【精品】2015年江苏省无锡市北塘区八年级上学期期中数学试卷带解析答案

合集下载

江苏省无锡市锡北片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

江苏省无锡市锡北片2015-2016学年八年级上学期期中考试数学试题解析(解析版)

一、选择题 (本大题共10小题,每小题3分,共30分.)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【答案】D【解析】试题分析:将图形沿着某条直线对称,如果直线两边的图形能够完全重叠,则图象就是轴对称图形.根据定义可得D是轴对称图形.考点:轴对称图形2.已知等腰三角形的两条边长分别是3和7,则它的周长是()A.17 B.15 C.13 D.13或17【答案】A【解析】试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17. 考点:等腰三角形的性质3.下列能判定△ABC为等腰三角形的是()A.∠A=40º、∠B=50ºB.∠A=40º、∠B=70ºC.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【答案】B【解析】试题分析:A、根据题意可得:∠C=90°,则为直角三角形;B、根据题意可得:∠C=70°,则三角形为等腰三角形;C、3+3=6,无法构成三角形;D、根据题意可得:AC=5,则3+5=8,无法构成三角形.考点:等腰三角形的判定4.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.3,4,5C.2,3,4D.1,2,3【答案】B【解析】试题分析:根据勾股定理的逆定理进行判定,A、C不是直角三角形;D不能构成三角形,则C为直角三角形.考点:直角三角形的判定5.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定...成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【答案】C【解析】试题分析:根据AC垂直平分BD可得:△ABD为等腰三角形,即AB=AD,AC平分∠BAD,△BEC≌△DEC. 考点:等腰三角形的性质6.如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【答案】B【解析】试题分析:根据AE=CF可得:AF=CE,A选项可以利用ASA来进行判定;B选项无法判定;C选项可以利用SAS来进行判定;D可以利用ASA来进行判定.考点:三角形全等判定7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()【答案】C【解析】试题分析:根据△ADC 的周长以及AC 的长度可得:AD+CD=17-5=12cm ,根据折叠图形的性质可得:AD=BD ,则BC=BD+CD=AD+CD=12cm.考点:折叠图形的性质8.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A .5 B .6 C .7 D .8【答案】D【解析】试题分析:本题需要分两种情况分别进行讨论,当AB 为底和AB 为腰两种情况.考点:等腰三角形的判定.9.如图所示的一块地,90ADC ∠=︒,12AD m =,9CD m =,39AB m =,36BC m =,求这块地的面积S 为( )m 2.A. 54B. 108C. 216D.270【答案】C【解析】试题分析:连接AC ,根据CD 和AD 的长度得出AC=15m ,根据AC ,BC 和AB 的长度可得△ABC 为直角三角形,则S=15×36÷2-9×12÷2=270-54=216.考点:直角三角形的性质10.如图,已知△ABC 中,AB=AC=2,∠BAC =90º,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①图中只有2对全等三角形,②AE=CF; ③△EPF 是等腰直角三角形;④ S 四边形AEPF=12S △ABC ;⑤EF 的最小值为2.上述结论始终正确的有( ) A .2 B .3 C .4 D .5【答案】C【解析】试题分析:根据题意可得:△AEP ≌△CFP ,△BEP ≌△AFP ,△ABP ≌△ACP ,则①错误;根据三角形全等可得AE=CF ,△EPF 为等腰直角三角形,四边形AEPF 的面积等于△ABC 面积的一半,EF. 考点:等腰直角三角形的性质.二、填空题(本大题共10小题,每小题2分,共20分.)11.如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 (答案不唯一,只需填一个)【答案】AC=DC 或∠B=∠E 或∠A=∠D【解析】试题分析:本题根据∠BCE=∠CAD 可得∠BCA=∠ECD ,添加AC=DC 可以利用SAS 来进行判定;添加∠B=∠E 可以利用ASA 来进行判定;添加∠A=∠D 可以利用AAS 来进行判定.考点:三角形全等的判定12.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 __°.【答案】50°【解析】试题分析:设∠A=x °,根据MN 为中垂线可得:∠ABD=∠A=x °,则∠ABC=(x+15)°,根据AB=AC 可得:∠C=∠ABC=(x+15)°,则根据△ABC 的内角和定理可得:x+x+15+x+15=180°,解得:x=50°.考点:等腰三角形的性质、中垂线的性质第10题13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 . 【答案】4【解析】试题分析:根据角平分线上的点到角两边的距离相等可得:点D到斜边AB的距离等于CD的长度.考点:角平分线的性质14.如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为 .【答案】36【解析】试题分析:根据勾股定理可得:A+64=100,则A=36.考点:勾股定理中,三边长分别用a、b、c表示,已知a=3、b=5,则c2=_____________.15.在Rt ABC【答案】16或34【解析】试题分析:当a、b为直角边时,则2c=9+25=34,当b为斜边时,则2c=25-9=16.考点:直角三角形16.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为_______km.【答案】1.2【解析】试题分析:直角三角形斜边上的中线等于斜边的一半,根据这个定理可得:MC=AM=BM=1.2km.考点:直角三角形的性质17.已知┃x -12┃+┃z -13┃+y 2-10y +25=0,则以x 、y 、z 为三边的三角形是 三角形。

