2013年湖州市初二年级数学竞赛试卷参考答案

合集下载

小学二年级数学竞赛考试试题答案

小学二年级数学竞赛考试试题答案

小学二年级数学竞赛考试试题答案一、选择题1. 下列哪个数字是偶数?A. 13B. 24C. 37答案:B解析:偶数是能被2整除的数,24除以2等于12,所以24是偶数。

2. 小明有5个苹果,小华给了小明3个苹果,小明现在有多少个苹果?A. 2个B. 8个C. 10个答案:C解析:小明原来有5个苹果,小华给了他3个,所以5+3=8,小明现在有8个苹果。

3. 小红和小丽一共收集了30个邮票,小红有20个,小丽有多少个?A. 10个B. 15个C. 25个答案:A解析:小红和小丽一共收集了30个邮票,小红有20个,所以小丽有30-20=10个。

4. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 24B. 32C. 16答案:A解析:长方形的周长等于长和宽的和的两倍,即(8+4)×2=24厘米。

二、填空题1. 7+8=_______答案:15解析:7加8等于15。

2. 9-6=_______答案:3解析:9减去6等于3。

3. 小刚有12个糖果,他吃掉了4个,还剩下_______个。

答案:8解析:12减去4等于8,小刚还剩下8个糖果。

4. 一个正方形的边长是6厘米,它的面积是_______平方厘米。

答案:36解析:正方形的面积等于边长的平方,即6×6=36平方厘米。

三、判断题1. 任何数乘以0都等于1。

()答案:×解析:任何数乘以0都等于0,而不是1。

2. 5的倍数的个位数一定是0或5。

()答案:√解析:5的倍数的个位数确实是0或5。

3. 1+2+3+4+5=15。

()答案:√解析:1加2加3加4加5确实等于15。

4. 一个长方形的长是10厘米,宽是5厘米,它的面积是50平方厘米。

()答案:√解析:长方形的面积等于长乘以宽,即10×5=50平方厘米。

四、应用题1. 小明和小华一共摘了18个桃子,小明摘了9个,小华摘了多少个?答案:小华摘了9个。

解析:小明和小华一共摘了18个桃子,小明摘了9个,所以小华摘的桃子数量为18-9=9个。

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

2013年全国初中数学联赛初二组初赛试卷及答案

2013年全国初中数学联赛初二组初赛试卷及答案

2013年全国初中数学联赛(初二组)初赛试卷参考答案及评分标准一、选择题(本大题满分42分,每小题7分)1、A2、B3、B4、C5、D6、A二、填空题(本大题满分28分,每小题7分)1、132、1013、104、︒5.22三、(本大题满分20分)解原式()()2421222+-÷⎥⎦⎤⎢⎣⎡+--+-=a a a a a a a (5分)()4224222-+⋅+--=a a a a a a()21+=a a (10分) ()()1212121=+--= (5分)四、(本大题满分25分) 新 -课-标-第-一-网解:∵822=-=OC OB CB∴B 点坐标(8,6) (5分)又∵A (10,0)∴AB 的中点坐标为(9,3)∴OD 的表达式为:x y 31= (10分)∵A (10,0),C (0,6)∴AC 的表达式为:653+-=x y (15分)由⎪⎪⎩⎪⎪⎨⎧+-==65331x y x y ,解得:⎪⎪⎩⎪⎪⎨⎧==715745y x (20分) 故点D 的坐标为(745,715) (25分)五、(本大题满分25分)证明:连结AC ,取AC 的中点K ,连结EK ,FK (5分) ∵ED AE =,KC AK = X k B 1 . c o m∴DC EK //,DC EK 21= (10分)同理AB FK //,AB FK 21= (15分) ∴EK DC AB FK ===2121 ∴EFK FEK ∠=∠ (20分) ∵DC EK //∴FEK CMF ∠=∠∵AB FK //∴EFK BNF ∠=∠∴CMF BNF ∠=∠ (25分) 新课标第一网系列资料 K F N E M A C B D。

初二竞赛数学试题及答案

初二竞赛数学试题及答案

初二竞赛数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或1答案:D3. 一个直角三角形的两个直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差也不是等比D. 无法确定答案:A5. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______。

