实验 线性霍尔式传感器位移特性实验

合集下载

线性度实验报告

线性度实验报告

线性度实验报告篇一:传感器实验报告传感器实验报告(二)自动化1204班蔡华轩 UXX13712 吴昊 UXX14545实验七:一、实验目的:了解电容式传感器结构及其特点。

二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。

三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。

四、实验步骤:1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。

2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。

图 7-1 电容传感器位移实验接线图3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控箱Vi 孔),Rw 调节到中间位置。

4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm图(7-1)五、思考题:试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一下在此设计中应考虑哪些因素?答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等六:实验数据处理由excle处理后得图线可知:系统灵敏度S=58.179非线性误差δf=21.053/353=6.1%实验八直流激励时霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。

它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。

根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。

霍尔传感器位移特性实验报告

霍尔传感器位移特性实验报告

霍尔传感器位移特性实验报告霍尔传感器位移特性实验报告一、引言霍尔传感器是一种常用的非接触式位移传感器,广泛应用于工业自动化、汽车电子、航空航天等领域。

本实验旨在探究霍尔传感器的位移特性,通过实验数据的采集和分析,了解霍尔传感器在不同位移条件下的响应特点。

二、实验目的1. 理解霍尔传感器的工作原理;2. 掌握霍尔传感器的位移测量方法;3. 分析霍尔传感器在不同位移下的输出特性。

三、实验装置与方法1. 实验装置:- 霍尔传感器:将霍尔传感器固定在测量平台上,与位移装置相连;- 位移装置:通过手动旋钮控制位移装置的运动,使其产生不同的位移;- 数据采集系统:使用万用表或示波器对霍尔传感器的输出信号进行采集。

2. 实验方法:- 将霍尔传感器与位移装置连接后,将位移装置调整到初始位置;- 通过手动旋钮控制位移装置,逐步改变位移,记录下每个位移条件下的传感器输出信号;- 将采集到的数据进行整理和分析。