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。

2015-2016年江苏省无锡市北塘区八年级(上)期末数学试卷及答案

2015-2016年江苏省无锡市北塘区八年级(上)期末数学试卷及答案

2015-2016学年江苏省无锡市北塘区八年级(上)期末数学试卷一、选择题:(本大题共10小题,每题3分,共30分)1.(3分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()A.1个B.2个C.3个D.4个2.(3分)下列图形中,不一定是轴对称图形的是()A.等边三角形B.直角三角形C.角D.线段3.(3分)以下列数组作为三角形的三条边长,其中能构成直角三角形的是()A.1,,3B.,,5C.1.5,2,2.5D.,,4.(3分)在平面直角坐标系中,若点P(a﹣1,a)在第二象限,则a的取值范围是()A.a<0B.a>1C.0<a<1D.﹣1<a<0 5.(3分)下列各组条件中,能判断两个直角三角形全等的是()A.两组直角边对应相等B.一组边对应相等C.两组锐角对应相等D.一组锐角对应相等6.(3分)若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°7.(3分)已知一次函数中,y=(m+2)x﹣1的值随着x的增大而增大,则m的取值范围是()A.m>0B.m<0C.m>﹣2D.m<﹣2 8.(3分)如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件使△ABC≌△DEC,则添加的条件不能为()A.∠A=∠D B.∠B=∠E C.AC=DC D.AB=DE9.(3分)如图,A(0,﹣),点B为直线y=﹣x上一动点,当线段AB最短时,点B的坐标为()A.(0,0)B.(1,﹣1)C.(,﹣)D.(,﹣)10.(3分)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.若点Q(m,n)也是直线l上的点,则2m﹣n+3的值等于()A.4B.﹣4C.6D.﹣6二、填空题:(本大题共8小题,每空2分,共18分)11.(4分)4的平方根是;8的立方根是.12.(2分)用四舍五入法把数字3.4802精确到0.1是.13.(2分)点P(﹣2,4)关于x轴的对称点的坐标是.14.(2分)若等腰三角形的两条边长分别为1和2,则这个等腰三角形的周长是.15.(2分)若一次函数y=kx+2的图象经过点(3,5),则k的值为.16.(2分)如图,△ABC中,AB=AC,BD⊥AC,BD=6,E为AB边的中点,ED=5,则DC=.17.(2分)如图,△ABC中,∠ABC=90°,AB=CB=4,BE=1,P是AC上一动点.则PB+PE的最小值是.18.(2分)如图,△ABO为等腰直角三角形,A(﹣4,0),直角顶点B在第二象限.点C在y轴上移动,以BC为斜边作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,这条直线的函数表达式是.三、解答题:(本大题共有7小题,共62分)19.(8分)(1)已知(x﹣1)2=9,求式中x的值;(2)计算:()2+﹣.20.(6分)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.21.(6分)在正方形的网格中,每个小正方形的边长都为1,格点A、B的位置如图所示:(1)画出适当的平面直角坐标系,使点A、B的坐标分别为(1,2)、(4,3).(2)在(1)中画出的坐标系中标出点C(3,6),并连接AB、AC、BC.则△ABC 的面积=.(3)画出△ABC关于y轴的对称图形△A′B′C′.22.(8分)如图,∠ACB=∠ECD=90°,AC=BC,EC=DC,点D在AB边上.(1)求证:△ACE≌△BCD.(2)若AE=3,AD=2.求ED的长.23.(12分)如图,一次函数y=(m﹣1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)求m的值及点A的坐标.(2)过点B作直线BC与x轴的正半轴相交于点C,且OC=3OA,求直线BC的函数表达式.24.(10分)某工厂安排20名技工组装A、B、C三个型号的玩具,按规定每天共组装420件玩具,每名技工只组装同一型号的玩具,且至少有2名技工组装同一个型号的玩具.(1)设工厂安排x名技工组装A型玩具,y名技工组装B型玩具,根据上表提供的信息,求x与y之间的函数关系式,并求出x的取值范围.(2)工厂如何安排生产任务,可以使得每天在这批玩具上获得的利润最大?请写出相应的生产分配方案并求出每天获得的最大利润值.25.(12分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.2015-2016学年江苏省无锡市北塘区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每题3分,共30分)1.(3分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:、是无理数.故选:B.2.(3分)下列图形中,不一定是轴对称图形的是()A.等边三角形B.直角三角形C.角D.线段【解答】解:A、是轴对称图形,此选项错误;B、不是轴对称图形,此选项正确;C、是轴对称图形,此选项错误;D、既是轴对称图形,也是中心对称图形;故选项错误.故选:B.3.(3分)以下列数组作为三角形的三条边长,其中能构成直角三角形的是()A.1,,3B.,,5C.1.5,2,2.5D.,,【解答】解:A、12+()2≠32,不能构成直角三角形,故选项错误;B、()2+()2≠52,不能构成直角三角形,故选项错误;C、1.52+22=2.52,能构成直角三角形,故选项正确;D、()2+()2≠()2,不能构成直角三角形,故选项错误.故选:C.4.(3分)在平面直角坐标系中,若点P(a﹣1,a)在第二象限,则a的取值范围是()A.a<0B.a>1C.0<a<1D.﹣1<a<0【解答】解:由点P(a﹣1,a)在第二象限,得,解得0<a<1.故选:C.5.(3分)下列各组条件中,能判断两个直角三角形全等的是()A.两组直角边对应相等B.一组边对应相等C.两组锐角对应相等D.一组锐角对应相等【解答】解:A、可以利用边角边判定两三角形全等,故本选项正确;B、两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,则选项错误;C、两个锐角分别相等,只有角没有边,不能判定全等,此选项错误;D、一组锐角对应相等,隐含一个条件是两直角相等,根据角对应相等,不能判定三角形全等,故选项错误.故选:A.6.(3分)若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°【解答】解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故选:B.7.(3分)已知一次函数中,y=(m+2)x﹣1的值随着x的增大而增大,则m的取值范围是()A.m>0B.m<0C.m>﹣2D.m<﹣2【解答】解:∵一次函数y=(m+2)x﹣1的值随着x的增大而增大,∴m+2>0,即m>﹣2.故选:C.8.(3分)如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件使△ABC≌△DEC,则添加的条件不能为()A.∠A=∠D B.∠B=∠E C.AC=DC D.AB=DE【解答】解:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,A、∠A=∠D,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理AAS,能推出△ABC≌△DEC,故本选项错误;B、∠B=∠E,BC=EC,∠ACB=∠DCE,符合全等三角形的判定定理ASA,能推出△ABC≌△DEC,故本选项错误;C、AC=DC,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项错误;D、AB=DE,BC=EC,∠ACB=∠DCE,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项正确;故选:D.9.(3分)如图,A(0,﹣),点B为直线y=﹣x上一动点,当线段AB最短时,点B的坐标为()A.(0,0)B.(1,﹣1)C.(,﹣)D.(,﹣)【解答】解:∵A(0,﹣),点B为直线y=﹣x上一动点,∴当AB⊥OB时,线段AB最短,此时点B在第四象限,作BC⊥OA于点C,∠AOB=45°,如下图所示:∴OC=CB=OA,∴点B的坐标为()故选:D.10.(3分)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.若点Q(m,n)也是直线l上的点,则2m﹣n+3的值等于()A.4B.﹣4C.6D.﹣6【解答】解:设直线l的解析式为y=kx+b(k≠0),∵无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上,∴当a=1时,P(0,﹣1),当a=2时,P(1,1),∴,解得,∴直线l的解析式为y=2x﹣1.∵点Q(m,n)也是直线l上的点,∴2m﹣1=n,∴2m﹣n+3=2m﹣(2m﹣1)+3=4.故选:A.二、填空题:(本大题共8小题,每空2分,共18分)11.(4分)4的平方根是±2;8的立方根是2.【解答】解:∵(±2)2=4,∴4的平方根是±2.∵23=8,∴8的立方根是2.故答案为:±2,2.12.(2分)用四舍五入法把数字3.4802精确到0.1是 3.5.【解答】解:数字3.4802≈3.5(精确到0.1).故答案为3.5.13.(2分)点P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4).【解答】解:P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).14.(2分)若等腰三角形的两条边长分别为1和2,则这个等腰三角形的周长是5.【解答】解:当腰为2时,周长=2+2+1=5;当腰长为1时,1+1=2不能组成三角形.故答案为:5.15.(2分)若一次函数y=kx+2的图象经过点(3,5),则k的值为1.【解答】解:∵一次函数y=kx+2的图象经过点(3,5),∴5=3k+2,解得k=1.故答案为:1.16.(2分)如图,△ABC中,AB=AC,BD⊥AC,BD=6,E为AB边的中点,ED=5,则DC=2.【解答】解:∵BD⊥AC,∴∠ADB=90°,∵E为AB边的中点,ED=5,∴AC=AB=2DE=10,由勾股定理得:AD===8,∴DC=AC﹣AD=10﹣8=2;故答案为:2.17.(2分)如图,△ABC中,∠ABC=90°,AB=CB=4,BE=1,P是AC上一动点.则PB+PE的最小值是5.【解答】解::如图:作等腰直角三角形ABC关于AC的对称直角三角形ADC,连接DE,与AC交于点P,根据两点之间,线段最短得到ED就是PB+PE的最小值,∵等腰直角三角形ABC中,∠BAC=45°,∴∠DAC=45°,∴∠DAE=90°,∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵AB=CB=4,BE=1,∴AE=3,AD=CB=4,由勾股定理得,DE=5.故答案为:5.18.(2分)如图,△ABO为等腰直角三角形,A(﹣4,0),直角顶点B在第二象限.点C在y轴上移动,以BC为斜边作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,这条直线的函数表达式是y=x+2或y=﹣x+2.【解答】解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC 于点G,如图1所示,∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=2,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=2,即D(0,2),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.则这条直线解析式为y=﹣x+2,当D(﹣1,1)和D(﹣2,0)于是得到y=x+2,综上所述:这条直线的函数表达式是y=x+2或y=﹣x+2.故答案为:y=x+2或y=﹣x+2.三、解答题:(本大题共有7小题,共62分)19.(8分)(1)已知(x﹣1)2=9,求式中x的值;(2)计算:()2+﹣.【解答】解:(1)由题意可得:x﹣1=±3解得:x=4或x=﹣2;(2)原式=2﹣3﹣2=﹣3.20.(6分)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.21.(6分)在正方形的网格中,每个小正方形的边长都为1,格点A、B的位置如图所示:(1)画出适当的平面直角坐标系,使点A、B的坐标分别为(1,2)、(4,3).(2)在(1)中画出的坐标系中标出点C(3,6),并连接AB、AC、BC.则△ABC 的面积=5.(3)画出△ABC关于y轴的对称图形△A′B′C′.【解答】解:(1)如图所示;=3×4﹣×3×1﹣×3×1﹣×2×(2)S△ABC4=12﹣﹣﹣4=5.故答案为:5;(3)如图所示,△A′B′C′即为所求.22.(8分)如图,∠ACB=∠ECD=90°,AC=BC,EC=DC,点D在AB边上.(1)求证:△ACE≌△BCD.(2)若AE=3,AD=2.求ED的长.【解答】(1)证明:∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,∴∠DCB=∠ECA,在△ACE和△BCD中∴△ACE≌△BCD(SAS);(2)解:∵∠ACB=90°,AC=BC,∴∠BAC=∠B=45°,∵△ACE≌△BCD,∴∠EAC=∠B=45°,∴∠EAD=90°,∴在Rt△AED中,∠EAD=90°,AE=3,AD=2,由勾股定理得:ED==.23.(12分)如图,一次函数y=(m﹣1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)求m的值及点A的坐标.(2)过点B作直线BC与x轴的正半轴相交于点C,且OC=3OA,求直线BC的函数表达式.【解答】解:(1)由一次函数y=(m﹣1)x+4可知点B(0,4),∴OB=4,=4,∵S△OAB∴×OA×OB=4,∴OA=2,∴A(﹣2,0),把点A(﹣2,0)代入y=(m﹣1)x+4,得﹣2(m﹣1)+4=0,解得m=3;(2)∵OC=3OA,∴OC=6,∴点C的坐标为(6,0),设直线BC的函数表达式为y=kx+b,代入C(6,0)、B(0,4),得,解得k=﹣,b=4,∴直线BC的函数表达式为y=﹣x+4.24.(10分)某工厂安排20名技工组装A、B、C三个型号的玩具,按规定每天共组装420件玩具,每名技工只组装同一型号的玩具,且至少有2名技工组装同一个型号的玩具.(1)设工厂安排x名技工组装A型玩具,y名技工组装B型玩具,根据上表提供的信息,求x与y之间的函数关系式,并求出x的取值范围.(2)工厂如何安排生产任务,可以使得每天在这批玩具上获得的利润最大?请写出相应的生产分配方案并求出每天获得的最大利润值.【解答】解:(1)设组装A型、B型、C型玩具的技工分别为x、y、(20﹣x﹣y)名.根据题意得22x+21y+20(20﹣x﹣y)=420.整理得y=﹣2x+20,∵20﹣x﹣y=20﹣x﹣(﹣2x+20)=x,∴组装A型、B型、C型玩具的技工分别为x、(﹣2x+20)、x名由题意可知,解得2≤x≤9,且x是整数,(2)由题意可知:W=8×22x+10×21(﹣2x+20)+6×20x.即W=﹣124x+4200(W是x的一次函数)∵k=﹣124<0,∴W随x的增大而减小∵2≤x≤9,且x是整数∴当x=2时,W的值最大.此时W=3952(元),即最大利润为3952元.生产分配方案如下:组装A型玩具2人,B型玩具16人,C型玩具2人.25.(12分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.【解答】解:操作:如图1:,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(1)∵直线y=x+4与y轴交于点A,与x轴交于点B,∴A(0,4)、B(﹣3,0).如图2:,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴在△BDC和△AOB中,,△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=4.OD=OB+BD=3+4=7,∴C点坐标为(﹣7,3).设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得l2的函数表达式为y=x+4;(2)由题意可知,点Q是直线y=2x﹣6上一点.如图3:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(2a﹣6)=8﹣a,解得a=4如图4:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=2a﹣12,FQ=8﹣a.在△AQE和△QPF中,,△AQE≌△QPF(AAS),AE=QF,即2a﹣12=8﹣a,解得a=;综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.第21页(共21页)。

2015-2016学年苏科版八年级(上)期中数学试卷及答案(2套)

2015-2016学年苏科版八年级(上)期中数学试卷及答案(2套)

2015-2016学年八年级(上)期中数学试卷一.选择题:(每小题3分,共24分)1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A. B. C. D.2.不能确定两个三角形全等的条件是()A.三边对应相等 B.两边及其夹角相等C.两角和任一边对应相等 D.三个角对应相等3.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处4.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③;④是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤ B.②④ C.①③ D.①5.下列条件中,不能判断△ABC为直角三角形的是()A.∠B=∠C﹣∠A B. a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5 D. a=1,b=2,c=6.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A. 25° B. 27° C. 30° D. 45°7.下列说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确的个数是()A. 1 B.[来源:学。

