等,可以当做0次单项式来看待.(3)单项式的系数:单项式中的数字因数即为单项式的系数.说明:在单项式中,系数只与数字因数有关;次数只与字母有关.如x 3yz 4的系数是1,次数为3+1+4=8.(4)多项式的定义:几个单项式的和叫做多项式.说明:多项式是由几个单项式相加得到的,如多项式x2+2x-1是由单项式x2,2x和-1相加而得到的(5)多项式的次数:一个多项式中,次数最高的项的次数叫做这个多项式的次数.说明:在确定多项式的次数时,应先计算出多项式的每一项的次数,然后再确定多项式的次数,即取次数最大的项的次数作为该多项式的次数.如,多项式x3-x2y2+x中,单项式x3的次数是3,单项式-x2y2的次数是4,单项式x的次数是1,所以多项式x3-x2y2+x 的次数是4.(6)多项式的项数:一个多项式中有几个单项式就有几项.每一个单项式就是一项。
人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。
如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。
(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。
3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。
人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版数学七年级上册 第2章 2.1整式同步测验题(一)(含答案)

整式同步测验题(一)一.选择题1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣44.在式子,2πx2y,,y2﹣5,π+6,中,多项式的个数是()A.1B.2C.3D.45.多项式4x2﹣xy2﹣x+1的三次项系数是()A.4B.﹣C.D.﹣6.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个7.下列说法正确的是()A.x不是单项式B.﹣15ab的系数是15C.单项式4a2b2的次数是2D.多项式a4﹣2a2b2+b4是四次三项式8.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+19.单项式﹣3ab的系数是()A.3B.﹣3C.3a D.﹣3a10.下列说法中错误的有()个.①绝对值相等的两数相等;②若a,b互为相反数,则=﹣1;③如果a大于b,那么a的倒数小于b的倒数;④任意有理数都可以用数轴上的点来表示;⑤x2﹣2x﹣33x3+25是五次四项式;⑥一个数的相反数一定小于或等于这个数;⑦正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个11.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表示整式,多项式,单项式的关系,正确的是()A.B.C.D.二.填空题12.﹣πx2的次数是.13.多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个次五项式.14.单项式的次数为:.15.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.三.解答题16.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.17.已知多项式2x2+x3+x﹣5x4﹣(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.4.【解答】解:在式子,2πx2y,,y2﹣5,π+6,中,多项式有:,y2﹣5,共2个.故选:B.5.【解答】解:多项式4x2﹣xy2﹣x+1的三次项是﹣xy2,三次项系数是﹣.故选:B.6.【解答】解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.7.【解答】解:A、x是单项式,故原说法错误;B、﹣15ab的系数是﹣15,故此选项错误;C、单项式4a2b2的次数是4,故此选项错误;D、多项式a4﹣2a2b2+b4是四次三项式,正确.故选:D.8.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.9.【解答】解:单项式﹣3ab的系数是﹣3.故选:B.10.【解答】解:①如|2|=2,|﹣2|=2,2≠﹣2,即绝对值相等的两数不一定相等,故①错误;②若a,b互为相反数,当a和b,都不是0时,=﹣1,故②错误;③当a=2,b=﹣3时,a>b,但a的倒数大于b的倒数,故③错误;④任意有理数都可以用数轴上的点来表示,故④正确;⑤x2﹣2x﹣33x3+25是三次四项式,故⑤错误;⑥﹣3的相反数是3,3>﹣3,故⑥错误;⑦正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,故⑦错误;即错误的有6个,故选:C.11.【解答】解:代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项D,故选:D.二.填空题12.【解答】解:单项式﹣πx2的次数是:2.故答案为:2.13.【解答】解:多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个六次五项式,故答案为:六.14.【解答】解:单项式的次数为:2+2=4.故答案为:4.15.【解答】解:多项式式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣7三.解答题(共4小题)16.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3+2x2+x﹣;(2)该多项式的次数是4,它的二次项是2x2,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|。