四、实验结果与分析在实验过程中,我们按照不同的位移条件,记录下了霍尔传感器的输出信号。

通过对数据的整理和分析,我们得到了以下结果:1. 位移与输出信号的关系:我们发现,随着位移的增加,霍尔传感器的输出信号呈线性增加的趋势。

这与霍尔传感器的工作原理相吻合,即霍尔传感器通过感应磁场的变化来测量位移。

2. 输出信号的稳定性:在一定范围内,霍尔传感器的输出信号相对稳定,变化较小。

然而,当位移超出一定范围时,输出信号的变化较大。

这可能是由于霍尔传感器的灵敏度有限,在较大位移下无法准确测量。

3. 温度对输出信号的影响:在实验过程中,我们还发现温度对霍尔传感器的输出信号有一定影响。

随着温度的升高,输出信号呈现出一定的波动。

这可能是由于温度变化引起霍尔传感器内部电路的参数变化,进而影响输出信号的稳定性。

五、实验总结通过本次实验,我们深入了解了霍尔传感器的位移特性。

我们发现霍尔传感器的输出信号与位移呈线性关系,在一定范围内相对稳定。

霍尔位移传感器实验报告误差分析

霍尔位移传感器实验报告误差分析

霍尔位移传感器实验报告误差分析
霍尔位移传感器是一种常用于测量线性位移的传感器,其测量原理是通过检测物体相对于传感器的磁场的变化来获得位移信息。

在进行实验时,需要考虑多种因素可能会导致误差。

以下是可能导致误差的因素及其分析:
1. 磁场干扰:由于霍尔位移传感器是通过检测磁场的变化来测量位移的,因此当周围环境存在其他磁场干扰时,就会导致测量误差。

在实验中,可以通过在实验环境内减少磁场干扰来改善测量的准确性。

2. 传感器位置偏移:如果传感器的位置偏移了,就会导致误差。

这些偏差可以在实验前进行校准来减小。

例如,在实验前可以将传感器的位置与物体固定,以确保传感器在测量期间不会发生位置移动。

3. 线性度误差:一些霍尔位移传感器可能存在线性度误差。

这意味着当被测量物体移动时,传感器输出的电压不是一个线性关系。

在实验中,可以通过使用校准曲线对传感器输出进行补偿来减少线性度误差。

4. 温度漂移:传感器的性能可能会随着环境温度变化而发生变化。

因此,在实验期间应该考虑温度的影响,并对传感器的输出进行温度校准。

总之,在进行霍尔位移传感器实验时,需要注意各种可能的误差来源,并尽可能减少它们的影响。

同时还需注意数据采集和数据分析过程中的误差来源,如采样率、采样时间等。

通过综合考虑以上因素,可以减小实验误差并提高测量的精度。

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验1.实验目的通过对线性霍尔传感器位移特性的实验,使学生了解线性霍尔传感器的基本工作原理,并了解它在位移测量中的应用。

2.实验仪器线性霍尔传感器、数字万用表、调整电源。

3.实验原理线性霍尔传感器是一种基于霍尔效应工作的传感器。

当通过传感器的电流与磁场相互作用时,传感器的输出电压会发生变化。

通过调整传感器附近的磁场,可以改变传感器的输出电压。

线性霍尔传感器的输出电压与输出电流成正比,因此可以用来测量位移。

4.实验步骤(1)将调整电源的电压调整到3V左右,将线性霍尔传感器连接到数字万用表的电流输入端。

(2)将线性霍尔传感器固定在一个平面表面上,并将测量头固定在传动机构上。

(3)在传动机构上固定一块磁铁,并将磁铁与线性霍尔传感器保持一定的距离。

(4)用手慢慢地移动传动机构,观察及记录数字万用表的输出读数,同时测量传动机构的位移。

(5)按照步骤(4),沿一个方向不断地调整传动机构的位置,获得输出电压和位移数据。

然后,沿相反的方向重复这个过程。

(6)根据实验中获得的数据绘制线性霍尔传感器的位移特性曲线。

5.实验注意事项(1)实验时应防止磁场干扰,以免影响实验结果。

(2)在实验过程中需要减小环境磁场干扰。

(3)尽量减少传动机构的摩擦,以确保实验结果的准确性。

6.实验结果分析根据实验分析得到的数据,可以绘制线性霍尔传感器的位移特性曲线。

通过分析该曲线,可以了解线性霍尔传感器的工作特性。

根据曲线的斜率,可以计算出线性霍尔传感器的灵敏度,进一步推断出它在位移测量中的应用范围。

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:在半导体薄片两端通以控制电流I、并在薄片的垂直方向施加磁场强度为B的磁场,那么在垂直于电流和磁场的方向上将产生电势UH(称为霍尔电势或霍尔电压)。

这种现象称为霍尔效应。

霍尔效应原理霍尔传感器有霍尔元件和集成霍尔传感器两种类型。

集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。

本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。

霍尔式位移传感器的工作原理和实验电路原理如图(a)、(b)所示。

将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,(a)工作原理(b)实验电路原理霍尔式位移传感器工作原理图设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。

当霍尔元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大输出为V。

V与X有一一对应的特性关系。

*注意:线性霍尔元件有四个引线端。

涂黑二端是电源输入激励端,另外二端是输出端。

接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件就损坏。

三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;霍尔传感器实验模板、霍尔传感器、测微头。

四、实验步骤:1、调节测微头的微分筒(0.01mm/每小格),使微分筒的0刻度线对准轴套的10mm 刻度线。

按图示意图安装、接线,将主机箱上的电压表量程切换开关打到2V档,±2V~±10V (步进可调)直流稳压电源调节到±4V档。

2、检查接线无误后,开启主机箱电源,松开安装测微头的紧固螺钉,移动测微头的安装套,使传感器的PCB板(霍尔元件)处在两园形磁钢的中点位置(目测)时,拧紧紧固螺钉。