答案:非负数7. 如果一个数的相反数是-3,那么这个数是______。

答案:38. 一个数的平方根是4,那么这个数是______。

答案:169. 一个数的立方根是2,那么这个数是______。

答案:810. 如果一个数的1/4等于5,那么这个数是______。

答案:20三、计算题(每题5分,共15分)11. 计算下列表达式的值:(2x - 3) / (x + 1),当x = 5时。

答案:(2*5 - 3) / (5 + 1) = 7 / 612. 计算下列多项式的乘积:(3x^2 - 2x + 1) * (x + 2)答案:3x^3 + 4x^2 + x - 2x^2 - 4x + 2 = 3x^3 + 2x^2 - 3x + 213. 求解方程:2x + 5 = 3x - 1答案:2x - 3x = -1 - 5 => -x = -6 => x = 6四、解答题(每题10分,共20分)14. 一个长方形的长是宽的两倍,且面积为24平方厘米。

求长方形的长和宽。

答案:设宽为x厘米,则长为2x厘米。

面积为x * 2x = 24平方厘米,解得x^2 = 12,x = √12 = 2√3,所以宽为2√3厘米,长为4√3厘米。

初二数学竞赛题含答案

初二数学竞赛题含答案

初中数学竞赛初二第1试试题)每小题7分共56分一、选择题(,另一只亏1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%)20%,则在这次买卖中,该店的盈亏情况是(本元D、亏本152.5元C、亏本7.5元A、不盈不亏B、盈利200019991998) ,则下列不等关系中正确的是(2、设?cb?,a?,200120001999、DB、C、、A aba?c?cb?c?ac?b?a?b?ab511)(3、已知则的值是?,??bab?baa1 D、C、3B、7A、53B3A2x?、已知) 4为常数,那么A+B的值为(,其中A、B??2x?1xx?x4、4D、-B、2C A、-2??????中则,5、已知△ABC的三个内角为A、B、C,令,,BAA??B?C,??C?)锐角的个数至多为(D、C、3、A、1B2任(1)奇正整数总可表示成为或的形式,其中是正整数;(2)6、下列说法:n34n?1?4n一个奇正整数的平方总可以意一个正整数总可表示为或或的形式,其中;(3)n32n3n?1?3的形其中是正整数;或(4)任意一个完全平方数总可以表示为表示为的形式,n n31?13n?8n 式4 、D C、3A、0B、2、本题中有两小题,请你选一题作答:7200019991002?1000,1001,是同类二次根式的个二次根式中,与1000这(1)在个数共有……………………()A、3B、4C、5D、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有()A、10个B、12个C、13个D、14个8、钟面上有十二个数1,2,3,…,12。

将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n个负号,这个数n是()A、4B、5C、6D、7二、填空题(每小题7分共84分)9、如图,XK,ZF是△XYZ的高且交于一点H,∠XHF=40°,那么∠XYZ=°。

2013年全国初中数学竞赛试题(附详细答案)

2013年全国初中数学竞赛试题(附详细答案)

2013年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。

2013年全国初中数学竞赛试题及答案-推荐下载

2013年全国初中数学竞赛试题及答案-推荐下载
成三角形的三边长?证明你的结论.
第2页共7页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年初中数学竞赛初 二试题答案2013年初中数学竞赛初 二试题答案

2013年初中数学竞赛初 二试题答案2013年初中数学竞赛初 二试题答案

2013年株洲市初中数学竞赛试题答案(初二年级)时量:120分钟 总分:100分 注意事项:1、用黑色、蓝色钢笔或圆珠笔作答;2、在密封线内答题,答题内容不要超过密封线;3、不准使用计算器。

