高一不等式分式计算题

合集下载

高一数学不等式试题答案及解析

高一数学不等式试题答案及解析

高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.下列命题不正确的是A.B.C.D.【答案】D【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【答案】A【解析】略4. 2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。

国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于千米。

设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为小时。

求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。

【答案】(千米/小时)时,取得最小值为8(小时)【解析】由题可得关系式为从而当且仅当,即(千米/小时)时,取得最小值为8(小时)5.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。

高一数学不等式试题答案及解析

高一数学不等式试题答案及解析

高一数学不等式试题答案及解析1.已知a>b, c>d,则()A.ac>bd B.C.D.【答案】D【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。

在第二小问中,将条件乘入到所求结果中去,再将式子进行展开,利用万能公式,解不等式即可求出最小值。

试题解析:(1)x<,∴4x-5<0.∴y=4x-5++3=-[(5-4x)+]+3=1.≤-2+3=1,ymax(2)∵x>0,y>0且=1,∴x+y=(x+y)=10+≥10+2=16,即x+y的最小值为16【考点】函数万能关系不等式4.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【答案】(1);(2)【解析】(1)定义域为,指被开方数恒大于等于0,讨论两种情况当或是两种情况;(2)函数的最小值,指被开方数为抛物线时的顶点函数值是,所以先根据顶点坐标求参数,然后将参数代入二次不等式,解不等式.试题解析:(1)∵函数y=的定义域为R,∴a=0时,满足题意;a>0时,△=4a2﹣4a≤0,解得0<a≤1;∴a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥, a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【考点】1.二次函数;2.二次函数的性质;3.解二次不等式.5.已知实数满足约束条件则的最大值是.【答案】9【解析】作出可行域及目标函数线如图,平移目标函数线使之经过可行域,当目标函数线过点时目标函数线的纵截距最大此时也最大.,所以.【考点】线性规划.6.下列结论正确的是A.若,则B.若,则C.若则D.若,则【答案】D【解析】对于A若c<0则错,对于B,若A,B都是负数则错,对于C,只有两个同向且全正的不等式才恒成立,故只有D正确.【考点】不等式的基本性质.7.(本小题满分8分)已知函数.(Ⅰ)当时,解关于的不等式;(Ⅱ)当时,解关于的不等式.【答案】(Ⅰ)(Ⅱ)当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或【解析】第一问考查了一元二次不等式的解法,第二问首先对二次三项式因式分解得到,再分类讨论两根的大小得到不等式的解集.试题解析:(Ⅰ)当时,不等式可化为,即,解得,所以不等式的解集为.(Ⅱ)当时,不等式可化为,即,则,当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或.【考点】一元二次不等式的解法,分类讨论的思想.8.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划9.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式10.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.11.若关于的不等式在区间上有解,则实数的取值范围为()A.B.C.(1,+∞)D.【答案】A【解析】因为,则不等式可化为:,设,由题意得只需,因为函数为区间上的减函数,所以,所以选A【考点】1.分离参数;2.存在性问题;12.若,且,则的最小值是()A.B.C.2D.3【答案】B【解析】由已知条件可得(b=c时等号成立),所以,故选B【考点】不等式和最值计算综合问题13.若,则()A.B.C.D.【答案】C【解析】不等式的两边同时乘以负数,不等号方向改变,故A错,B错,C错,只有B对,故选B.【考点】不等式的基本性质.14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.已知,则的最大值是.【答案】3【解析】求解该不等式组在第一象限及与坐标轴的交点坐标是(0,2),(1,4),(5,0),(0,0),分别代入目标函数z=-x+y,得2,3,-5,0比较得最大值是3,当且仅当x=1,y=4时取得最大.【考点】线性规划的应用.16.(12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1);(2)详见解析;(3)详见解析【解析】(1)当时,将不等式分解因式,得到解集;(2)比较大小,可以做差,然后通分,分解因式,然后讨论的范围,比较两数的大小;(3)第一步,先分解因式,第二步,根据上一问的结果得到与的大小关系,得到解集.试题解析:解:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.解二次不等式;2.比较大小.17.(本题满分12分)已知函数,的解集为(1)求,的值;(2)为何值时,的解集为R.【答案】(1);(2)【解析】(1)不等式的解集的端点就是其对应方程的实根,所以代入,解,然后根据韦达定理求;(2)代入上一问的结果,问题转化为解集为,所以讨论两种情况,和.试题解析:解(1)由已知得是方程的两根,的解集为(2)由(1)得解集为,当时,不等式解集为成立,当时,由(1)(2)可得.【考点】1.二次不等式的解法;2.二次不等式恒成立;3.韦达定理.18.不等式的解集是.【答案】【解析】根据解一元二次不等式得口诀“大于取两边,小于取中间”可得不等式的解集是【考点】解一元二次不等式19.关于不等式的解集为,则等于()A.B.11C.D.【答案】C【解析】二次不等式的解集的端点值就是二次方程的实根,所以根据韦达定理,,解得,,所以【考点】1.一元二次不等式的解法;2.韦达定理.20.(共10分)(1)解不等式:;(2)解关于的不等式:【答案】(1);(2)详见解析.【解析】(1)将此分式不等式转化为相乘形式,即,即,然后按二次不等式求解;(2)解此类型的含参二次不等式,第一步,先分解因式,第二步,讨论两根的大小关系,根据根的大小关系,写出不等式的解集.试题解析:解:(1)原不等式等价于故原不等式的解集为(2)原不等式可化为综上:不等式的解集为:【考点】1.解分式不等式;2.解含参二次不等式.21.已知,则的最小值是()A.10B.C.12D.20【答案】C【解析】,,当且仅当时取得等号.【考点】基本不等式.22.若,则下列正确的是()A.B.C.D.【答案】D【解析】A.若,则不成立,所以错误;B.若,则不成立,所以错误;C.若,则不成立,所以错误;D因为,不等式两边同时减去同一个数,不等号方向不变,所以正确,故选择D【考点】不等式性质23.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式24.函数f(x)=,若f(x0)=3,则x的值是()A.1B.C.D.【答案】D【解析】f(x)=3,所以,舍去,或,其中舍去,或,舍去,综上,故选D【考点】分段函数求值25.三个数,,的大小关系为()A.B.C.D.【答案】C【解析】,所以有,故选C.【考点】指数的大小比较.26.若,,且恒成立,则的最小值是()A.B.C.D.【答案】B【解析】分离参数得恒成立,两边平方得,而,当且仅当时等号成立,所以,故选B.【考点】1、不等式性质;2、均值不等式;3、不等式的恒成立.【方法点晴】本题主要考查的是含参不等式的恒成立问题,属于中档题题.首先利用不等式的性质将不等式变形分离出常数,转化为求的最大值问题,再平方后运用基本不等式求其最大值,注意分析等号能否取得.27.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.28.设,则的大小关系A.B.C.D.【答案】B【解析】在同一直角坐标系中画出函数:的图像(略),由图像可知.故选B.【考点】指数函数和对数函数的图像和性质.29.若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.【答案】【解析】关于x的不等式(2x-1)2<ax2等价于,其中且有,故有,不等式的解集为,所以解集中一定含有1,2,3,可得,所以,解得.【考点】含参数的一元二次方程的解法.30.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集31.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集32.已知实数满足,设,则的取值范围是()A.B.C.D.【答案】D【解析】设且,则,令,所以,当时上述不等式中的等号成立,所以.【考点】基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用,其中正确构造基本不等式的应用条件是使用基本不等式的基础和关键,试题思维量大,运算繁琐,属于难题,着重考查了构造思想和转化与化归思想的应用,本题的解答中,设且,得,即可利用基本不等式,可求得的值,即可求解取值范围.33.下列关于的不等式解集是实数集R的为()A.B.C.D.【答案】C【解析】A中的解集是,B中的解集是,C中的解集是R,D中的解集是,故答案为C.【考点】不等式的解法.34.已知,那么下列不等式中正确的是()A.B.C.D.【答案】D【解析】由题根据不等式的性质,A,B,C选项,数的正负不明,错误;而选项D,无论取任何数都成立。