人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)
一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
人教版七年级数学上册第二章 整式的加减 专题练习试题(含答案)
人教版七年级数学上册第二章整式的加减专题练习试题专题一、与整式加减相关的新定义问题方法指导:新定义问题,即给出一个新的数学符号标记,规定一种新的运算规则,并按新规定的运算规则进行计算.解题的关键是看懂规定的运算,将新规定的运算转化为整式加减运算问题,在转化过程中,要特别注意括号的作用.1.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=x+5y.2.定义一种新运算:a⊕b=2a-b,a b=b-a,求(x⊕y)⊕(y x)=3x-y.专题二、利用数轴去绝对值符号化简1.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.有理数a,b在数轴上的位置如图所示,化简|a-b|-|b-a|的结果是(C)A.2a+2b B.2bC.0 D.2a4.有理数a,b在数轴上的位置如图所示,则化简|a-b|-2|a+b|的结果为(A)A.a+3b B.-3a-bC.3a+b D.-a-3b5.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,其位置如图所示,化简:2|b +c|-3|a -c|-4|a +b|.解:由数轴知,a <b <0<c ,且|b|<|c|,所以b +c >0,a -c <0,a +b <0,所以原式=2(b +c)-[-3(a -c)]-[-4(a +b)]=2b +2c +3(a -c)+4(a +b)=2b +2c +3a -3c +4a +4b=7a +6b -c.专题三、 整体思想在整式求值中的运用方法指导:整式的化简求值中,当单个字母的值不易求出或化简后的结果与已知值的式子相关联时,需要将已知式子的值整体代入计算.1.已知x -2y =5,那么5(x -2y)2-4(x -2y)-60的值为(B )A .55B .45C .80D .402.已知式子3y 2-2y +6的值是8,那么32y 2-y +1的值是(B ) A .1 B .2C .3D .43.若m -n =-1,则(m -n)2-2m +2n 的值为(A )A .3B .2C .1D .-14.若式子2x 2+3x +7的值是8,则式子4x 2+6x -9的值是(C )A .2B .-17C .-7D .75.已知x 2+2x -1=0,则3x 2+6x -2=1.6.如果m ,n 互为相反数,那么(3m -2n)-(2m -3n)=0.7.已知x =2y +3,则式子4x -8y +9的值是21.8.若2a -b =2,则6+4b -8a =-2.9.若a 2-5a -1=0,则5(1+2a)-2a 2的值为3.10.已知a 2+b 2=6,ab =-2,求(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值.解:原式=-3a 2+8ab -3b 2=-3(a 2+b 2)+8ab ,因为a 2+b 2=6,ab =-2,所以原式=-3×6+8×(-2)=-34.专题四、 整式的化简与求值类型1 整式的加减运算1.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)3(m 2-2m -1)-2(m 2-3m)-3;解:原式=3m 2-6m -3-2m 2+6m -3=m 2-6.(3)-12(4x 2-2x -2)+13(-3+6x 2); 解:原式=-2x 2+x +1-1+2x 2=x.(4)3x2y-[2xy-2(xy-23x2y)+xy].解:原式=3x2y-(2xy-2xy+43x2y+xy)=3x2y-2xy+2xy-43x2y-xy=53x2y-xy.2.已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2-12x+6=5x2-14x+7.(2)2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x-3=2x-1.类型2整式的化简求值3.先化简,再求值:(1)2(a2+3a-2)-3(2a+2),其中a=-2;解:原式=2a2+6a-4-6a-6=2a2-10.当a =-2时,原式=2×(-2)2-10=-2.