一、选择题(每题4分,共32分,每题仅有一个正确选项,请将正确选项填入表格内 )题 次 12345678答 案ABDCBACD1、下列计算中,正确的是( A )A 、2336)ab a b =( B 、 333(3)9xy x y = C 、 222(2)4a a -=- D 、 93=±2、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( B ) A 、32° B 、58° C 、68° D 、60°3、如图是一个立方体的表面展开图,已知立方体的每一个面上都有一个实数,且相对面上的两数互为倒数,那么代数式b ca-的值等于( D )A 、6 B 、6- C 、43 D 、43- 4、从鱼塘打捞草鱼300尾,从中任选10尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.5,1.8,1.3,1.4(单位:kg ), 依此估计这300尾草鱼的总质量大约是( C ) A 、45kgB 、150kgC 、450kgD 、15kg5、规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果 (2,3)-Δ(,)(1,4),x y =-则(,)x y 为( B ) A .(1,1) B .(2,1) C .(1,2)- D .(2,1)-6、如图是由大小一样的小正方形组成的网格,△ABC 的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC 成轴对称的三角形共有 ( A )A .5个 B .4个C .3个D .2个7、某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本),10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长( C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年初二数学数学竞赛试题参考答案及评分意见
一、选择题(共8小题,每小题5分,满分40分)
9.2
1-,-1 10. -18 11.x 2- 12. 3 13. 4 14.15 三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)
15.(12分) 解:设原来A 组中有x 个自然数,则B 组中有自然数 (31-x)个.又记原来A 组中x 个自然数的平均数为a ,B 组中(31-x)个自然数的平均数为b .则由题意得 (31)023*********(31)101322ax x b ax a x b x b x ⎧⎪+-=+++=⎪-⎪-=⎨-⎪-+⎪-=⎪-⎩
……6分 解得x=21,……5分
即原来A 组中有21个自然数.
答:原来A 组中有21个自然数。

……1分
16.(12分)解: 解析:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有
⎪⎪⎩⎪⎪⎨⎧≥≥≥=++=++.
60,0,0,12041312
1,360z y x z y x z y x ……2分 解方程组得:⎩
⎨⎧=-=.2,3360x z x y ……2分 结合⎪⎩
⎪⎨⎧≥=≥-=≥.602,03360,0x z x y x 解得30≤x ≤120,……2分
总产值A=4x+3y+2z=4x+3(360-3x)+2(2x)= 1080-x ,……2分
∵k=-1<0,∴A 随x 的增大而减小 ∵30≤x ≤120 ∴960≤A ≤1050……2分
∴当x=30,∴A 有最大值1050,此时x=30,y=270,z=60.……2分
答:每周应生产空调30台、彩电270台、冰箱60台时,总产值最高,且最高产值是1050千元。

17.(12分) 证明:过C 点作AB 的平行线交AF 的延长线于N 点。

则易证△ABE ≌△CAN ,得BE=AN , …………………………………… 2分
∵△ABE ≌△ACD ,得∠AEB=∠ADC, …………………………………… 2分
又∠AEB=∠ANC, ∠ADC=∠CMF, ∴∠ANC=∠CMF , …………………………………… 2分
可证得△MCF ≌△NCF ,得MF=NF (8分), …………………………………… 2分
则BE+EG=AN+MG=AF+FN+MG= AF+FM+MG=AF+FG 。

…………………………… 4分
故BG= AF+FG 。

18.(14分) 解答:解:(1)连接AD ,设点A 的坐标为(a ,0),
由图2知,DO+OA=6cm ,……1分
DO=6﹣AO,由图2知S△AOD=4,∴DO•AO=4,
∴a2﹣6a+8=0,……2分
解得a=2或a=4,由图2知,DO>3,
∴AO<3,∴a=2,……3分
∴A的坐标为(2,0),D点坐标为(0,4),……4分
在图1中,延长CB交x轴于M,
由图2,知AB=5cm,CB=1cm,∴MB=3,……5分
∴AM==4.∴OM=6,∴B点坐标为(6,3);……6分
(2)显然点P一定在AB上.设点P(x,y),连PC.PO,则
S四边形DPBC=S△DPC+S△PBC=S五边形OABCD=(S矩形OMCD﹣S△ABM)=9,……7分∴6×(4﹣y)+×1×(6﹣x)=9,即x+6y=12,……8分
同理,由S四边形DPAO=9可得2x+y=9,……9分
由A(2,0),B(6,3)求得直线AB的函数关系式为y=,
由[或或]……11分
解得x=,y=.∴P(,),……12分
设直线PD的函数关系式为y=kx+4,则=k+4,
∴k=﹣,……13分
∴直线PD的函数关系式为y=﹣x+4.……14分。

相关文档
最新文档