方程与不等式之分式方程基础测试题附解析

方程与不等式之分式方程基础测试题附解析

方程与不等式之分式方程基础测试题附解析一、选择题1.如果关于X 的方程ax 2 4x 30有两个实数根,且关于 x 的分式方程x a 2 a 有整数解,则符合条件的整数a 有()个x 33 xA . 2B . 3C. 4D . 5【答案】 B【解析】【分析】由一兀— 1次方程根的判别式求得 a 的取值范围,再解分式方程,利用解为整数分析得出答案. 【详解】所以:x a 2 ax 3a ,所以:(a 1)x 2a 2, 当a 1时,方程无解,当a 1时,方程的解为x 丝上 2 —, a 1 a 1因为x 为整数且x 3,所以a 1是4的约数,所以a 1 1,a 12,a 1所以a 的值为:3, 1,0,2,3,5 ,4又因为:a -且a 0, a 1, x 3,3所以a 3,a 0,a 5不合题意舍掉,所以a 的值为:1,2,3,. 故选B . 【点睛】本题考查的是一元二次方程根的判别式,分式方程的解的情况,掌握知识点并能注意到分 式方程的增根是解题关键.2.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小所以:24 4a (3) 0,且 a 0,解得: 4a3且a0, 因为:x a2a ,解:因为:关于x 的方程ax 2 x 3 3 x4x 3 0有两个实数根,4,俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()【详解】 小进跑800米用的时间为-8也 秒,小俊跑800米用的时间为 型 秒,1.25x x•••小进比小俊少用了 40秒,800 800万程是 40,x 1.25x故选C.【点睛】 本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.3. 已知关于x 的分式方程— 2 —的解为正数,则k 的取值范围为()x 11 xA . 2 k 0B . k 2 且 k 1 C. k 2 D . k 2且 k 1【答案】B 【解析】【分析】 先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案 【详解】 解:Q 该分式方程有解,2 k 1,A . 4 1.25x 40x 800800 800 40 B.——x 2.25x 800 800 800 800 C.40D .40x1.25x1.25x x【答案】C 【解析】 【分析】先分别表示出小进和小俊跑 800米的时间,再根据小进比小俊少用了 40秒列出方程即可.故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键2a 14.对于非零实数a 、b ,规定a? b =若 x? (2x - 1) =1,则x 的值为()b a11A . 1B.—C.- 1D.-—33【答案】A【解析】【分析】【详解】解:根据题中的新定义可得:x2x 1 2x 1 ,= 1,2x 1 x解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是 转化思想”,把分式方程转化为整式方程求解•解分式方程一定注意要验根.【分析】根据分式方程的增根的定义得出 【详解】去分母得: /• x=2+m•••分式方程— 有增根,x 3 x 3x-3=0, x= 3,• 2+m=3 , 所以m=1, 故选:B . 【点睛】x 25.若关于x 的分式方程—有增根,则m 的值是()x 3A .1【答案】B 【解析】B . 1 C. 2 D . 3x-3=0,再进行判断即可.x-2=m ,本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程 的关键,题目比较典型,难度不大.6.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做 140个零件,若设甲每天做x 个零件,则可以列出方程为()设甲每天做x 个零件,根据甲做 480个零件与乙做360个零件所用的时间相同,列出方程 即可. 【详解】【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关 键.本题用到的等量关系为:工作时间=工作总量勺:作效率.7. 春节期间嘉嘉去距家 10千米的电影院看电影,计划骑自行车和坐公交车两种方式,已 知汽车的速度是骑车速度的 2倍,若坐公交车可以从家晚 15分钟出发恰好赶上公交车,结果与骑自行车同时到达,设骑车学生的速度为x 千米/小时,则所列方程正确的是(1 10 1010 10 c 10 10 1 10 10 A.— 15B.— 15 c.— --- — D . --- ----- —x 2x2x xx 2x 42x x 4【答案】C【解析】【分析】设骑车的速度为x 千米/小时, 则坐公交车的速度为2x 千米/小时,根据 汽车所用时间坐公交车所用时间15分钟” 列出方程即可得.【详解】设骑车的速度为x 千米/小时, 则坐公交车的速度为2x 千米/小时,10 10 1所列方程正确的是:——-, x 2x 4故选:C . 【点睛】此题考查由实际问题列分式方程,根据题意找到题目蕴含的相等关系是列方程的关键.x-3=0是解此题480360 480480 A .pB.x140 x140 xx【答案】 A【解析】480 360 360 480 C.-140 D . 140x x xx解:设甲每天做x 个零件,根据题意得: 故选:A . 480 360x 140 x【分析】8. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是(1)15 15115 15115 15 115 15A. B. — C.-— D.-—x 1 x 2x x 12x 1 x2x x 12【答案】B【解析】【分析】设小李每小时走x千米,则小张每小时走(X+1 )千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走X千米,依题意得:15 1x x 1 2故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.1 x 19. 解分式方程2 的结果是()x 2 2 xA. x="2"B. x="3"C. x="4"D.无解【答案】D【解析】【分析】【详解】解:去分母得:1 - x+2x- 4= - 1,解得:x=2,经检验x=2是增根,分式方程无解.故选D.考点:解分式方程.10. 八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍. 设骑车学生的速度为x千米/小时,则所列方程正确的是()10 1010 1010 10 11010 1A. - =20 B-=20 C. - -D. ——x 2x2x x x 2x 32x x 3【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 10 _1x - 2x = 3 '故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程. 11. 八年级(1)班全体师生义务植树300棵•原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的 1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()30030030030020A20 B ———x 1.2x x 1.2x60300300 2030020300C. ----------------- -----------D.