科。

网] 2 C. 3 D. 48.在一次课外社会实践中,王强想知道学校旗杆的高,但不能爬上旗杆也不能把绳子解下来,可是他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A. 13 B. 12 C. 4 D. 10二、填空题(共10小题,每小题4分,满分22分)9.25的平方根是,的立方根是.10.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有.11.在﹣7,0.32,,0,,,,π,0.1010010001…这些数中,无理数有.12.地球七大洲的总面积约是149 480 000km2,如对这个数据保留3个有效数字可表示为km2.13.如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A= 度.14.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为.15.已知三角形的三边长分别为、5、2,则该三角形最长边上的中线长为.16.等腰三角形的周长是20cm,底边上的高是6cm,则底边的长为cm.17.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE 的长是.18.已知等腰△ABC中,AB=AC,D是BC边上一点,连接AD,若△ACD和△ABD都是等腰三角形,则∠C的度数是.三、解答题:19.计算:(1)求式中x的值:①4x2=81;②(x+10)3=﹣27;(2)﹣+.20.如果3x+12的立方根是3,求2x+6的算术平方根.21.作图题:如图所示是每一个小方格都是边长为1的正方形网格,(1)利用网格线作图:①在BC上找一点P,使点P到AB和AC的距离相等;②在射线AP上找一点Q,使QB=QC.(2)在(1)中连接CQ与BQ,试说明△CBQ是直角三角形.22.如图,在梯形ABCD中,AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=3,AB=8,当BC= 时,点B在线段AF的垂直平分线上.23.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.24.某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为BC=6m、AC=8m.现要将其扩建成等腰三角形,且扩充部分是以AC为直角边的直角三角形.求扩建后的等腰三角形花圃的面积.如图所示(画出所有可能情况的图并计算).25.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=BF;(3)判断△ECG的形状,并证明你的结论;(4)猜想BG与CE的数量关系,并证明你的结论.2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一.选择题:(每小题3分,共24分)1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.解答:[来源:学#科#网]解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选A.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.不能确定两个三角形全等的条件是()A.三边对应相等 B.两边及其夹角相等C.两角和任一边对应相等 D.三个角对应相等考点:全等三角形的判定.分析:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,HL,做题时要结合各选项的已知条件逐个进行验证.解答:解:A、三条边对应相等,符合SSS,能判定三角形全等,不符合题意;B、两边及其夹角对应相等,符合SAS,能判定三角形全等,不符合题意;C、两角和任一边对应相等,符合ASA或AAS,能判定三角形全等,不符合题意;D、三个角对应相等,满足AAA,不能判定三角形全等,符合题意.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处考点:线段垂直平分线的性质.专题:应用题.分析:要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.解答:解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选C.点评:本题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;此题是一道实际应用题,做题时,可分别考虑,先满足到两个小区的距离相等,再满足到另两个小区的距离相等,交点即可得到.4.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③;④是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.[来源:学_科_网Z_X_X_K] ①③⑤ B.②④ C.①③ D.①考点:无理数;平方根;立方根.专题:计算题.分析:根据平方根的定义即可判断①②;根据立方根的定义计算③④即可;根据无理数的定义判断⑤即可.解答:解:﹣6是36的平方根,∴①正确;16的平方根是±4,∴②错误;[来源:],∴③正确;=3是有理数,∴④错误;一个无理数不是正数就是负数,∴⑤正确;正确的有①③⑤.故选A.点评:本题主要考查对无理数、平方根、立方根等知识点的理解和掌握,能熟练地运用这些定义进行判断是解此题的关键.5.下列条件中,不能判断△ABC为直角三角形的是()A.∠B=∠C﹣∠A B. a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5 D. a=1,b=2,c=考点:勾股定理的逆定理;三角形内角和定理.分析:分别根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.解答:解:A、∵∠B=∠C﹣∠A,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故本选项错误;B、∵a2=(b+c)(b﹣c),∴a2=b2﹣c2,∴a2+c2=b2,∴△ABC是直角三角形,故本选项错误;C、∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,∴△ABC不是直角三角形,故本选项正确;D、∵a=1,b=2,c=,12+()2=4=22,∴△ABC是直角三角形.故选C.点评:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.6.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A. 25° B. 27° C. 30° D. 45°考点:全等三角形的判定与性质.分析:根据题意中的条件判定△ADB≌△CDB和△ADB≌△CDE,根据全等三角形的性质可得∠ABD=∠CBD和∠E=∠ABD,即:∠E=∠ABD=∠CBD,又因为∠ABC=∠ABD+∠CBD=54°,所以∠E=∠ABD=∠CBD=×∠ABC,代入∠ABC的值可求出∠E的值.解答:解:在△ADB和△CDB,∵BD=BD,∠ADB=∠CDB=90°,AD=CD∴△ADB≌△CDB,∴∠ABD=∠CBD,又∵∠ABC=∠ABD+∠CBD=54°,∴∠ABD=∠CBD=×∠ABC=27°.在△ADB和△EDC中,∵AD=CD,∠ADB=∠EDC=90°,BD=ED,∴△ADB≌△CDE,∴∠E=∠ABD.[来源:]∴∠E=∠ABD=∠CBD=27°.所以,本题应选择B.点评:本题主要考查了全等三角形的判定和全等三角形的性质.通过全等证得∠ABD=∠CBD 是解决本题的关键.7.下列说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确的个数是()[来源:学。

2015学年第一学期八年级数学期中考试答案及评分标准(定稿)

2015学年第一学期八年级数学期中考试答案及评分标准(定稿)

2015学年第一学期八年级数学期中考试答案及评分标准一、填空:(每题2分,共30分) 1、23x ≥-; 2、27; 31; 45、3-a ;6、9020m m <≠且; 7、±2; 8、120,2x x ==-; 9、(3)(3)x y x y -+--;10、9+; 11、如果两个三角形是全等三角形,那么它们的对应角相等; 12、10%; 13、15; 14、- 15、40;二、选择题:(每题3分,共12分)16、D 17、D 18、C 19、B 三 、简答题:(每题5分,共20分)38(0)82'61'2'21.mm m m mm>===4'1'20==、222121223.36101201'32(1)2'3112'331133xx x x x x x xx -+=-+=-==+=+∴=+=-+原方程的解是:2121222.2(3)3(3)129803'992'449944x x x x x x x x x ---=-+===∴==原方程的解是:(..)3'1'1'124.'ABC ABD ABC ABD s s s CBA DA AC BD B EA EB M AB EM A AD C B BA BB A ≅∴∠==∠⊥∴==∴=∴⎧⎪⎨⎪⎩在和中是的中点21212684203056844830 12 1(684)2402'176001252'2 AB x x x x x x AB x x x x x x =-=<=-=>-=-+====25.解:设的长为米1'当时,,当时,,不符合题意舍去。

1'所以,是原方程的解。

答:的长是米。

1'(2)CD=15或CD=5……每个2分22222(5)215(3)(3)2311'2'2(53)(31)1'1'2106311'1'2-+++-=+=-=+=解:26.1'1',1'1801'1'1801'1'AD G DG AD CG AD DG ADB GDC BD DC ABD GCDAB CG ABD GCD AB CGBAC ACG ABE ACF BAC EAF ACG EAF EAF F G E AC ==⎧⎪∠=∠⎨⎪=⎩≅∴=∠=∠∴∴∠+∠=︒∴∠∠︒∴∠+∠=︒∴∠=∠∴≅∴=27.证:延长至点,使,联结和是等腰直角三角形EAB =FAC =90,AF =AC 21'AG EF AD∴=11'60,601201'1'60,601'1'1'AE DB EF BCEAF ABC AFE ACB AEF DBE EFC ED ECD ECB DEB D ECF ECB DEB ECF DBE EFC DB EF AE EFAE DB =∴∠=∠=︒∠=∠=︒∴∴∠=∠=︒=∴∠=∠∠=︒-∠∠=︒-∠∴∠=∠∴≅∴==∴=28、()填空:证:是等边三角形。

江苏省无锡市 八年级(上)期中数学试卷-(含答案)