(2)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; 解:原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时, 原式=-2×14-1-(-3)=32. (3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,b =14; 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4.当a =2,b =14时, 原式=-22×14+4=3. (4)(5a 2+3a -1)-3(a +a 2),其中a 2-2=0;解:原式=5a 2+3a -1-3a -3a 2=2a 2-1.因为a 2-2=0,即a 2=2,所以原式=2×2-1=3.(5)3x 2y -[2xy 2-2(xy -32x 2y)+xy]+3xy 2,其中|x -3|+(y +13)2=0. 解:原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.因为|x -3|+(y +13)2=0, 所以x =3,y =-13.所以原式=-1+13=-23.专题五、与整式的化简有关的说理题1.是否存在数m ,使化简关于x ,y 的多项式(mx 2-x 2+3x +1)-(5x 2-4y 2+3x)的结果中不含x 2项?若不存在,说明理由;若存在,求出m 的值.解:原式=mx 2-x 2+3x +1-5x 2+4y 2-3x=(m -6)x 2+4y 2+1.由题意,得m -6=0,所以m =6.2.有一道题“先化简,再求值:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因.解:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3=17x 2-8x 2-5x -4x 2-x +3+5x 2+6x -1-3=10x 2-1.因为当x =2 020和x =-2 020时,x 2的值相同,所以他计算的结果是正确的.3.已知关于x ,y 的多项式x 2+ax -y +b 与多项式bx 2-3x +6y -3的和的值与x 的取值无关,求式子3(a 2-2ab +b 2)-[4a 2-2(12a 2+ab -32b 2)]的值. 解:(x 2+ax -y +b)+(bx 2-3x +6y -3)=(b +1)x 2+(a -3)x +5y +b -3.因为该多项式的值与x 的取值无关,所以b +1=0,a -3=0.所以b =-1,a =3.原式=3a 2-6ab +3b 2-(3a 2-2ab +3b 2)=3a2-6ab+3b2-3a2+2ab-3b2=-4ab=12.4.嘉淇在计算一个多项式A减去多项式2b2-3b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,因此得到的差是b2+3b-1.(1)求这个多项式A;(2)求这两个多项式运算的正确结果;(3)当b=-1时,求(2)中结果的值.解:(1)由题意,得A-2b2-3b-5=b2+3b-1,则A=(b2+3b-1)+(2b2+3b+5)=b2+3b-1+2b2+3b+5=3b2+6b+4.(2)这两个多项式运算的正确结果为(3b2+6b+4)-(2b2-3b-5)=3b2+6b+4-2b2+3b+5=b2+9b+9.(3)当b=-1时,原式=(-1)2+9×(-1)+9=1-9+9=1.5.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若a≠b,把这个两位数的十位数字与个位数字对换,得到一个新的两位数,则原两位数与新两位数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)由题意得,这两个数的和为(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.这两个数的差为(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),因为a,b都是整数,所以a-b也是整数.所以这两个数的差一定是9的倍数.专题六、规律探究类型1数式规律1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取的种子数是(2n+1)粒.2.按规律写出空格中的数:-2,4,-8,16,-32,64.3.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.4.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.5.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).6.观察以下图案和算式,解答问题:(1)1+3+5+7+9=25;(2)1+3+5+7+9+…+19=100;(3)猜想:1+3+5+7+…+(2n -1)=n 2.7.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .458.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .89.观察下列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n .(4)第2 019个单项式是-4 037x 2 019,第2 020个单项式是4 039x 2 020.类型2图形规律10.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为(D)A.3n B.6nC.3n+6 D.3n+311.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形中共有6_058个〇.…12.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.…。