-—x x 1.2x 60x60 1.2x【答案】D【解析】【分析】原计划每小时植树x棵,实际工作效率提高为原计划的 1.2倍,故每小时植1.2x棵,原计划植300棵树可用时300小时,实际用了-300小时,根据关键语句结果提前20分钟完x 1.2x成任务”可得方程.【详解】设原计划每小时植树x棵,实际工作效率提高为原计划的 1.2倍,故每小时植1.2x棵,由题意得:300 20型x 60 1.2x故选:D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.12. 某车间加工12个零件后,采用新工艺,工效比原来提高了件就少用1小时,那么采用新工艺前每小时加工的零件数为【答案】B50%,这样加工同样多的零()A. 3个B. 4个C. 5个D. 6个【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得:12 12 ’1,x x(1 50%)解得:x 4 ;经检验,x 4是原分式方程的解••••那么采用新工艺前每小时加工的零件数为4个;故选:B.【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.2 ax 413. --------------------------------------------- 如果关于x的分式方程 2 有正整数解,且关于y的不等式组3 x x 33 y 3 > 4y无解,那么符合条件的所有整数a的和是()y aA. - 16B.- 15 c.- 6 D.- 4【答案】D【解析】【分析】a的值, 先根据分式方程有正整数解确定出a的值,再由不等式组无解确定出满足题意的求出之和即可.【详解】解:分式方程去分母得:2+ax- 2x+6=- 4,整理得:(a - 2)x=- 12(a- 2工0)12解得:xa 2由分式方程有正整数解,得到a= 1, 0,- 1,- 2,- 4,- 10,当a=- 2时,x= 3,原分式方程无解,所以a= 1, 0, - 1,- 4,- 10,y< 9不等式组整理得:,y a由不等式组无解,即a>- 9,•符合条件的所有整数a有1, 0, - 1,- 4, • a = 1, 0,- 1,- 4,之和为-4,故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的 关键.1 kx 114. 若分式方程2+=有增根,则k 的值为( )x 22 xA .- 2B .- 1 C. 1 D . 2【答案】C 【解析】 【分析】根据分式方程有增根得到 x=2,将其代入化简后的整式方程中求出 k 即可.【详解】解:分式方程去分母得:2 (x -2) +1- kx =- 1,由题意将x = 2代入得:1 - 2k =- 1, 解得:k = 1. 故选:C. 【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的 解是解题的关键•15.某单位向一所希望小学赠送 1080本课外书,现用 A 、B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用 A 型包装箱可少用 6个;已知每个 B 型包装箱比每个 A 型 包装箱可多装15本课外书.若设每个 A 型包装箱可以装书 x 本,则根据题意列得方程为m 216.已知关于x 的分式方程 =1的解是负数,贝U m 的取值范围是( )x 1( )10801080A .1 6X—151080 1080 C. ------- =6xr + ISX 【答案】C【解析】设每个A 型包装箱可以装书 x 本,则每个B 型包装箱可以装书(x+15 )本,根据单独使用1080L0806个,列方程得:——- -------- 6,故选C+ IS xA . m <3【答案】D 【解析】B . m <3 且 m ^2 C. m v 3D . m v 3 且 m ^2B 型包装箱比单独使用 A 型包装箱可少用【分析】解方程得到方程的解,再根据解为负数得到关于求得m的取值范围.【详解】=1,解得:x=m- 3,•••关于x的分式方程—_ =1的解是负数,x 1m - 3v 0,解得:m v 3,当x=m - 3=- 1时,方程无解,则m^2,故m的取值范围是:m v 3且m^2,故选D.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.17.若关于x的分式方程x3m2x2有增根,则m的值为().3xA. 3B. 3C. .3D. .3【答案】D【解析】解关于x的方程x2m2得:x26 m , x 3x 3•••原方程有增根,••• x 3 0,即 6 m230 , 解得:m 3故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值•18.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间•设规定时间为x天,则可列方程为()900m的不等式结合分式的分母不为零,即可3【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的 关系即可列出方程. 【详解】解:设规定时间为 x 天,则慢马需要的时间为( x +1 )天,快马的时间为(x -3)天,•••快马的速度是慢马的 2倍900 900 2x 1x 3故选A . 【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.解:x a0① 33x 10 16 ②解①得,x a 解②得,x 2 •••不等式组无解•- y900 900 C.2x 1x 3【答案】A【解析】 900 900D .2x 1 x 32倍的速度19.从 4,1, 0, 2, 5, 8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不x a等式组 二-3x 10 0无解,且关于y162 y a的分式方程—y 33 y2有非负数解,则符合条件的a 的值的个数是(A . 1个【答案】C 【解析】 【分析】由不等式组无解确定出 围,综上可确定【详解】)B . 2个 C. 3个 D . 4个a 的一个取值范围、由分式方程其解为非负数确定 a 的一个取值范a 的最终取值范围,根据其取值范围即可判定出满足题意的值.3• a 8 且 a ^1 •综上所述,a 2且a 1•符合条件的a 的值有 4、0、2共三个. 故选:C【点睛】 本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定 解决问题的关键.x 220.分式方程—1 -2 ,解的情况是( )x 1 x 1A . x = 1B . x = 2 C. x =— 1 D .无解【答案】D 【解析】 【分析】观察式子确定最简公分母为(x+1)( x — 1),再进一步求解可得. 【详解】方程两边同乘以(x+1)( x — 1),得:x (x+1) — ( x 2— 1) = 2 ,解方程得:x =— 1 ,检验:把x =— 1代入x+1 = 0, 所以x =— 1不是方程的解. 故选:D . 【点睛】此题考查分式方程的解,掌握运算法则是解题关键•••关于y 的分式方程J_3y 32有非负数解•- y8 a~3~a 的取值范围是。