江苏省无锡市  八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.的平方根是()A. 4B. 2C.D.2.若等腰三角形的一个外角为100°,则它的底角为()A. 或B.C. 或D.3.如图,与左边正方形图案属于全等的图案是()A.B.C.D.4.在3.14159、、-、、π、1.20202020…,这五个数中,无理数有()A. 0个B. 1个C. 2个D. 3个5.下列各图中,一定全等的是()A. 顶角相等的两个等腰三角形B. 有两边和一角分别相等的等腰三角形C. 各有一个角是,腰长都是3cm的两个等腰三角形D. 底边和顶角都相等的两个等腰三角形6.下列各组数中,是勾股数的是()A. 12,15,18B. 12,35,36C. ,,D. 5,12,137.若x<-1,则等于()A. B. C. 3x D.8.如图,在△ABC中,AQ=PQ,PR=PS,若PR⊥AB,PS⊥AC,垂足分别为点R、S,下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS,其中正确的是()A. ①②③B. ①C. ①②D. ①③9.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A. 1种B. 2种C. 3种D. 4种10.如图1所示为三角形纸片ABC,上有一点P.已知将A,B,C往内折至P时,出现折线,,,其中Q、R、S、T四点会分别在,,,上,如图2所示.若△ABC、四边形PTQR的面积分别为16、5,则△PRS面积为()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共16.0分)11.若,则x2008+2008y= ______ .12.已知a、b为两个连续的整数,且<<,则a+b=______.13.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.△BCE的周长是53cm,则BC= ______ cm.14.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为______.15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=______°.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2016= ______ .17.△ABC中,AB=13,BC=20,AC=21,AD平分∠BAC,M、N分别是AD、AB上的点,则BM+MN的最小值是______.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______ .三、解答题(本大题共9小题,共74.0分)19.求x的值:(1)(x-1)3=-27(2)(2x+1)2=;(3)=100.20.已知5a-1的平方根是±3,b、c均为有理数,且b、c满足等式b+c+2=c2+5,求a+b+c的算术平方根.21.如图A、B在方格纸的格点位置上.(1)若要再找一个格点C,使△ABC为等腰三角形,则这样的格点C在图中共有______ 个;(2)若要再找一个格点D,使△ABD的面积为3,则这样的格点D在图中共有______ 个;(3)若要再找一个个点E,使△ABE的三边均为无理数,则这样的格点E在图中共有______ 个.22.我们把两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.23.如图,在△ABC中,已知∠ACB=90°,CA=CB,AD⊥CE于点D,BE⊥CE于点E.(1)求证:AD=CE;(2)连接AE,若AB=5,BE=3,求四边形AEBC的周长和面积.24.两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)指出线段DC和线段BE的关系,并说明理由;(3)连接BD,试说明:△ABD的面积和△ACE的面积相等.25.如图,AD是△ABC的角平分线,DE⊥AC,垂足为点E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.(1)探索AB与BF的数量关系,说明理由.(2)若BF=1,求BC的长.26.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设出发的时间为t秒(1)出发1秒后,△ABP的周长=______;(2)当t=______时,△BCP是以BP为底边的等腰三角形;(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ把△ABC的周长分成相等的两部分?27.已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=3,CH=5.求边AC的长.答案和解析1.【答案】D【解析】解:=4,4的平方根是±2.故选:D.先求得的值,然后根据平方根的定义求解即可.本题主要考查的是主要考查的是平方根和算术平方根的定义,求得的值是解题的关键.2.【答案】C【解析】解:∵等腰三角形的一个外角等于100°,∴等腰三角形的一个内角为80°,①当80°为顶角时,其他两角都为50°、50°,②当80°为底角时,其他两角为80°、20°,所以等腰三角形的底角可以是50°,也可以是80°.故选C.等腰三角形的一个外角等于100°,则等腰三角形的一个内角为80°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质和三角形的内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.3.【答案】C【解析】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选c.根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.本题考查的是全等形的识别,主要根据全等图形的定义做题,属于较容易的基础题.4.【答案】D【解析】解:无理数有:-,π,1.20202020…共3个.故选D.无理数就是无限不循环小数,根据定义即可判断.本题考查了无理数的定义,无理数常见的三种类型(1)开不尽的方根,如等.(2)特定结构的无限不循环小数,如0.303 003 000 300003…(两个3之间依次多一个0).(3)含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.5.【答案】D【解析】解:A、两个等腰三角形的腰不一定相等,所以A错误;B、有两边和一角分别相等的等腰三角形不一定全等,所以B错误;C、各有一个角是45°,腰长都是3cm的两个等腰三角形不一定全等,所以C也错误;D、正确,利用了AAS或ASA都可以.故选D此题是一道开放性题,实则还是考查学生对三角形全等的判定方法的掌握情况.此处可以运用排除法进行分析.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.6.【答案】D【解析】解:A、不是,因为122+152≠182;B、不是,因为122+352≠362;C、不是,因为0.3,0.4,0.5不是正整数;D、是,因为52+122≠132.且5、12、13是正整数.故选D.根据勾股数的定义进行分析,从而得到答案.此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.7.【答案】D【解析】解:∵x<-1,∴2x-1<0,x+1<0,∴|2x-1|+=|2x-1|+=1-2x-1-x=-3x.故选D.将原式化为|2x-1|+,再根据x<-1判断出2x-1和x+1的大小,化简即可.主要考查了绝对值的意义和根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=-a.8.【答案】C【解析】解:如图,在RT△APR和RT△APS中,,∴RT△APR≌RT△APS(HL),∴∠AR=AS,①正确;∠BAP=∠1,∵AQ=PQ,∴∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件可以证明△BRP≌△QSP,故③错误.故选:C.易证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再根据AQ=PQ,可得∠1=∠2,即可求得QP∥AB,即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证RT△APR≌RT△APS是解题的关键.9.【答案】C【解析】解:如图,第一个沿直角三角形作斜边上的中线切,第二个三角形在钝角处沿20°角的另一边切,第三个三角形在60°角处沿20°角的另一边切,第四个三角形无法分成两个等腰三角形,所以,她的选择最多有3种.故选C.根据翻身后饼也能正好落在“锅”中,考虑把三角形分成两个等腰三角形即可.本题考查了全等三角形的应用,判断出翻折后正好能够重合是三角形是等腰三角形是解题的关键.10.【答案】C【解析】解:根据题意,得△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等.又△ABC、四边形PTQR的面积分别为16、5,∴△PRS面积等于(16-5×2)÷2=3.故选C.根据折叠,知△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等,结合已知△ABC、四边形PTQR的面积分别为16、5,即可求解.此题主要是能够根据折叠,得到重合图形的面积相等.11.【答案】2【解析】解:由,根据二次根式的意义,得解得x=1,故y=0,∴x2008+2008y=12008+20080=2.由于已知等式的两个二次根式有意义,而二次根式要求被开方数为非负数,由此列不等式组求x、y的值,接着就可以求出结果.本题考查了二次根式的意义,指数运算,属于基础题,需要熟练掌握.12.【答案】11【解析】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.13.【答案】21【解析】解:∵在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,∴AE=EB,AE+EC=AC=32cm,∴BE+EC=32cm,∵△BCE的周长是53cm,∴BE+EC+BC=53cm,∴BC=53-BE-EC=53-32=21cm,故答案为:21.利用线段的垂直平分线的性质可得AE=EB,然后根据△BCE的周长是53cm,即可求得答案.此题考查了线段垂直平分线的性质.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键,此题难度不大,注意掌握数形结合思想的应用.14.【答案】14或4【解析】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为DC-BD=9-5=4.故答案为14或4.分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD-BD.本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.15.【答案】45【解析】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解题的关键.16.【答案】22015【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1,以此类推:a2016=22015.故答案是:22015根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1…进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16a1…进而发现规律是解题关键.17.【答案】12【解析】解:∵AD平分∠BAC,作N关于AD的对称点N′,则N′在AC上,连接MN′,则MN=MN′,过B作BE⊥AC于E,∵BM+MN=BM+MN′,∴BM+MN≥BE(垂线段最短),设AE=x,则CE=21-x,则,解得:x=5,∴BE==12,即BM+MN的最小值是12.通过作辅助线,先找出BM+MN的最小值是BE,设AE=x,根据勾股定理列方程组可求出x的值,从而得BE的长,即是BM+MN的最小值.本题考查了最短路径问题,根据角平分线的性质定理及垂线段最短,得三角形的高线BE即是最短路径.18.【答案】【解析】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.19.【答案】解:(1)由题意得x-1=3,解得:x=4;(2)由题意得:2x+1=±2,解得:x=或x=-.(3)由题意得:x-1=±100,解得:x=101,x=-99.【解析】(1)依据平方根的定义可得到x-1=3,故此可求得x的值;(2)依据平方根和算术平方根的定义可得到2x+1=±2,故此可求得x的值;(3)先依据平方根的定义得到|x-1|=100,从而可求得x的值.本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.20.【答案】解:∵5a-1的平方根是±3,∴5a-1=9∴a=2,∵b+c+2=c2+5,∴c=-2,b=9,∴a+b+c=2-2+9=9,∴9的算术平方根是3.【解析】根据平方根、算术平方根,即可解答.本题考查了实数,解决本题的关键是熟记平方根、算术平方根.21.【答案】10;8;16【解析】解:(1)如图所示:AB==2,以B为顶点,BC=BA,这样的C点有2个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点有6个,所以使△ABC的等腰三角形,这样的格点C的个数有10个.(2)如图所示:若要再找一个格点D,使△ABD的面积为3,则这样的格点D在图中共有8个.(3)如图所示:若要再找一个个点E,使△ABE的三边均为无理数,则这样的格点E在图中共有16个,故答案为:10;8;16.(1)根据勾股定理计算出AB=2,然后分类讨论确定C点位置;(2)找到△ABD的面积为3的格点即为所求;(3)本题需根据勾股定理和图形即可找出所有满足条件的点..本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算与作图是解决问题的关键.22.【答案】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【解析】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.23.【答案】(1)证明:∵BE⊥CE,AD⊥CE,∠ACB=90°,∴,∠ADE=∠ADC=∠E=90°=∠ACB,∠ACD+∠BCE=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACD,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE;(2)解:连接AE,如图所示:∵∠ACB=90°,CA=CB,∴CA=CB=AB=5,∴AD=CE===4,∵△ACD≌△CBE,∴CD=BE=3,∴DE=CE-CD=1,∴AE===,∴四边形AEBC的周长=AE+BE+BC+AC=+3+5+5=13+;四边形AEBC的面积=△ACE的面积+△BCE的面积=×4×4+×4×3=14.【解析】(1)证出∠CBE=∠ACD,由AAS证明△ACD≌△CBE,得出对应边相等即可;(2)连接AE,由勾股定理和等腰直角三角形的性质得出CA=CB=AB=5,由勾股定理求出AD=CE=4,由全等三角形的性质得出CD=BE=3,求出DE=CE-CD=1,再由勾股定理求出AE即可得出四边形AEBC的周长,四边形AEBC的面积=△ACE的面积+△BCE的面积,代入计算即可.本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理;熟练掌握等腰直角三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.24.【答案】解:(1)图2中△ABE≌△ACD,证明如下:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD∵在△ABE和△ACD中,∴△ABE≌△ACD;(2)DC=BE,CD⊥BE,理由:∵△ABE≌△ACD,∴CD=BE,∠ACD=∠B=45°,∵∠ACB=45°,∴∠DCB=90°,∴CD⊥BE;(3)过A作AH⊥BC于H,∵△ABC是等腰直角三角形,∴AH=BC,∴S△BCD=BC•CD=AH•BE,S△ABE=BE•AH,∴S△BCD=2S△ABE,∵△ABE≌△ACD,∴S△ABD+S△ABC=S△ABE=S△ABC+S△ACE,即S△ABD=S△ACE.【解析】(1)根据等腰直角三角形的性质得出AB=AC,AE=AD,∠BAC=∠EAD=90°,求出∠BAE=∠CAD,根据SAS证△ABE≌△ACD即可;(2)根据全等三角形的性质即可得到结论;(3)过A作AH⊥BC于H,根据三角形面积的和差即可得到结论.本题考查了等腰直角三角形性质,全等三角形的判定和性质,三角形面积的计算,主要考查学生的计算能力和推理能力.25.【答案】解:(1)结论:AB=3BF.理由:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD平分∠BAC,∴DC=BD,在△CDE与△DBF中,,∴△CDE≌△DBF(ASA),∴DE=DF,CE=BF,∵AE=2BF,∴AC=3BF,∴AB=3BF.(2)∵AC=AB,CD=BD,DE⊥AC,∴AD⊥BC,∴∠CDA=∠CED=90°,∵∠C=∠C,∴△CED∽△CDA,∴CD2=CE•CA,∵CE=BF=1,AC=3BF=3,∴CD2=3,∴CD=,∴BC=2CD=2.【解析】(1)首先证明AC=AB,再证明△CDE≌△DBF,推出DE=DF,CE=BF,由题意AE=2BF,AC=AB=3BF.(2)只要证明△CED∽△CDA,得CD2=CE•CA,由此即可解决问题.本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,勾股定理等知识,掌握等腰三角形的性质三线合一是解题的关键.26.【答案】(7+)cm,;1.5s或2.7s【解析】解:(1)如图1所示:由∠C=90°,AB=5cm,BC=3cm,∴AC===4(cm),动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2cm,∴AP=2cm,∵∠C=90°,∴PB==(cm),∴△ABP的周长为:AP+PB+AB=2+5+=7+(cm),故答案为:(7+)cm,(2)分两种情况:①如图2所示:当点P在边AC上时,CP=BC=3cm,3÷2=1.5(s),此时用的时间为1.5s,△BCP是以BP为底边的等腰三角形;②如图3所示:当点P在边AB上时,CP=BC=3cm,过C作斜边AB的高CD,则CD==2.4(cm),在Rt△PCD中,PD===1.8(cm),∴BP=2PD=3.6cm,所以P运动的路程为9-3.6=5.4(cm),则用的时间为5.4÷2=2.7(s),△BCP为等腰三角形;综上所述:当t=1.5s或2.7s 时,△BCP是以BP为底边的等腰三角形;故答案为:1.5s或2.7s;(3)分两种情况:①如图6所示:当P点在AC上,Q在BC上,则PC=2t,CQ=t,∵直线PQ把△ABC的周长分成相等的两部分,∴2t+t=4-2t+3-t+5,解得:t=2;②如图7所示:当P点在BC上,Q在AB上,则BQ=t-3,BQ=2t-9∴AQ=5-(t-3)=8-t,CQ=3-(2t-9)=12-2t,∵直线PQ把△ABC的周长分成相等的两部分,∴4+8-t+12-2t=t-3+2t-9,解得:t=6,综上所述:当t为2s或6s时,直线PQ把△ABC的周长分成相等的两部分.(1)根据速度为每秒2cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)由勾股定理得AC=4cm,有两种情况,①当点P在边AC上时;②当点P 在边AB上时;求出点P运动的路程,即可得出结果;.(3)分类讨论:当P点在AC上,Q在BC上,则PC=2t,CQ=t,根据题意得出方程,解方程即可;当P点在BC上,Q在AB上,则BQ=t-3,BQ=2t-9;根据题意得出方程,解方程即可.此题考查了勾股定理、等腰三角形的判定与性质以及三角形面积的计算;此题涉及到了动点,有一定难度,熟练掌握等腰三角形的判定与性质和勾股定理,进行分类讨论是解决问题的关键.27.【答案】解:(1)①连接CD,∵∠ACB=90°,D为AB的中点,AC=BC,∴CD=AD=BD,又∵AC=BC,∴CD⊥AB,∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,∵DF⊥DE,∴∠EDF=∠EDC+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中∴△ADE≌△CDF,∴DE=DF.②连接DG,∵∠ACB=90°,G为EF的中点,∴CG=EG=FG,∵∠EDF=90°,G为EF的中点,∴DG=EG=FG,∴CG=DG,∴∠GCD=∠CDG又∵CD⊥AB,∴∠CDH=90°,∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,∴∠GHD=∠HDG,∴GH=GD,∴CG=GH.(2)如图,当E在线段AC上时,∵CG=GH=EG=GF,∴CH=EF=5,∵△ADE≌△CDF,∴AE=CF=3,∴在Rt△ECF中,由勾股定理得:,∴AC=AE+EC=3+4=7;如图,当E在线段CA延长线时,AC=EC-AE=4-3=1,综合上述AC=7或1.【解析】(1)①连接CD,推出CD=AD,∠CDF=∠ADE,∠A=∠DCB,证△ADE≌△CDF 即可;②连接DG,根据直角三角形斜边上中线求出CG=EG=GF=DG,推出∠GCD=∠GDC,推出∠GDH=∠GHD,推出DG=GH即可;(2)求出EF=5,根据勾股定理求出EC,即可得出答案.本题考查了等腰三角形性质和判定,直角三角形斜边上的中线,全等三角形的性质和判定的应用,主要考查学生综合运用定理进行推理的能力,有一定的难度.。