2023-2024学年七年级数学上册《第二章 整式》同步练习题有答案(人教版)
2023-2024学年七年级数学上册《第二章整式》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是()A.单项式x没有系数B.mn2与−12n2m是同类项C.3x3y的次数是3 D.多项式3x-1的项是3x和12.在代数式x−3y2中,含y的项的系数是()A.-3 B.3 C.-32D.323.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.常数项是1C.四次项的系数是7 D.﹣7xy3﹣2x3y2+0.3x2y+1是整式4.若单项式-2x2y3的系数是m,次数是n,则mn的值为()A.-2 B.-6 C.-4 D.-35.下列式子:x2+2,1a +4与3ab7,abc,﹣5x,0中,整式的个数有()A.3个B.4个C.5个D.6个6.若2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,则-n m的值为()A.-25 B.25 C.-32 D.327.若多项式k(k−2)x3+kx2−2x2−6是关于x的二次多项式,则k的值为().A.0 B.1 C.2 D.以上都错误8.下列说法:①a为任意有理数,a2总是正数;②如果|a|=−a,则a是负数;③单项式−4a3b的系数与次数分别为—4和4;④代数式t2、−a+b3、2b都是整式.其中正确的有()A.4个B.3个C.2个D.1个二、填空题9.单项式﹣3πx2y24的系数是,次数是.10.)多项式3x|m|y2+(m+2)x2y﹣1是四次三项式,则m的值为.11.把多项式6x−7x2+9按字母x的降幂排列为.12.多项式﹣53x3y2﹣7xy2+4x4﹣26为次四项式.13.关于x的多项式(a+1)x2+2x a+1+3x3−a(x≠0)合并后是三项式,则a的值为.(提示:当x≠0时,x0=1)三、解答题14.已知整式(m+2)x2+3x6−n−5是关于x的三次二项式,求m2n+mn2的值.x2y m+1+x2y2−3y2+8是六次四项式,单项式2x2n y5−m与该多项式次数相同,15.已知多项式−35求m,n的值.16.已知式子:ax5+bx3+3x+c,当x=0时,该式的值为﹣1.(1)求c的值;(2)已知当x=1时,该式的值为﹣1,试求a+b+c的值;(3)已知当x=3时,该式的值为﹣1,试求当x=﹣3时该式的值;(4)在第(3)小题的已知条形下,若有3a=5b成立,试比较a+b与c的大小.17.对于多项式(n-1)x m+2-3x2+2x(其中m是大于-2的整数).(1)若n=2,且该多项式是关于x的三次三项式,求m的值;(2)若该多项式是关于x的二次单项式,求m,n的值;(3)若该多项式是关于x的二次二项式,则m,n要满足什么条件?18.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式-2x2-4x+1的一次项系数,b 是x2y4的次数为c.最小的正整数,单项式−12(1)a= ,b= ,c= .(2)若将数轴在点B处折叠,则点A与点C 重合(填“能”或“不能”);(3)若数轴上M、N两点之间的距离为2022(M在N的左侧),且M、N两点在B处折叠后互相重合,则M、N表示的数分别是:M:;N:(4)若在数轴上任意画出一条长是2022个单位的线段,则此线段盖住的整数点的个数是。
七年级数学上册第二章《整式的加减》测试卷-人教版(含答案)
七年级数学上册第二章《整式的加减》测试卷-人教版(含答案)一、选择题1.若数m增加它的x%后得到数n,则n等于( )A.m·x%B.m(1+x%)C.m+x%D.m(1+x)%2.对于a2+b2解释不恰当的是( )A.a,b两数的平方和B.边长分别是a,b的两正方形的面积和C.买a支单价为a元的铅笔和买b支单价为b元的铅笔所花的总钱数D.边长是a+b的正方形的面积3.下列式子,不是整式的是( )A.x﹣12y B.37x C.1x+1D.04.单项式- 25πx2y 的系数与次数分别是()A.- 25π,3 B.25π,3 C.-25π,2 D.-25,45.多项式2a2b﹣ab2﹣ab的项数及次数分别是( )A.3,3B.3,2C.2,3D.2,26.已知a2+3a=1,那么代数式2a2+6a-1的值是( )A.0B.1C.2D.37.如果2x2y3与x2y n+1是同类项,那么n的值是( )A.1B.2C.3D.48.下列各式计算正确的是( )A.3x+x=3x2B.-2a+5b=3abC.4m2n+2mn2=6mnD.3ab2-5b2a=-2ab29.下面计算正确的是( )A.6a-5a=1B.a+2a2=3a2C.