高中数学人教A版(2019)必修一 第二章 第三节 分式不等式

高中数学人教A版(2019)必修一 第二章 第三节 分式不等式

高中数学人教A版(2019)必修一第二章第三节分式不等式一、单选题(共7题;共14分)1.(2分)不等式xx−1<0的解集为()A.(-∞,0)B.(−∞,0)∪(0,+∞) C.(0,1)D.(-∞,1)2.(2分)下列不等式中,与不等式x+8x2+2x+3<2解集相同的是()A.(x+8)(x2+2x+3)<2B.(x+8)<2(x2+2x+3)C.1x2+2x+3<2x+8D.x2+2x+3x+8>123.(2分)不等式3x−12−x≥1的解集是()A.{x|34≤x≤2}B.{x|34≤x<2}C.{x|x≤−34或x>2}D.{x|x<2}4.(2分)若不等式2x 2+x+12x+1>a在区间[0,1]上有解,则实数a的取值范围是()A.a<√2−12B.a<1C.a<43D.a<2√2−125.(2分)不等式2−3xx−1>0的解集为()A.(−∞,34)B.(−∞,23)C.(−∞,23)∪(1,+∞)D.(23,1)6.(2分)若a<1,则关于x的不等式2x+ax+1<1的解集为()A.{x|−1<x<1−a}B.{x|x>1−a}C.{x|a<x<1}D.{x|x>1−a或x<−1}7.(2分)与不等式x−3x−2≤0同解集的不等式是()A.(x−3)(x−2)≤0B.x2−5x+6(x−2)2≤0C.x 2−x−6x2−4≥0D.(x−3)2(x−2)≤0二、填空题(共10题;共10分)8.(1分)不等式x3x−2>2的解集是9.(1分)不等式1x−1>1的解集为 . 10.(1分)不等式5x−2≤1的解集是 11.(1分)不等式x−1x <0的解集为 12.(1分)不等式1x−1<1的解集是 . 13.(1分)当m >12时,关于x 的分式不等式x−m+1x+m <0的解区间为 .14.(1分)不等式x+12x−1≤0 的解集是 . 15.(1分)不等式 1x<2 的解集为 . 16.(1分)若关于 x 的不等式 ax −b <0 的解集是 (1,+∞) ,则关于 x 的不等式ax+bx+5>0 的解集是 .17.(1分)不等式2x−7x−1≤1的解集是 . 三、解答题(共1题;共5分)18.(5分)解关于x 的不等式:2x−a−2x−2≤1(a ∈R) .答案解析部分1.【答案】C【解析】【解答】由xx−1<0,得x(x−1)<0,得0<x<1,所以不等的解集为(0,1)。