江苏省无锡市北塘区2014-2015学年八年级上期末考试数学试题及答案

A
F C D E B
(第 10 题)
12.当 x≤2 时,计算: (x-2)2 = . 13.如图∠ABC=∠DEF,AB=DE,要说明△ ABC≌△DEF, 若以“SAS”为依据,还要添加的条件为______________________. F B 14.点 A(-3,4 )关于原点对称的点的坐标为______________. E C 15.函数 y=kx+b(k≠0)的图象平行于直线 y=2x+3,且交 y 轴 (第 13 题) 于点(0 ,-1) ,则其函数表达式是 . 16.如图,已知函数 y1=2x-1 和 y2=x-3 的图像交于点 P(-2,-5),则根据图像可得不等式 y1>y2 的 解集是 . 17.如图,在等边△ ABC 中,AB=6,N 为 AB 上一点,且 AN=2,∠BAC 的平分线交 BC 于点 D,M 是 AD 上的动点,连结 BM、MN,则 BM+MN 的最小值是 . 18.如图,在 Rt△ ABC 中,∠ACB=90° ,AB=5cm,BC=4cm.动点 D 从点 A 出发,以每秒 1cm 的速度 沿射线 AC 运动,当 t= 时,△ ABD 为等腰三角形.
E
A
C D
B
F
21. (本题 9 分)如图,点 E 是∠AOB 的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是 C、D. 求证: (1)∠EDC=∠ECD; (2)OC=OD; B (3)OE 是线段 CD 的垂直平分线. D
E
O
C
A
22. (本题 7 分)如图,在平面直角坐标系中,A(-1,5),B (-1,0),C (-4,3). (1)求出△ABC 的面积; (2)在图中作出△ABC 关于 y 轴的对称图形△A1B1C1; (3)写出点 A1、B1、C1 的坐标. y A C 6 4 2 -5 B -2 O 5 x

江苏省无锡市北塘区2015-2016学年八年级上学期期末考试数学试题解析(解析版)

选择题1.在﹣2,0,3,6这四个数中,最大的数是 【 】A .﹣2B .0C . 3D .6【答案】C【解析】试题分析:正数大于零大于负数,-2<0<3.考点:实数的大小比较.2.下列“数字”图形中,有且仅有一条对称轴的是 【 】【答案】A【解析】试题分析:A 轴对称图形,一条对称轴;B 不是轴对称图形;C 是轴对称图形,有两条对称轴;D 是轴对称图形,有两条对称轴.考点:轴对称图形.3.下列各式中,与2是同类二次根式的是 【 】A .6B .a 2(a >0)C .23 D .21 【答案】D考点:同类二次根式4.当0,0<<b k 时,函数y kx b =+的图像大致是 【 】【答案】B【解析】试题分析:对于一次函数y=kx+b,k<0,b<0时,图形经过二、三、四象限.考点:一次函数图象的性质.5.如图,DE是△ABC中边AC的垂直平分线,若BC=18 cm, AB=10 cm,则△ABD的周长为【】A.16 cm B.18 cm C.26 cm D.28 cm【答案】D【解析】试题分析:∵DE为AC的垂直平分线∴AD=CD ∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=10+18=28cm. 考点:线段中垂线的性质.6.老王以每千克0.8元的价格从批发市场购进若干千克西瓜到市场销售,在销售了部分西瓜后,余下的每千克降价0.2元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么老王赚了【】A.32元 B.36元 C. 38元 D. 44元【答案】C【解析】试题分析:首先求出原价,然后根据后面的总价和单价求出数量,然后进行计算.原售价:64÷40=1.6(元)(78-64)÷(1.6-0.2)=14÷1.4=10(千克),总质量:40+10=50(千克),78-50×0.8=38(元)考点:一次函数图象的应用.二、填空题7.若式子x-2在实数范围内有意义,则x的取值范围是.【答案】x≥2.【解析】试题分析:要保证二次根式有意义,则需要保证被开方数为非负数,即x-2≥0,解得:x≥2.考点:二次根式的性质.的算术平方根等于 .【解析】,本题实际上就是计算3的算术平方根.考点:算术平方根的计算.km.9.地球七大洲的总面积约为149 480 000Km²,如对这个数据精确到百万位可表示为210【答案】1.49×8考点:科学计算法10.点M(4,-3)关于原点对称的点N的坐标是.【答案】(-4,3)【解析】关于原点对称的两个点的横纵坐标分别互为相反数.试题分析:考点:关于原点对称点的特征.11.如图,在数轴上表示1A、B,点B关于点A的对称点为C,则C点所表示的数是.【答案】2【解析】试题分析:首先设C 点表示的数为x ,根据题意可得AB=AC -1=1-x ,解得:x=2. 考点:数轴上两点之间的距离计算.12.如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,点P 的横坐标为﹣1,则关于x 的不等式x +b >kx ﹣1的解集 .【答案】x >-1【解析】试题分析:根据题意可得即1y >2y ,也就是函数1y 在函数2y 的上方,根据图象可得当x >-1时,函数1y 在函数2y 的上方.考点:一次函数与一元一次不等式的关系.13.如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的 坐标是(-2,-2),白棋③的坐标是(-1,-4),则黑棋②的坐标是 .【答案】(1,-3)【解析】试题分析:根据给出的图示中点的坐标,找出坐标原点,然后求出黑棋②的坐标.考点:坐标系中点的坐标表示14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是.(添加一个条件即可)【答案】∠B=∠C【解析】试题分析:根据AB=AC,∠A为公共角,添加∠B=∠C,我们可以根据ASA来判定△ABE和△ACD全等.考点:全等三角形的判定15.在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.【答案】6【解析】试题分析:在x轴的正半轴和y轴的正半轴上各有2个,在x轴的负半轴和y轴的负半轴上各有1个,总计有6个.考点:等腰三角形的判定16.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【答案】120 13【解析】试题分析:根据题意可得:CD=5,AD=12,△ABC 的面积为60,过点C 作CH ⊥AB ,与AD 的交点就是点F ,根据三角形全等可得EF=FH ,即CH=CF+FH=CF+EF ,根据面积相等的法则可得:CH=12013,即CF+EF 的最小值为12013. 考点:三角形全等的性质.三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.计算(本题满分8分)⑴(﹣1)2015﹣3-+12 +(3﹣π)0; ⑵)(53)13(2+--)(53-【答案】(1);(2)、-【解析】试题分析:(1)、根据(-1)的奇数次幂为-1,任何非零实数的0次幂为1;(2)、根据完全平方公式和平方差公式将式子展开,然后进行实数的计算.试题解析:(1)、原式= ,-1﹣3+23 +1=3;(2)、原式=4-23-4=32-考点:实数的计算.18.(本题满分6分)已知一次函数y=kx +b 的图象经过点(-1,-5),且与正比例函数12y x =的图象相交于点(2,a ).⑴求a 的值.⑵求一次函数y=kx +b 的表达式.⑶在同一坐标系中,画出这两个函数的图象.【答案】(1)、a=1;(2)、y=2x-3;(3)、图象见解析【解析】试题分析:(1)、将点(2,a)代入正比例函数解析式求出a的值;(2)、将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)、根据描点法画出函数图象.试题解析:(1)∵正比例函数12y x=的图象过点(2,a)∴a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)、(2,1)∴52,213k b kk b b-+=-=⎧⎧⎨⎨+==-⎩⎩解得∴y=2x-3(3)函数图像如右图考点:(1)、待定系数法求函数解析式;(2)、描点法画函数图象.19.(本题满分8分)⑴已知x=2-1,求x2+3x-1的值;⑵已知22a b =--=,求22()()(2)3a b a b a b a ++-+-值.【答案】(1)-1;(2)、1.【解析】试题分析:(1)、将x 的值代入代数式进行计算;(2)、首先将多项式进行化简计算,然后将a 、b 的值代入化简后的式子进行计算.试题解析:(1)、当x =2-1时,x 2+3x -1=(2-1)2+3(2-1)-1=2-22+1+32-3-1=2-1.⑵原式=2a +2ab+2b +22a -ab -2b -32a =ab当a=-2-2 ∴原式=ab=(-2-2)=4-3=1.考点:代数式的化简求值.20.(本题满分6分)已知,如图,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE =DF .【答案】证明过程见解析【解析】试题分析:首先连接AD ,根据AC=AB ,CD=BD ,AD=AD 可得△ACD ≌△ABD ,从而得出AD 为∠CAB 的平分线,然后根据角平分线的性质可得DE=DF.试题解析:连接AD ,在△ACD 和△ABD 中,, ∴△ACD ≌△ABD (SSS ),∴∠EAD=∠FAD ,即AD 平分∠EAF , ∵DE ⊥AE ,DF ⊥AF , ∴DE=DF .考点:(1)、三角形全等的证明;(2)、角平分线的性质.21.(本题满分7分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1) 在图中画出与△ABC 关于直线l 成轴对称的△A //C B ;(2) 线段/CC 被直线l ;(3) 在直线l 上找一点P ,使PB+PC 的长最短,并算出这个最短长度.【答案】(1)、图象见解析;(2)、垂直平分;(3)、5.【解析】试题分析:(1)、根据轴对称图形的性质画出对称轴;(2)、根据轴对称图形的性质得出答案;(3)、根据直角三角形的勾股定理可以求出线段的长度.试题解析:(1)(2)垂直平分 (3)连接BC ’交l 于点P ,如图,在∆BC ’D 中222''BC D C BD =+ 22243'+=BC ∴5'=BC ∴最短长度为5.考点:(1)、轴对称图形的性质;(2)、直角三角形的勾股定理.22.(本题满分7分)探索与研究:方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 面积相等,而四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和,根据图示写出证明勾股定理的过程;方法2:如图(b),是任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写一种证明勾股定理的方法吗?【答案】证明过程见解析【解析】 试题分析:分别根据两个图形利用面积相等的法则进行计算.试题解析:方法1:∵由图(a)可知S 正方形ACFD =S 四边形ABFE , ∴S 正方形ACFD =S ⊿BAE +S ⊿BFE又∵正方形ACFD 的边长为b, S Rt △BAE =221c ,S Rt △BFE =()()a b a b -+21 ∴b 2 =221c +()()a b a b -+21 即2b2 =c 2 +(b+a)(b-a) 整理得: a 2 +b 2=c 2 方法2:如图(b)中,Rt △BEA 和Rt △ACD 全等, 设CD=a,AC=b,AD=c(b>a),则AE=a,BE=b,AB=c,EC=b-a 由图(b),S 四边形ABCD = S Rt △BAE + S Rt △ACD +S Rt △BEC =S Rt △BAD +S △BCD又∵ S Rt △BAE =ab 21, S Rt △ACD = ab 21 ,S Rt △BEC =()a b b -21, S Rt △BAD =221c ,S △BCD =()a b a -21, ∴ab 21+ab 21+()a b b -21=221c + ()a b a -21 即2ab+b(b-a) = c 2 +a(b-a) 整理得: a 2+b 2=c 2 考点:利用面积法证明勾股定理.23.(本题满分8分)如图,A (0,1),M (3,2),N (4,4) , 动点P 从点A 出发,沿y轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为 t 秒.(直线y = kx+b 平移时k 不变)⑴当t =3时,求 l 的解析式;⑵若点M ,N 位于l 的异侧,确定 t 的取值范围.【答案】(1)、y=-x+4;(2)、4<t <7.(a)【解析】试题分析:(1)、将A点的坐标代入可得b=1,根据平移可得b=1+t,将t=3代入求出b的值;(2)、将点M和N分别代入解析式分别求出t的值,从而得出取值范围.试题解析:(1)、直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t当t=3时,b=4 ∴y=-x+4(2)、当直线y=-x+b过M(3,2)时,2=-3+b解得b=5, ∴5=1+t∴t=4当直线y=-x+b过N(4,4)时,4=-4+b解得 b=8 ∴8=1+t∴t=7 ∴4<t<7 考点:一次函数的性质24.(本题满分9分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.⑴求证:BF=2AE;⑵若CD,求AD的长.【答案】(1)、证明过程见解析;(2)、【解析】试题分析:(1)、根据AD⊥BC,∠BAD=45°,得出AD=BD,∠ADC=∠FDB=90°,根据AD⊥BC,BE⊥AC得出∠CAD=∠CBE,从而得出△ADC和△BDF全等,得出AC=BF,根据AB=BC,BE⊥AC,得出AE=EC,可得BF=2AE;(2)、根据△ADC和△BDF全等得出,根据Rt△CDF的勾股定理得出CF=2,得出AF=FC=2,根据AD=AF+DF求出长度.试题解析:(1)、∵ AD⊥BC,∠BAD=45°,∴∠ABD=∠BAD=45°.∴ AD=BD.∵ AD⊥BC,BE⊥AC, ∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90o ∴∠CAD=∠CBE. 又∵∠CDA=∠FDB=90°,∴△ADC≌△BDF. ∴ AC=BF.∵ AB=BC,BE⊥AC, ∴ AE=EC,即AC=2AE.∴ BF=2AE.(2)、∵△ADC≌△BDF,∴. ∴在Rt△CDF中,CF=2.∵ BE⊥AC,AE=EC,∴ AF=FC=2. ∴.考点:三角形全等的证明与性质.25.(本题满分9分)钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行)⑴直接写出渔船离港口的距离s 和它离开港口的时间t 的函数关系式.⑵求渔船和渔政船相遇时,两船与钓鱼岛的距离.⑶在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?【答案】(1)、当0≤t ≤5时,s =30 ;当5<t ≤8时,s =150;当8<t ≤13时,s =-30t +390;(2)、60;(3)、9.6 小时或10.4小时【解析】试题分析:(1)、分三种情况写出函数解析式,(2)、首先利用待定系数法求出渔政船离港口的距离与渔船离开港口的时间的函数关系式,然后进行计算;(3)、分相遇前和相遇之后两种情况分别求出t 的值. 试题解析:(1)、当0≤t ≤5时,s =30;当5<t ≤8时,s =150;当8<t ≤13时,s =-30t +390;(2)、渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s =kt +b⎪⎩⎪⎨⎧+=+=b k b k 33415080解得: k =45 b =-360 ∴s =45t -360 ⎩⎨⎧+-=-=3903036045t s t s解得 t =10 s =90 渔船离钓鱼岛距离为 150-90=60 (海里)(3) S 渔=-30t +390 S 渔政=45t -360.分两种情况:①相遇之前,S 渔-S 渔政=30 -30t +390-(45t -360)=30 解得t =485(或9.6)② 相遇之后,S 渔政-S 渔=30 45t -360-(-30t +390)=30 解得 t =525(或10.4) ∴当渔船离开港口9.6小时或10.4小时时,两船相距30海里. 考点:(1)、一次函数的应用;(2)、分类讨论思想的应用.高考一轮复习:。