实验五霍尔传感器位移特性实验

实验五霍尔传感器位移特性实验

实验五霍尔传感器位移特性实验(共2页)(一)直流激励时位移特性实验一、实验目的:了解霍尔传感器的原理与应用。

二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。

三、实验原理:根据霍尔效应,霍尔电势U H=K H IB,其中K H为灵敏度系数,由霍尔材料的物理性质决定,当通过霍尔组件的电流I一定,霍尔组件在一个梯度磁场中运动时,就可以用来进行位移测量。

四、实验内容与步骤1.按图5-1接线。

图5-1 霍尔传感器直流激励接线图2.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“1cm”处,手动调节测微头的位置,先使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表显示为零。

3.分别向左、右不同方向旋动测微头,每隔0.2mm记下一个读数,直到读数近似不变,将读数填入下表5-1及5-2。

五、实验报告1.作出U-X曲线,计算灵敏度。

2.何为霍尔效应?制作霍尔元件应采用什么材料,为什么?(二)交流激励时位移特性实验一、实验目的:了解交流激励时霍尔传感器的特性二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。

三、实验原理:交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。

四、实验内容与步骤:1.接线如下图5-2。

图5-22.调节振荡器的音频调频和音频调幅旋钮,使音频振荡器的“00”输出端输出频率为1K,Vp-p=4V的正弦波(注意:峰峰值不应过大,否则烧毁霍尔组件)。

3.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“10mm”处,手动调节测微头的位置,使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表为零。

4.分别向左、右不同方向旋动测微头,每隔0.2mm记一个读数,直到读数近似不变,将读数填入下表5-3及5-4。

五、实验报告1.作出U-X曲线,计算灵敏度。

传感器技术实验指导书

传感器技术实验指导书

实验四电涡流传感器位移特性实验一、实验目的:1、了解电涡流传感器测量位移的工作原理和特性。

2、了解不同的被测体材料对电涡流传感器性能的影响。

3、了解电涡流传感器位移特性与被测体的形状和尺寸有关。

二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。

电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图4-1所示。

根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。

我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图4-2的等效电路。

图中R1、L1为传感器线圈的电阻和电感。

短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。

线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。

图4-1电涡流传感器原理图图4-2电涡流传感器等效电路图根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。

因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q值为:Q=Q0{[1-(L2ω2M2)/(L1Z22)]/[1+(R2ω2M2)/(R1Z22)]}式中:Q0—无涡流影响下线圈的Q值,Q0=ωL1/R1;Z22—金属导体中产生电涡流部分的阻抗,Z22=R22+ω2L22。

由式Z、L和式Q可以看出,线圈与金属导体系统的阻抗Z、电感L和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。

因此Z、L、Q均是x的非线性函数。

虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。

位移测量实验报告

位移测量实验报告

一、实验目的1. 熟悉位移测量原理及方法。

2. 掌握常用位移传感器的性能特点及应用。

3. 培养实际操作能力,提高实验技能。

二、实验原理位移测量是指测量物体在空间位置的变化。

根据测量原理,位移测量方法主要分为直接测量法和间接测量法。

直接测量法:直接测量物体在空间位置的变化,如尺测法、光电法等。

间接测量法:通过测量与位移相关的物理量来间接计算位移,如电涡流传感器、霍尔传感器、差动变压器等。

三、实验仪器1. 电涡流传感器2. 霍尔传感器3. 差动变压器4. 数字示波器5. 螺旋测微器6. 计算机7. 数据采集卡四、实验内容1. 电涡流传感器位移特性实验(1)实验目的:了解电涡流传感器的原理与应用,掌握电涡流传感器位移特性的测量方法。