《不等式组与分式方程代数》综合训练

《不等式组与分式方程代数》综合训练

《不等式组与分式方程代数》综合训练一.选择题(共17小题)1.若关于x的不等式组有且仅有5个整数解,且关于y的分式方程=1有非负整数解,则满足条件的所有整数a的和为()A.12B.14C.21D.332.若关于x的不等式组有三个整数解,且关于y的分式方程=﹣1有整数解,则满足条件的所有整数a的和是()A.2B.3C.5D.63.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣184.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣185.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3B.1C.0D.﹣36.若数a使得关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=1有整数解,则所有满足条件的整数a的值之和是()A.3B.2C.﹣2D.﹣37.若数a使关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=2有整数解,则所有满足条件的整数a的值之和是()A.﹣3B.﹣2C.2D.38.要使关于x的不等式组至少有3个整数解,且使关于y的分式方程﹣=2的解为非正数的所有整数a的和是()A.10B.9C.8D.59.若数k使关于x的不等式组只有4个整数解,且使关于y的分式方程+1=的解为正数,则符合条件的所有整数k的积为()A.2B.0C.﹣3D.﹣610.如果关于x的不等式组有且仅有三个整数解,且关于x的分式方程﹣=1有非负数解,则符合条件的所有整数m的个数是()A.1B.2C.3D.411.若关于x的不等式组,有且只有三个整数解,且关于x的分式方程﹣=﹣1有整数解,则所有满足条件的整数a的值之积是()A.﹣5B.﹣1C.5D.1512.已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为()A.5B.6C.7D.813.若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是()A.﹣4B.﹣3C.﹣1D.014.若整数a使得关于x的方程2﹣=的解为非负数,且使得关于y的不等式组至少有三个整数解,则符合条件的整数a的个数为()A.6B.5C.4D.315.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.416.若关于x的不等式组的解集为x>3,且关于x的分式方程﹣=1的解为非正数,则所有符合条件的整数的a和为()A.11B.14C.17D.2017.使得关于x的不等式组有且只有4个整数解,且关于x的分式方程=﹣8的解为正数的所有整数a的值之和为()A.11B.15C.18D.19二.填空题(共3小题)18.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则满足条件的整数a的值是.19.使得关于x的分式方程﹣=1的解为负整数,且使得关于x的不等式组有且仅有5个整数解的所有k的和为.20.若关于x的不等式组有且仅有四个整数解,且关于x的分式方程﹣=3的解为正数,则所有满足条件的a的取值范围为.三.解答题(共1小题)21.若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和.参考答案与试题解析一.选择题(共17小题)1.若关于x的不等式组有且仅有5个整数解,且关于y的分式方程=1有非负整数解,则满足条件的所有整数a的和为()A.12B.14C.21D.33【解答】解:,解①得:x≤4,解②得:x>,∴不等式组解集为:<x≤4,∵不等式组有且仅有5个整数解,即0,1,2,3,4,∴﹣1≤<0,∴2<a≤9,=1,去分母得:﹣y+a﹣3=y﹣1,y=,∵y有非负整数解,且y≠1,即a≠4,∴a=6或8,6+8=14,故选:B.2.若关于x的不等式组有三个整数解,且关于y的分式方程=﹣1有整数解,则满足条件的所有整数a的和是()A.2B.3C.5D.6【解答】解:,解得:,∴不等式组的解集为:<x≤3,∵关于x的不等式组有三个整数解,∴该不等式组的整数解为:1,2,3,∴0≤<1,∴﹣1≤a<3,∵a是整数,∴a=﹣1,0,1,2,=﹣1,去分母,方程两边同时乘以y﹣2,得,y=﹣2a﹣(y﹣2),2y=﹣2a+2,y=1﹣a,∵y≠2,∴a≠﹣1,∴满足条件的所有整数a的和是:0+1+2=3,故选:B.3.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣18【解答】解:,由①得到:x≥﹣3,由②得到:x≤,∵不等式组有且仅有三个整数解,∴﹣1≤<0,解得﹣8≤a<﹣3.由分式方程+=1,解得y=﹣,∵有整数解,∴a=﹣8或﹣4,﹣8﹣4=﹣12,故选:B.4.