-(a-b)=-a+bD.2(a+b)=2a+b10.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足( )A.都小于5B.都大于5C.都不小于5D.都不大于511.一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A 等于( )A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy12.某商家在甲批发市场以每包a元的价格购进了40包茶叶,又在乙批发市场以每包b元(a>b)的价格购进了同样的茶叶60包,如果商家以每包a+b2元的价格卖出这种茶叶,那么卖完后,该商家( )A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定二、填空题13.若-5ab n-1与a m-1b3是同类项,则m+2n=_______.14.化简3x﹣2(x﹣3y)的结果是 .15.在多项式3x2+πxy2+9中,次数最高的项的系数是 .16.若x=1时,2ax2+bx=3,则当x=2时,ax2+bx=_______.7.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2= .18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2026个格子中的整数是 .3 a b c -1 -2 …19.化简:3a2+5b-2a2-2a+3a-8b;20.化简:(8x-7y)-2(4x-5y);21.化简:-3a2b-(2ab2-a2b)-(2a2b+4ab2),22.化简:-3a2b-(2ab2-a2b)-(2a2b+4ab2).23.化简:-3a2b+(-4ab2+2a2b)-3(a2b-ab2).24.化简:- 13(x2y2-xy+3)+2[x2-12(xy-2x+y-1)]+3x-1.25.移动公司开设了两种通讯业务:①“全球通”用户先交10元月租费,然后每通话一分钟,付话费0.2元;②“快捷通”用户不交月租费,每通话一分钟付话费0.4元.(1)按一个月通话a分钟计算,请你写出两种收费方式中用户应付的费用?(2)某用户一个月内通话300分钟,你认为选择哪种移动通讯业务较合适?26.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式,那么a和b的值可能是多少?说明你的理由.27.老师在黑板上书写了一个正确的验算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若-x2+2x=1,求所捂二次三项式的值.28.某超市在春节期间实行打折促销活动,规定如下:一次性购物促销方法:少于200元不打折;低于500元但不低于200元打九折;500元或超过500元其中500元部分打九折,超过500元部分打八折.(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3 )如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的式子表示两次购物王老师实际付款多少元?参考答案1.B.2.D3.C.4.A5.A6.B7.B8.D9.C10.D.11.B12.A.13.答案为:1014.答案为:x+6y.15.答案为:π.16.答案为:617.答案为:6.18.答案为:3.19.解:原式=3a2-2a2-2a+3a+5b-8b=a2+a-3b.20.解:原式=8x-7y-8x+10y=3y.21.解:原式=-4a2b-6ab222.解:原式=-4a2b-6ab223.解:原式=-3a2b-4ab2+2a2b-3a2b+3ab2=-3a2b+2a2b-3a2b-4ab2+3ab2=(-3+2-3)a2b+(-4+3)ab2=-4a2b-ab2.24.解:原式=- 13x2y2-23xy+2x2+5x-y-125.解:(1)①0.2a+10;②0.4a(2)当a=300时,0.2a+10=70(元);0.4a=120(元),因为70<100,所以选择“全球通”移动通讯业务较合适26.解:(1)若axy b与﹣5xy为同类项,则b=1.因为和为单项式,所以a=5,b=1.(2)若4xy2与axy b为同类项,则b=2.因为axy b+4xy2=0,所以a=﹣4.所以a=﹣4,b=2.27.解:(1)所捂的二次三项式为x2-2x+1.(2)若-x2+2x=1,则x2-2x+1=-(-x2+2x)+1=-1+1=0.28.解:(1)530.500×0.9+(600﹣500)×0.8=530(元).(2)0.9x0.8x+50.(3)因为200<a<300,所以第一次实际付款为0.9a元,第二次付款超过500元,超过500元部分为(820﹣a﹣500)元,所以两次购物王老师实际付款为0.9a+0.8(820﹣a﹣500)+450=0.1a+706(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第二章整式复习试题二(含答案)
一、单选题
1.如图,阴影部分的面积是()
A.11
2xy B.9
2
xy C.4xy D.2xy
【答案】A
【解析】
【分析】
可以用割补法求其面积.扩充成大长方形,让大长方形的面积-小长方形的面积.