aiguofudao 2014-2015秋 常州外国语学校和无锡北塘区八年级上数学期中模拟试卷及答案

A A’ A B 1 2 C A E 1 F (第 7 题) B’ 2 D C B F E
2 E
D (第 6 题) B
Q C B C P (第 9 题)
1
D (第 8 题)
9.如图,已知长方形 ABCD 的边长 AB=16cm,BC=12cm,点 E 在边 AB 上,AE=6cm,如果点 P 从点 B 出发在线段 BC 上以 2cm/s 的速度向点 C 向运动,同时,点 Q 在线段 CD 上由点 D 向 C 点运动.则当△BPE 与△CQP 全等时,时间 t 为„( ) A.1s B.3s C.1s 或 3s D.2s 或 3s 10.如图,在△ABC 中,AB=AC,∠A=40°,AB 的垂直平分线交 AB 于点 D, 交 AC 于点 E,连接 BE,则∠CBE 的度数为( ) 70° 80° 40° 30° A. B. C. D. 11.如图,将矩形 ABCD 沿 EF 折叠,使顶点 C 恰好落在 AB 边的中 点 C′上.若 AB=6,BC=9,则 BF 的长为( ) 4.5 5 A.4 B. C . D . 3
8.两块完全一样的含 30°角的三角板重叠在一起,若绕长直角边中点 M 转动,使上面一块 的斜边刚好过下面一块的直角顶点,如图,∠A=30°,AC=10,则此时两直角顶点 C、C, 间的距离是_______. 9.如图,△ABC 的边 BC 的垂直平分线 MN 交 AC 于 D,若△ADB 的周长是 10cm,AB=4cm,则 AC= cm. 10. 如图, 在△ABC 中, BC=AC, ∠C=90°, AD 平分∠CAB, DE⊥AB, 垂足为点 E, AB=10 cm. 那 么△BDE 的周长是 cm
ห้องสมุดไป่ตู้
1.已知 x、y 为实数,y= 值.