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣18【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是(﹣8)+(﹣4)=﹣12,故选:B.5.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3B.1C.0D.﹣3【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤﹣<0,∴﹣4<a≤3,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,且y≠2,即(a+2)≥0,(a+2)≠2,解得a≥﹣2且a≠2,∴﹣2≤a≤3,且a≠2,∴满足条件的整数a的值为﹣2,﹣1,0,1,3,∴满足条件的整数a的值之和是1.故选:B.6.若数a使得关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=1有整数解,则所有满足条件的整数a的值之和是()A.3B.2C.﹣2D.﹣3【解答】解:,解不等式①得:x<5,解不等式②得:x,∵该不等式组有且仅有四个整数解,∴该不等式组的解集为:≤x<5,∴0<≤1,解得:﹣6≤a<5,﹣=1,方程两边同时乘以(y+2)得:(a+4)﹣(2y+3)=y+2,去括号得:a+4﹣2y﹣3=y+2,移项得:﹣2y﹣y=2+3﹣4﹣a,合并同类项得:﹣3y=1﹣a,系数化为1得:y=,∵该方程有整数解,且y≠﹣2,a﹣1是3的整数倍,且a﹣1≠﹣6,即a﹣1是3的整数倍,且a≠﹣5,∵﹣6≤a<5,∴整数a为:﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,又∵即a﹣1是3的整数倍,且a≠﹣5,∴a=﹣2或a=1或a=4,(﹣2)+1+4=3,故选:A.7.若数a使关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=2有整数解,则所有满足条件的整数a的值之和是()A.﹣3B.﹣2C.2D.3【解答】解:,解①得x<5,解②得x≥,不等式组的解集是≤x<5.∵仅有四个整数解,∴﹣6≤a<5,﹣=2有整数解,得y=.∵y≠﹣2,∴a≠﹣5,又y=有整数解,∴a=﹣2,a=4,a=1,所有满足条件的整数a的值之和是﹣2+4+1=3,故选:D.8.要使关于x的不等式组至少有3个整数解,且使关于y的分式方程﹣=2的解为非正数的所有整数a的和是()A.10B.9C.8D.5【解答】解:解不等式≥﹣1,得:x≥﹣,解不等式x﹣1<a,得:x<a+1,∵不等式组至少有3个整数解,∴a+1>0,即a>﹣1;分式方程两边乘以y+1,得:﹣2﹣(y﹣a)=2(y+1),解得:y=,∵分式方程的解为非正数,∴≤0,且≠﹣1,解得:a≤4且a≠1,∴﹣1<a≤4,且a≠1,则所有整数a的和为0+2+3+4=9,故选:B.9.若数k使关于x的不等式组只有4个整数解,且使关于y的分式方程+1=的解为正数,则符合条件的所有整数k的积为()A.2B.0C.﹣3D.﹣6【解答】解:解不等式组得:﹣3≤x≤﹣,∵不等式组只有4个整数解,∴0≤﹣<1,解得:﹣3<k≤0,解分式方程+1=得:y=﹣2k+1,∵分式方程的解为正数,∴﹣2k+1>0且﹣2k+1≠1,解得:k<且k≠0,综上,k的取值范围为﹣3<k<0,则符合条件的所有整数k的积为﹣2×(﹣1)=2,故选:A.10.如果关于x的不等式组有且仅有三个整数解,且关于x的分式方程﹣=1有非负数解,则符合条件的所有整数m的个数是()A.1B.2C.3D.4【解答】解:解不等式m﹣4x>4,得:x<,解不等式x﹣<3(x+),得:x>﹣,∵不等式组有且仅有三个整数解,∴﹣1<≤0,解得:0<m≤4,解关于x的分式方程﹣=1,得:x=,∵分式方程有非负数解,∴≥0,且≠2,m﹣1≠0,解得:m≥1且m≠4且m≠1,综上,0<m<4且m≠1,所以所有满足条件的整数m的值为2,3,一共2个.故选:B.11.若关于x的不等式组,有且只有三个整数解,且关于x的分式方程﹣=﹣1有整数解,则所有满足条件的整数a的值之积是()A.﹣5B.﹣1C.5D.15【解答】解:解不等式≤+,得:x≤2,解不等式4x﹣1>a,得:x>,∵不等式组有且只有三个整数解,∴﹣1≤<0,解得:﹣5≤a<﹣1,解方程﹣=﹣1,得:x=,在﹣5≤a<﹣1中使x=为整数的a的值为﹣5,故选:A.12.已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为()A.5B.6C.7D.8【解答】解:解不等式﹣(4x+)<0,得:x>,解不等式﹣(x+2)+2≥0,得:x≤2,则不等式组的解集为<x≤2,∵不等式组有且只有四个整数解,∴﹣2≤<﹣1,解得:﹣3≤k<5;解分式方程﹣2=得:x=,∵分式方程有正数解,∴>0,且≠1,解得:k>﹣3且k≠﹣1,所以满足条件的整数k的值为﹣2、0、1、2、3、4,则满足条件的整数k的和为﹣2+0+1+2+3+4=8,故选:D.13.