(2)实验步骤:①将电涡流传感器固定在实验平台上,调整传感器与被测物体之间的距离。

②使用数字示波器观察传感器输出信号的波形。

③通过调整传感器与被测物体之间的距离,记录不同距离下的输出信号波形。

④分析电涡流传感器位移特性曲线。

2. 霍尔传感器位移特性实验(1)实验目的:了解霍尔传感器的原理与应用,掌握霍尔传感器位移特性的测量方法。

(2)实验步骤:①将霍尔传感器固定在实验平台上,调整传感器与被测物体之间的距离。

②使用数字示波器观察传感器输出信号的波形。

③通过调整传感器与被测物体之间的距离,记录不同距离下的输出信号波形。

④分析霍尔传感器位移特性曲线。

3. 差动变压器位移特性实验(1)实验目的:了解差动变压器的原理与应用,掌握差动变压器位移特性的测量方法。

(2)实验步骤:①将差动变压器固定在实验平台上,调整传感器与被测物体之间的距离。

②使用数字示波器观察传感器输出信号的波形。

③通过调整传感器与被测物体之间的距离,记录不同距离下的输出信号波形。

④分析差动变压器位移特性曲线。

五、实验结果与分析1. 电涡流传感器位移特性曲线:随着传感器与被测物体之间距离的增加,输出信号逐渐减小,呈线性关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验 线性霍尔式传感器位移特性实验
一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。

它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。

霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。

如图28—1(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板
图28—1霍尔效应原理
的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。

霍尔效应的数学表达式为:
U H =R H d
IB =K H IB 式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数;
K H = R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。

具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔元件),厚度d 只有1µm 左右。

霍尔传感器有霍尔元件和集成霍尔传感器两种类型。

集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。

本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。

霍尔式位移传感器的工作原理和实验电路原理如图28—2 (a)、(b)所示。

将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,
(a)工作原理(b)实验电路原理
图28—2霍尔式位移传感器工作原理图
设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。

当霍尔元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大输出为V。

V与X有一一对应的特性关系。

*注意:线性霍尔元件有四个引线端。

涂黑二端1(V s+)、3(V s-)是电源输入激励端,另外二个2(V o+)、4(V o-)是输出端。

接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件就损坏。

三、需用器件与单元:机头静态位移安装架、传感器输入插座、霍尔传感器、测微头;主板F/V表、±4V、霍尔、电桥、差动放大器。

四、实验步骤:
1、差动放大器调零:按图28—3示意接线,电压表(F/V表)量程切换开关打到2V 档,检查接线无误后合上主电源开关并将差动放大器的拨动开关拨到“开”位置。

将差动放大器的增益电位器顺时针慢悠悠转到底,再逆时针回转半周;调节差动放大器的调零电位器,使电压表显示为0。

维持差动放大器的调零电位器的位置不变,关闭主电源,拆除差动放大器的输入引线。

图28—3差动放大器调零接线图
2、调节测微头的微分筒(0.01mm/每小格),使微分筒的0刻度线对准轴套的10mm 刻度线。

按图28—4在机头上安装传感器与测微头并根据示意图接线。

检查接线无误后,开启主电源。

图28—4 线性霍尔传感器(直流激励)位移特性实验安装与接线示意图
3、松开安装测微头的紧固螺钉,移动测微头的安装套,使PCB板(霍尔元件)处在两园形磁钢的中点位置(目测)时,拧紧紧固螺钉。

仔细调节电桥单元中的W1电位器,使电压表显示0。

4、使用测微头时,当来回调节微分筒使测杆产生位移的过程中本身存在机械回程差,为消除这种机械回差可用单行程位移方法实验:顺时针调节测微头的微分筒3周,记录电压表读数(大约在1.6V~1.8V左右)作为位移起点。

以后,反方向(逆时针方向) 调节测微头的微分筒(0.01mm/每小格),每隔△X=0.1mm(总位移可取3~4mm)从电压表上读出输出电压Vo值,填入下表25(这样可以消除测微头的机械回差)。

表28 霍尔传感器(直流激励)位移实验数据
1、根据表28实验数据作出V-X特性曲线,分析曲线计算不同测量范围 (±0.5mm、±1mm、±2mm)时的灵敏度和非线性误差。

实验完毕,关闭电源。

相关文档
最新文档