2014-2015年江苏省无锡市新区八年级(上)数学期中试卷及参考答案

2014-2015学年江苏省无锡市新区八年级(上)期中数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)1.(3分)用长度分别为7cm、24cm和25cm的三根小木棒构成的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.(3分)下列可以判定两个直角三角形全等的条件是()A.斜边相等B.面积相等C.两对锐角对应相等D.两对直角边对应相等3.(3分)下图是用纸折叠成的生活图案,其中不是轴对称图形的是()A.B.C.D.4.(3分)如图,在△ABC中,AB=AC,AE=BE,∠BAE=40°,且AE=AF,则∠FEC 等于()A.10°B.15°C.20°D.25°5.(3分)如图,在△ABC中,∠B=90°,AP是∠BAC的平分线,PQ⊥AC,垂足为Q.下列4个结论:①AB=AQ;②∠APB=∠APQ;③PQ=PB;④∠CPQ=∠APQ.其中正确的有()A.1个 B.2个 C.3个 D.4个6.(3分)如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于点E、F,当∠A的位置及大小变化时,线段EF和BE+CF 的大小关系为()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定7.(3分)如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为EF,则CE的长为()A.cm B.cm C.cm D.cm8.(3分)如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A. B. C.D.二、填空题:(本大题共10小题,每空格2分,共24分)9.(2分)Rt△ABC的斜边长为6cm,则斜边上的中线长为cm.10.(4分)直角三角形两条直角边的长分别为5、12,则斜边长为,斜边上的高为.11.(2分)如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.12.(2分)等腰三角形两条边长分别是4cm和6cm,则它的周长为.13.(2分)如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=°.14.(4分)如图,在△ABC中,AB=AC,DE垂直平分AB交AC于E,BC=10cm,△BCE的周长是24cm,且∠A=40°,则∠EBC=;AB=.15.(2分)如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要cm.16.(2分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.17.(2分)如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤S=S四边形AEPF.△ABC当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的序号有.18.(2分)如图,已知三角形木块ABC,∠A=30°,∠B=90°,AC=10cm,一只蚂蚁在AC、AB间往返爬行.当蚂蚁从木块AC边的中点O出发,爬行到AB边上任意一点P后,又爬回到AC边上的任意一点Q后,再爬行到点B,在这一过程中这只蚂蚁爬行的最短距离为.三、解答题:(本大题共8小题,共52分)19.(6分)如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.20.(5分)电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.21.(6分)已知△ABC中,AB=AC=5,BC=6,AM平分∠BAC,D为AC的中点,E为BC延长线上一点,且CE=BC.(1)求ME的长;(2)求证:DB=DE.22.(6分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.23.(7分)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.24.(5分)如图,有一块长为6.5单位长度,宽为2单位长度的长方形纸片,请把它分成6块,再拼成一个正方形,先在图中画出分割线,再画出拼后的图形,并标出相应的数据.25.(8分)(1)如图1,Rt△ABC中,AB=AC,∠BAC=90°,直线AE是经过点A 的任一直线,BD⊥AE于D,CE⊥AE于E,若BD>CE,试问:BD=DE+CE成立吗?请说明理由.(2)如图2,等腰△ABC中,AB=AC,若顶点A在直线m上,点D、E也在直线m 上,如果∠BAC=∠ADB=∠AEC=110°,那么(1)中结论还成立吗?如果不成立,BD、DE、CE三条线段之间有怎样的关系?并说明理由.(8分)26.(9分)学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N 分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①;②;③.并对②,③的判断,选择一个给出证明.2014-2015学年江苏省无锡市新区八年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)1.(3分)用长度分别为7cm、24cm和25cm的三根小木棒构成的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【解答】解:∵72=49,242=576,252=625,∴72+242=252,∴该三角形是直角三角形.故选:B.2.(3分)下列可以判定两个直角三角形全等的条件是()A.斜边相等B.面积相等C.两对锐角对应相等D.两对直角边对应相等【解答】解:A、斜边相等,缺少一个条件,不能证明两个直角三角形全等,故此选项错误;B、面积相等,不能证明两个直角三角形全等,故此选项错误;C、两对锐角对应相等,缺少边相等的条件,不能证明两个直角三角形全等,故此选项错误;D、两对直角边对应相等,可利用SAS定理证明两个直角三角形全等,故此选项正确;故选:D.3.(3分)下图是用纸折叠成的生活图案,其中不是轴对称图形的是()A.B.C.D.【解答】解:A、信封:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误;B、飞机:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误;C、裤子:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项正确.故选:D.4.(3分)如图,在△ABC中,AB=AC,AE=BE,∠BAE=40°,且AE=AF,则∠FEC 等于()A.10°B.15°C.20°D.25°【解答】解:∵AE=BE,∠BAE=40°,∴∠B=∠BAE=40°,∵AB=AC,∴∠C=∠B=40°,∴∠BAC=180°﹣40°﹣40°=100°,∴∠EAF=100°﹣40°=60°,∵AE=AF,∴∠AEF=∠AFE=60°,∵∠AEC=∠B+∠BAE=40°+40°=80°,∴∠FEC=80°﹣60°=20°,故选:C.5.(3分)如图,在△ABC中,∠B=90°,AP是∠BAC的平分线,PQ⊥AC,垂足为Q.下列4个结论:①AB=AQ;②∠APB=∠APQ;③PQ=PB;④∠CPQ=∠APQ.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵∠B=90°,AP是∠BAC的平分线,PQ⊥AC,∴PB=PQ,故③正确;在Rt△ABP和Rt△AQP中,,∴Rt△ABP≌Rt△AQP(HL),∴AB=AQ,故①正确;∠APB=∠APQ,故②正确;只有∠C=30°时,∠CPQ=∠APQ,故④不正确,综上所述,说法正确的是①②③共3个.故选:C.6.(3分)如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于点E、F,当∠A的位置及大小变化时,线段EF和BE+CF 的大小关系为()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EDB=∠EBD,∴ED=BE,同理DF=FC,∴ED+DF=BE+FC,即EF=BE+FC,故选:B.7.(3分)如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为EF,则CE的长为()A.cm B.cm C.cm D.cm【解答】解:如图,设CE的长度为xcm;由题意得:AE=BE=10﹣x(cm),∵△ACE为直角三角形,∴AE2=AC2+CE2,即x2+52=(10﹣x)2,解得:x=,故选:A.8.(3分)如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A. B. C.D.【解答】解:根据轴对称确定最短路线问题,A、B、C选项中,B图形方案最短,AM+BM>22,C选项中,铺设的管道长为22,故C最短,故选:B.二、填空题:(本大题共10小题,每空格2分,共24分)9.(2分)Rt△ABC的斜边长为6cm,则斜边上的中线长为3cm.【解答】解:∵Rt△ABC的斜边长为6cm,∴中线长=6÷2=3cm.10.(4分)直角三角形两条直角边的长分别为5、12,则斜边长为13,斜边上的高为.【解答】解:由勾股定理可得:AB2=52+122,则AB=13,直角三角形面积S=×5×12=×13×CD,可得:斜边的高CD=.故答案为:13,.11.(2分)如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB).【解答】解:增加一个条件:∠C=∠E,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等.(答案不唯一).故填:∠C=∠E.12.(2分)等腰三角形两条边长分别是4cm和6cm,则它的周长为14cm或16cm.【解答】解:当腰为4cm时,则三角形的三边长为4cm、4cm、6cm,满足三角形的三边关系,此时三角形的周长为14cm,当腰为6cm时,则三角形的三边长为6cm、6cm、4cm,满足三角形的三边关系,此时三角形的周长为16cm,故答案为:14cm或16cm.13.(2分)如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=112°.【解答】解:∵△OAD≌△OBC,∴∠C=∠D=20°,在△AOD中,∠CAE=∠D+∠O=20°+72°=92°,在△ACE中,∠AEB=∠C+∠CAE=20°+92°=112°.故答案为:112.14.(4分)如图,在△ABC中,AB=AC,DE垂直平分AB交AC于E,BC=10cm,△BCE的周长是24cm,且∠A=40°,则∠EBC=30°;AB=14cm.【解答】解:∵∠A=40°,AB=AC,∴∠ABC=∠C=(180°﹣∠A)=70°,∵DE垂直平分AB交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠EBC=∠ABC=∠ABE=70°﹣40°=30°,∵BC=10cm,△BCE的周长是24cm,∴BE+EC+BC=24cm,∴AE+EC+BC=24cm,∴AC+BC=24cm,∴AC=14cm,即AB=14cm,故答案为:30°,14cm15.(2分)如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要5cm.【解答】解:将长方体展开,连接A、P,∵长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=BC,∴AC=4cm,PC=BC=3cm,根据两点之间线段最短,AP==5(cm).故答案为:5.16.(2分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.17.(2分)如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:=S ①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤S四边形AEPF.△ABC当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的序号有①②③⑤.【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=∠BAC=45°,AP=BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②由①知,△AEP≌△CFP,∴∠APE=∠CPF.正确;③由①知,△AEP≌△CFP,∴PE=PF.又∵∠EPF=90°,∴△EPF是等腰直角三角形.正确;④只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;⑤∵△AEP≌△CFP,同理可证△APF≌△BPE.=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.正确.∴S四边形AEPF故正确的序号有①②③⑤.18.(2分)如图,已知三角形木块ABC,∠A=30°,∠B=90°,AC=10cm,一只蚂蚁在AC、AB间往返爬行.当蚂蚁从木块AC边的中点O出发,爬行到AB边上任意一点P后,又爬回到AC边上的任意一点Q后,再爬行到点B,在这一过程中这只蚂蚁爬行的最短距离为10cm.【解答】解:如图,作O点关于AB的对称点M,作B点关于AC的对称点N,连接MN,交AB于P,交AC于Q,MN就是蚂蚁爬行的最短距离,∴OP=MP,BQ=NQ,∵AC=10,AO=CO,∴OA=5,∵OM⊥AB,∠B=90°,∴OM∥BC,∵AO=CO,∴AK=BK,在△OAK和△BMK中,,∴△OAK≌△BMK(SAS),∴BM=OA=5,∠A=∠KBM=30°,∵BN⊥AC,∴∠ABG=60°,∴∠MBN=90°,∴AB=2BG=BN,∵BC=AC=5,∴BM=BC,在△ABC和△NBM中,,∴△ABC≌△NBM(SAS),∴MN=AC=10cm.故答案为10cm.三、解答题:(本大题共8小题,共52分)19.(6分)如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.【解答】解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.20.(5分)电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.【解答】解:分别作出公路夹角的角平分线和线段AB的中垂线,他们的交点为P,则P点就是修建发射塔的位置.21.(6分)已知△ABC中,AB=AC=5,BC=6,AM平分∠BAC,D为AC的中点,E为BC延长线上一点,且CE=BC.(1)求ME的长;(2)求证:DB=DE.【解答】(1)解:∵AB=AC=5,AM平分∠BAC,∴BM=CM=BC=CE=3,∴ME=MC+CE=3+3=6;(2)证明:∵AB=AC=5,AM平分∠BAC,∴AM⊥BC,且D为AC中点,∴DM=DC,过D作DN⊥MC,如图,则MN=CN,又∵BM=CE,∴BN=EN,∴D在线段BE的垂直平方线上,∴DB=DE.22.(6分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【解答】解:连接BD,∵AB=3cm,AD=4cm,∠A=90°=×3×4=6cm2∴BD=5cm,S△ABD又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°=×5×12=30cm2∴S△BDC∴S=S△ABD+S△BDC=6+30=36cm2.四边形ABCD23.(7分)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【解答】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.24.(5分)如图,有一块长为6.5单位长度,宽为2单位长度的长方形纸片,请把它分成6块,再拼成一个正方形,先在图中画出分割线,再画出拼后的图形,并标出相应的数据.【解答】解:如图所示:.25.(8分)(1)如图1,Rt△ABC中,AB=AC,∠BAC=90°,直线AE是经过点A 的任一直线,BD⊥AE于D,CE⊥AE于E,若BD>CE,试问:BD=DE+CE成立吗?请说明理由.(2)如图2,等腰△ABC中,AB=AC,若顶点A在直线m上,点D、E也在直线m 上,如果∠BAC=∠ADB=∠AEC=110°,那么(1)中结论还成立吗?如果不成立,BD、DE、CE三条线段之间有怎样的关系?并说明理由.(8分)【解答】解:(1)成立,证明:∵∠BAD+∠CAD=90°,∠ABD+∠BAD=90°,∴∠ABD=∠CAD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)有DE=CE+BD成立,证明:∵∠BAD+∠CAD=180°﹣∠ADB=70°,∠EAC+∠BAD=180°﹣∠BAC=70°,∴∠ABD=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD.26.