若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是()A.﹣4B.﹣3C.﹣1D.0【解答】解:由不等式组可知:x≤4且x>,∵x有且只有5个整数解,∴﹣1≤<0,∴﹣4≤a<3由分式方程可知:x=,将x=代入x﹣1≠0,∴a≠1,∵关于x的分式方程有整数解,∴a+1能被2整除,∵a是整数,∴a=﹣3或﹣1∴所有满足条件的整数a之和为﹣4故选:A.14.若整数a使得关于x的方程2﹣=的解为非负数,且使得关于y的不等式组至少有三个整数解,则符合条件的整数a的个数为()A.6B.5C.4D.3【解答】解:,不等式组整理得:,得到﹣1<y≤a,由不等式组至少有三个整数解,解得:a≥2,即整数a=2,3,4,5,6,…,2﹣=,去分母得:2(x﹣2)﹣3=﹣a,解得:x=,∵≥0,且≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为2,4,5,6,7.故选:B.15.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.4【解答】解:解方程﹣=5,得:x=,∵分式方程的解为正数,∴a+2>0,即a>﹣2,又x≠1,∴≠1,即a≠2,则a>﹣2且a≠2,∵关于y的不等式组有解,∴a﹣1≤y<6﹣2a,即a﹣1<6﹣2a,解得:a<,综上,a的取值范围是﹣2<a<,且a≠2,则符合题意的整数a的值有﹣1、0、1,3个,故选:C.16.若关于x的不等式组的解集为x>3,且关于x的分式方程﹣=1的解为非正数,则所有符合条件的整数的a和为()A.11B.14C.17D.20【解答】解:不等式组整理得:,由已知解集为x>3,得到a﹣3≤3,解得:a≤6,分式方程去分母得:(x+a)(x﹣3)﹣ax﹣3a=x2﹣9,解得:x=3﹣2a,由分式方程的解为非正数,∴3﹣2a≤0,∴a≥1.5,∵3﹣2a≠3且3﹣2a≠﹣3,∴a≠0且a≠3,∴1.5≤a≤6且a≠3,∴整数a=2,4,5,6,则所有满足条件的整数a的和是17,故选:C.17.使得关于x的不等式组有且只有4个整数解,且关于x的分式方程=﹣8的解为正数的所有整数a的值之和为()A.11B.15C.18D.19【解答】解:解不等式组得≤x<4,∵关于x的不等式组有且只有4个整数解,∴﹣1<≤0,解得4<a≤10,解方程=﹣8得x=,∵方程的解为正数,∴8﹣a>0且8﹣a≠1,解得:a<8且a≠7,所以在4<a≤10的范围内符合条件的整数有5、6,则整数a的值之和为11,故选:A.二.填空题(共3小题)18.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则满足条件的整数a的值是﹣2.【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤﹣<0,∴﹣4<a≤﹣2,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,且y≠2,即(a+2)≥0,(a+2)≠2,解得a≥﹣2且a≠2,∴﹣2≤a≤3,且a≠2,∴满足条件的整数a的值为﹣2,故答案为:﹣2.19.使得关于x的分式方程﹣=1的解为负整数,且使得关于x的不等式组有且仅有5个整数解的所有k的和为12.5.【解答】解:解分式方程﹣=1,可得x=1﹣2k,∵分式方程﹣=1的解为负整数,∴1﹣2k<0,∴k>,又∵x≠﹣1,∴1﹣2k≠﹣1,∴k≠1,解不等式组,可得,∵不等式组有5个整数解,∴1≤<2,解得0≤k<4,∴<k<4且k≠1,∴k的值为1.5或2或2.5或3或3.5,∴符合题意的所有k的和为12.5,故答案为:12.5.20.若关于x的不等式组有且仅有四个整数解,且关于x的分式方程﹣=3的解为正数,则所有满足条件的a的取值范围为﹣1<a<4且a≠1.【解答】解:,不等式组整理得:,由不等式组有且仅有四个整数解,得到0≤<1,解得:﹣3≤a<4,即整数a=﹣3,﹣2,﹣1,0,1,2,3,﹣=3,分式方程去分母得:x+a﹣2=3x﹣3,解得:x=,∵关于x的分式方程﹣=3的解为正数,∴>0且﹣1≠0,解得:a>﹣1且a≠1.则所有满足条件的a的取值范围为﹣1<a<4且a≠1.故答案为:﹣1<a<4且a≠1.三.解答题(共1小题)21.若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和.【解答】解:不等式组整理得:,由不等式组有且仅有五个整数解,得到﹣1≤<0,解得:﹣4≤a<3,即整数a=﹣4,﹣3,﹣2,﹣1,0,1,2,分式方程去分母得:x+a﹣2=3x﹣3,解得:x=,当a=﹣3时,x=﹣1;a=﹣1时,x=0,则满足题意a的值之和为﹣3﹣1=﹣4.。