【详解】
3x•2y﹣0.5x•y=11
2
xy.
故选A.
【点睛】
掌握分割法求一个图形的面积,注意代数式前边的分数不能写成带分数,必须写成假分数.
2.若干人做某项工作,每个人的工作效率相同,m个人做n天可完成,如果增加a人,则完成这项工作所需天数为()
A.n﹣a B.mn
m a
+C.mn
m a
-
D.n+a
【答案】B
【解析】
【分析】
所需天数=工作总量÷(m+a)个人的工作效率.
【详解】
解:∵工作总量为mn,增加a人后人数为m+a,
完成这项工作所需天数为mn
m a
+
,
故选:B.
【点睛】
此题主要考查列代数式,解题的关键是根据题意列出代数式.
3.如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;……;这样一直继续操作下去,当达到第2018个阶段时,余下的线段的长度之和为()
A.(1
3)2017B.(2
3
)2017C.(2
3
)2018D.(2
3
)2019
【答案】C 【解析】【分析】
第一阶段余下2
3,第二阶段余下
2
2
3
⎛⎫
⎪
⎝⎭
,…,第2018阶段余下
2018
2
3
⎛⎫
⎪
⎝⎭
.
【详解】
解:∵初始线段长度为1,
∵第一阶段去掉1
3
,余下2
3
,
第二阶段再去掉1
3,余下
2
2
3
⎛⎫
⎪
⎝⎭
,
依此类推,第2018阶段余下
2018
2
3
⎛⎫
⎪
⎝⎭
,
故选:C.
【点睛】
本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
4.下列图形都是由同样大小的〇按一定的规律组成,其中第l个图形有3个〇,第2个图形有10个〇,第3个图形有19个〇,算4个图形有30个〇,……依照此规律,第6个图形中共有()个〇.
A.43 B.55 C.58 D.65
【答案】C
【解析】
【分析】
第1个图形为3×1,第2个图形为3241
⨯+⨯,第3个图形为3352
⨯+⨯,第
4个图形为3463⨯+⨯⋯由此推断第n 个图形〇的个数为3(2)(1)n n n ++-,然后将n=6代入即可.
【详解】
解:由图示规律可知,第n 个图形〇的个数为3n +(n +2)(n ﹣1), 当n =6时,3×6+(6+2)(6﹣1)=58(个). 故选:C . 【点睛】
本题考查了规律型图形的变化类,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
5.如图,桌上有9张卡片,每张卡片的一面写数字1,另一面写数字-1.每次翻动任意2张(包括已翻过的牌)。
改变其向上的面,然后计算能看到的所有牌面数字的积请问, 当翻了2019次时牌面数字的积为( )
A .1
B .-1
C .2019
D .-2019
【答案】A 【解析】 【分析】
依照题述翻牌,发现翻牌时-1的个数总保持偶数,故2019次翻牌乘积仍为1.
【详解】
第一次翻牌时有两张变成-1,其它都为1,故乘积为1:;
第二次翻牌时,有三种可能:①翻到的两张都为未翻到的牌,则有四张-1,
其它都为1,乘积为1;②翻到的两张都为翻到的牌,则有0张-1,其它都为1,乘积为1;∵翻到的两张一张为翻过的牌,一张为未翻过的牌,则-1有两张,其它都为1,乘积为1.
依次类推,从第二次开始每次翻牌都有三种可能,-1的个数比原来增加2,-1的个数保持不变,-1的个数减少2,总之-1的个数为偶数,其余全是1,故乘积为1.
所以当翻了2019次时牌面数字的积为:1.故选:A.
【点睛】
本次考查探索与表达规律,多个有理数相乘.解决本题的关键是能找到题中-1个数的变化规律,并根据多个有理数相乘,当负数的个数为偶数时结果为正,当负数的个数为奇数时结果为负,再把绝对值相乘进行计算.