(9分)学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N 分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①是;②是;③否.并对②,③的判断,选择一个给出证明.【解答】(1)证明:在△ABM和△BCN中,,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.(2)①是;②是;③否.②的证明:如图,在△ACM和△BAN中,,∴△ACM≌△BAN(SAS),∴∠AMC=∠BNA,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°﹣60°=120°,∴∠BQM=60°.③的证明:如图,在Rt△ABM和Rt△BCN中,,∴Rt△ABM≌Rt△BCN(SAS),∴∠AMB=∠BNC.又∵∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,∴∠BQM=90°,即∠BQM≠60°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年江苏省无锡市北塘区八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3分)在实数:3.14159,,1.010010001…,,4.,,中,无理数有()A.1个 B.2个 C.3个 D.4个3.(3分)下列说法正确的是()A.等腰三角形的两个底角相等B.顶角相等的两个等腰三角形全等C.等腰三角形的高、中线、角平分线互相重合D.等腰三角形一边不可以是另一边的二倍4.(3分)若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为()A.5 B.8 C.5或8 D.75.(3分)在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9 B.1,,2 C.4,6,8 D.,,6.(3分)下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等7.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°8.(3分)如图,正方形ABCD的边长为6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:=S△AFE;⑤∠AGB+∠AED=135°.其①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC中正确的个数是()A.5 B.4 C.3 D.2二、填空题(每小题2分,共20分)9.(2分)4的平方根是,﹣27的立方根是.10.(2分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是.11.(2分)760 540(精确到千位)≈.12.(2分)若等腰三角形的两条边长是3和4,则它的周长为.13.(2分)如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.14.(2分)如图,△ABC中,AB+AC=8cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为.15.(2分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为.16.(2分)甲乙两人从同一地点同时出发,甲以60米/分的速度向北直行,乙以80米/分的速度向东直行,10分钟后他们之间的距离是米.17.(2分)已知实数x,y满足|x+4|+=0,则2x+y=.18.(2分)如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是.三、解答题(共56分)19.(8分)计算:(1)﹣+(2)|2﹣|﹣(2﹣)0+.20.(8分)求下列各式中的x:(1)x2=3(2)(2x﹣1)3=﹣8.21.(6分)如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)22.(8分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.(1)请判断△EDC的形状并说明理由;(2)求证OE是线段CD的垂直平分线.23.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.24.(8分)如图,在5×5的方格纸中,每一个小正方形的边长都为1.四边形ABCD的顶点都在格点上.(1)∠BCD是不是直角?请说明理由;(2)求四边形ABCD的面积.(可以根据需要添加字母)25.(10分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16cm,DC=12cm,AD=21cm.动点P从点D出发,在线段DA上以每秒2cm的速度向点A运动,动点Q从点C出发,在线段CB上以每秒1cm的速度向点B运动,点P、Q分别从点D、C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)PD=,BQ=(用含t的代数式表示);(2)当t为何值时,△QBP≌△APB;(3)是否存在这样的t,使PB平分∠APQ?若存在,求出t的值;若不存在,请说明理由.2014-2015学年江苏省无锡市北塘区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选:C.2.(3分)在实数:3.14159,,1.010010001…,,4.,,中,无理数有()A.1个 B.2个 C.3个 D.4个【解答】解:=4,=2,无理数有:1.010010001…,,,共3个.故选:C.3.(3分)下列说法正确的是()A.等腰三角形的两个底角相等B.顶角相等的两个等腰三角形全等C.等腰三角形的高、中线、角平分线互相重合D.等腰三角形一边不可以是另一边的二倍【解答】解:A、等腰三角形的两个底角相等,正确;B、顶角相等的两个三角形全等,错误;C、等腰三角形的高、中线、角平分线互相重合,错误;D、等腰三角形一边不可以是另一边的二倍,错误,故选:A.4.(3分)若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为()A.5 B.8 C.5或8 D.7【解答】解:∵△ABC的周长为20,AB=5,BC=8,∴AC=7,∵△ABC≌△DEF,∴DF=AC=7,故选:D.5.(3分)在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9 B.1,,2 C.4,6,8 D.,,【解答】解:A、32+52≠92,故不是直角三角形,错误;B、12+()2=22,故是直角三角形,正确;C、42+62≠82,故不是直角三角形,错误;D、()2+()2≠()2,故不是直角三角形,错误.故选:B.6.(3分)下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等【解答】解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确.如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS也可判断两三角形全等,故选项B正确.如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL也可判断两三角形全等,故选项C正确.故选:D.7.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【解答】解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.8.(3分)如图,正方形ABCD的边长为6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S=S△AFE;⑤∠AGB+∠AED=135°.其△EGC中正确的个数是()A.5 B.4 C.3 D.2【解答】解:由题意可求得DE=2,CE=4,AB=BC=AD=6,∵将△ADE沿AE对折至△AFE,∴∠AFE=∠ADE=∠ABG=90°,AF=AD=AB,EF=DE=2在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∴BG=GF,∠BGA=∠FGA,设BG=GF=x,若BG=CG=x,在Rt△EGC中,EG=x+2,CG=x,CE=4,由勾股定理可得(x+2)2=x2+42,解得x=3,此时BG=CG=3,BG+CG=6,满足条件,∴②正确;∵GC=GF,∴∠GFC=∠GCF,且∠BGF=∠GFC+∠GCF=2∠GCF,∴2∠AGB=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF,∴③正确;=GC•CE=×3×4=6,S△AFE=AF•EF=×6×2=6,∵S△EGC=S△AFE,∴S△EGC∴④正确;在五边形ABGED中,∠BGE+∠GED=540°﹣90°﹣90°﹣90°=270°,即2∠AGB+2∠AED=270°,∴∠AGB+∠AED=135°,∴⑤正确;∴正确的有五个,故选:A.二、填空题(每小题2分,共20分)9.(2分)4的平方根是±2,﹣27的立方根是﹣3.【解答】解:∵22=4,(﹣2)2=4,∴4的平方根是±2;∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3.故答案为±2,﹣3.10.(2分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是10:21.【解答】解:电子表的实际时刻是10:21,可以把给定的读数写在纸上,然后把纸翻过来看到的读数就是实际读数.故答案为10:21.11.(2分)760 540(精确到千位)≈7.61×105.【解答】解:760 540(精确到千位)≈7.61×105.故答案为:7.61×105.12.(2分)若等腰三角形的两条边长是3和4,则它的周长为10或11.【解答】解:①3是腰长时,三角形的三边分别为3、3、4,能组成三角形,周长=3+3+4=10,②3是底边长时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.13.(2分)如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.14.(2分)如图,△ABC中,AB+AC=8cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为8cm.【解答】解:∵BC的垂直平分线l与AC相交于点D,∴BD=CD,∵AB+AC=8cm,∴△ABD的周长为:AB+AD+BD=AB+AD+CD=AB+AC=8cm.故答案为:8cm.15.(2分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为3.【解答】解:根据垂线段最短,PQ⊥OM时,PQ的值最小,∵OP平分∠MON,PA⊥ON,∴PQ=PA=3.故答案为:3.16.(2分)甲乙两人从同一地点同时出发,甲以60米/分的速度向北直行,乙以80米/分的速度向东直行,10分钟后他们之间的距离是1000米.【解答】解:设10min后,甲乙两人相距xmx2=(60×10)2+(80×10)2x2=1000000x=±1000,∴x1=﹣1000(舍去),x2=1000.答:10min后,甲乙两人相距1000m.故答案为:1000.17.(2分)已知实数x,y满足|x+4|+=0,则2x+y=0.【解答】解:由题意得,x+4=0,y﹣8=0,解得x=﹣4,y=8,所以,2x+y=2×(﹣4)+8=﹣8+8=0.故答案为:0.18.(2分)如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是3.【解答】解:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可,连接AG交EF于M,∵等边△ABC,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC,EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,即当P和E重合时,此时BP+PG最小,即△PBG的周长最小,AP=PG,BP=BE,最小值是:PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.故答案为:3.三、解答题(共56分)19.(8分)计算:(1)﹣+(2)|2﹣|﹣(2﹣)0+.【解答】解:(1)原式=4++=4+2=6;(2)原式=2﹣﹣1+3=4﹣.20.(8分)求下列各式中的x:(1)x2=3(2)(2x﹣1)3=﹣8.【解答】解:(1)x2=3x2=9,解得:x=±3;(2)(2x﹣1)3=﹣8,2x﹣1=﹣2,解得:x=﹣.21.(6分)如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)【解答】解:则点P为所求.22.(8分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.(1)请判断△EDC的形状并说明理由;(2)求证OE是线段CD的垂直平分线.【解答】(1)解:△EDC是等腰三角形,理由是:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,∴DE=CE,∴△EDC是等腰三角形;(2)证明:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,∴DE=CE,∠EDO=∠ECO=90°,在Rt△ODE与Rt△OCE中,∴Rt△ODE≌Rt△OCE,∴OD=OC,∵DE=EC,∴OE是线段CD的垂直平分线.23.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.【解答】(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴AC=BC,EC=DC.(2分)∵∠ACE=∠DCE﹣∠DCA,∠BCD=∠ACB﹣∠DCA,∠ACB=∠ECD=90°,∴∠ACE=∠BCD.(3分)在△ACE和△BCD中,∴△ACE≌△BCD(SAS).(5分)(2)解:又∠BAC=45°∴∠EAD=∠EAC+∠BAC=90°,即△EAD是直角三角形(8分)∴DE===13.(10分)24.(8分)如图,在5×5的方格纸中,每一个小正方形的边长都为1.四边形ABCD的顶点都在格点上.(1)∠BCD是不是直角?请说明理由;(2)求四边形ABCD的面积.(可以根据需要添加字母)【解答】解:(1)∠BCD是直角,理由如下:连接BD,∵BC2=22+42=20,CD2=12+22=5,BD2=32+42=25,∴BD2=BC2+CD2,∴∠BCD是直角.(2)根据图示知,S四边形ABCD=S正方形AHEJ﹣S△BCE﹣S△ABH﹣S△ADI﹣S△DCF﹣S正方形DFJI,则S=5×5﹣×2×4﹣×1×5﹣×1×4﹣×2×1﹣1×1=14.5,四边形ABCD即四边形ABCD的面积是14.5.25.(10分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16cm,DC=12cm,AD=21cm.动点P从点D出发,在线段DA上以每秒2cm的速度向点A运动,动点Q从点C出发,在线段CB上以每秒1cm的速度向点B运动,点P、Q分别从点D、C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)PD=2t,BQ=16﹣t(用含t的代数式表示);(2)当t为何值时,△QBP≌△APB;(3)是否存在这样的t,使PB平分∠APQ?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵动点P从点D出发,在线段DA上以每秒2cm的速度向点A 运动,动点Q从点C出发,在线段CB上以每秒1cm的速度向点B运动,∴PD=2t,BQ=16﹣t.故答案为:2t,16﹣t;(2)∵AD∥BC,∴∠APB=∠QBP.又∵BP=PB,∴当BQ=PA时,△QBP≌△APB,即16﹣t=21﹣2t,解得t=5;(3)存在.理由:∵PB平分∠APQ,∴∠APB=∠QPB.∵∠APB=∠QBP,∴∠QPB=∠QBP,∴QP=QB.作QH⊥AD,可得QH=12,PH=t∴PQ2=122+t2由QP2=QB2得122+t2=(16﹣t)2解得t=.∴存在这样的t=,使PB平分∠APQ.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档