6.如图,P1是一块边长为1的正方形纸板,在P1的右上端剪去一个边长为1
2
的正方形后得到图形P2,然后依次剪去一个更小的正方形(其边长为前一个被剪去的正方形边长的一半)得到图形P3、P4、P5…,记纸板P n的面积为S n,则S n﹣S n+1的值为()
A.(1
2)n B.(1
4
)n C.(1
2
)n+1D.(1
2
)2n﹣1
【答案】B 【解析】【分析】
根据题目中的图形,可以写出前几个图形的面积,从而可以得到S n-S n+1的值,本题得以解决.
【详解】
解:由题意可得,
S1=1,
S2=1﹣(1
2
)2,
S3=1﹣(1
2)2﹣(11
22
)2=1﹣(1
2
)2﹣(1
2
)4,
S4=1﹣(1
2)2﹣(1
2
)4﹣(1
2
)6,
…,
则S n﹣S n+1=[1﹣(1
2)2﹣(1
2
)4﹣(1
2
)6,﹣…﹣(1
2
)2n﹣2]﹣[1﹣
(1
2)2﹣(1
2
)4﹣(1
2
)6﹣…﹣(1
2
)2n]=(1
2
)2n=(1
4
)n,
故选:B.
【点睛】
本题考查图形的变化类,解答本题的关键是明确题意,发现题目中图形面积
的变化规律,利用数形结合的思想解答.
7.多项式2x3+3xy﹣x的次数是()
A.6 B.5 C.3 D.1
【答案】C
【解析】
【分析】
根据多项式次数的概念即多项式的次数指的是多项式中次数最高项的次数,可求出答案.
【详解】
解:多项式2x 3+3xy ﹣x 的次数是3. 故选:C 【点睛】
本题考查多项式的概念,解题的关键是正确理解多项式的定义,本题属于基础题型.
8.下列各代数式中,不是单项式的是( ) A .﹣m 2 B .﹣2
3
xy
C .0
D .1x
【答案】D 【解析】 【分析】
数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.
【详解】
解:A 、﹣m 2,是单项式,不合题意;
B 、﹣23
xy ,是单项式,不合题意;
C 、0,是单项式,不合题意;
D 、1
x 不是单项式,符合题意.
故选:D . 【点睛】
本题考查单项式的定义,较为简单,要准确掌握定义.
9.关于字母a 所表示的数,下列说法正确的是( ) A .a 一定是正数 B .a 的相反数是a - C .a 的倒数是1a
D .a 的绝对值等于a
【答案】B 【解析】 【分析】
根据代数式的定义、相反数的性质,绝对值的性质及倒数的性质逐一判断即可得答案.
【详解】
A.a 可以表示正数、负数和0,故该选项错误,
B.a 的相反数是a -,故该选项正确,
C.0没有倒数,故该选项错误,
D.当a <0时,a 的绝对值等于-a ,故该选项错误, 故选:B . 【点睛】
本题考查代数式的定义、相反数的性质,绝对值的性质及倒数的性质,熟练掌握相关定义与性质是解题关键.
10.下列说法:①2631x x -+的项是2
6,,31x x ;②22r ππ+是三次二项式;
③11x +是代数式;④多项式15x -的系数是1-;⑤单项式2
x y 的次数是3;
⑥22x -是多项式,错误的有( )
A .①②④⑥
B .①④⑤⑥
C .②③④⑥
D .①②④⑤
【答案】A
【解析】 【分析】
根据单项式和多项式的概念逐项分析即可. 【详解】
∵2631x x -+的项是2,1,63x x -,故不正确; ∵22r ππ+是二次二项式,故不正确; ∵
1
1
x +是代数式,正确; ∵多项式
1
5
x -一次二项式,故不正确; ∵单项式2x y 的次数是3,正确; ∵
2
2
x -的分母含有字母,不是多项式,故不正确. 故选A . 【点睛】
本题考查了单项式和多项式的有关概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和;多项式的次数是多项式中次数最高的项的次数.。