微专题05 一元二次不等式、分式不等式(解析版)

微专题05 一元二次不等式、分式不等式(解析版)

微专题05一元二次不等式、分式不等式【知识点总结】一、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅二、分式不等式(1)()0()()0()f x f xg x g x >⇔⋅>(2)()0()()0()f x f xg x g x <⇔⋅<(3)()()0()0()0()f x g x f x g x g x ⋅≥⎧≥⇔⎨≠⎩(4)()()0()0()0()f x g x f x g x g x ⋅≤⎧≤⇔⎨≠⎩三、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】(1)已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;(2)已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;(3)已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;(4)已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:一元二次不等式的解法题型二:分式不等式的解法题型三:绝对值不等式的解法题型四:高次不等式的解法题型五:一元二次不等式恒成立问题【典型例题】题型一:一元二次不等式的解法例1.(2022·全国·高一课时练习)不等式20x ax b --<的解集是{|23}x x <<,则210bx ax -->的解集是()A .{|23}x x <<B .11{|}32x x <<C .11{|}23x x -<<-D .{|32}x x -<<-【答案】C【解析】因为不等式20x ax b --<的解集是{|23}x x <<,所以方程20x ax b --=的两根为122,3x x ==,所以由韦达定理得23a +=,23b ⨯=-,即,=5=-6a b ,所以2216510bx ax x x --=--->,解不等式得解集为11{|}23x x -<<-故选:C例2.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是()A .0a >B .不等式20ax cxb ++>的解集为{|22x x <<+C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<<B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B例3.(2022·江苏南京·高一期末)已知,b c ∈R ,关于x 的不等式20x bx c ++<的解集为()2,1-,则关于x 的不等式210cx bx ++>的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,12∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】因为不等式20x bx c ++<的解集为()2,1-,所以2121-=-+⎧⎨=-⨯⎩b c 即12=⎧⎨=-⎩b c ,不等式210cx bx ++>等价于2210x x -++>,解得112x -<<.故选:A .例4.(2022·全国·高一课时练习)已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是关于x 的不等式230x x a -+<解集的子集,则实数a 的取值范围是().A .0a <B .0a ≤C .2a ≤D .2a <【答案】B【解析】不等式组22430680x x x x ⎧-+<⎨-+<⎩解得1324x x <<⎧⎨<<⎩,所以不等式组的解集是{|23}x x <<,关于x 的不等式230x x a -+<解集包含{|23}x x <<,令2()3f x x x a =-+,∴940(2)20(3)0a f a f a ∆=->⎧⎪=-+⎨⎪=⎩,解得0a ,故选:B .例5.(多选题)(2022·江苏·苏州中学高一阶段练习)关于x 的不等式20ax bx c ++<的解集为(,2)(3,)-∞-⋃+∞,则下列正确的是()A .0a <B .关于x 的不等式0bx c +>的解集为(,6)-∞-C .0a b c ++>D .关于x 的不等式20cx bx a -+>的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】ACD【解析】A .由已知可得0a <且2,3-是方程20ax bx c ++=的两根,A 正确,B .由根与系数的关系可得:2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得,6b a c a =-=-,则不等式0bx c +>可化为:60ax a -->,即60x +>,所以6x >-,B 错误,C .因为660a b c a a a a ++=--=->,C 正确,D .不等式20cx bx a -+>可化为:260ax ax a -++>,即2610x x -->,解得12x >或13x <-,D 正确,故选:ACD .例6.(多选题)(2022·全国·高一)若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是()A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-⋃+∞【答案】ABD【解析】因为不等式20ax bx c ++>的解集为()1,2-,所以0,1,2b ca a a<-==-,故,2b a c a =-=-,此时20a b c a ++=->,所以A 正确,B 正确;22230230230bx cx a ax ax a x x ++>⇔--+>⇔+->,解得:3x <-或1x >.所以D 正确;C 错误.故选:ABD例7.(2022·全国·高一专题练习)关于x 的不等式22430(0)x ax a a -+-≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是_____________.【答案】4【解析】关于x 的不等式22430(0)x ax a a -+-≥>可化为()()30(0)x a x a a --≤>所以不等式的解集为[],3a a ,所以12,3x a x a ==.所以122123314443a a x x a a x x a a ++=+=+≥=(当且仅当14a a=,即12a =时取“=”).故答案为:4.例8.(2022·江苏·盐城市大丰区新丰中学高一期中)已知关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,且a ,b ,R c ∈,0b c +≠,则2210a b b c +++的最小值为_______.【答案】【解析】由题意,关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,可得0b >,且440ab ∆=+=,所以1ab =-且0b >,所以1a b=-,又由不等式220bx x a -->的解集为{|}x x c ≠,所以212c b b--==,令12t b c b b=+=+≥,则22222211()22a b b b t b b +=+=+-=-,所以2221088a b t t b c t t +++==+≥+t =时取等号.所以2210a b b c+++的最小值为故答案为:题型二:分式不等式的解法例9.(2022·河南·高一期中)不等式351x x x +>-的解集是______.【答案】()(),11,5-∞-⋃【解析】不等式351x x x +>-化为以下两个不等式组:21035x x x x -<⎧⎨+<-⎩或21035x x x x ->⎧⎨+>-⎩,解21035x x x x -<⎧⎨+<-⎩,即21450x x x <⎧⎨-->⎩,解得1x <-,解21035x x x x ->⎧⎨+>-⎩,即21450x x x >⎧⎨--<⎩,解得15x <<,所以原不等式的解集是()(),11,5-∞-⋃.故答案为:()(),11,5-∞-⋃例10.(2022·全国·高一专题练习)不等式3113x x+>--的解集是_______.【答案】()23-,【解析】由3113x x +>--可得31103x x ++>-,即2403x x +<-,即()()3240x x -+<解得23x -<<所以不等式3113x x+>--的解集是()23-,故答案为:()23-,例11.(2022·湖南·新邵县第二中学高一开学考试)不等式2131x x +>-的解是___________.【答案】(1,4)【解析】由题设,2143011x xx x +--=>--,∴(1)(4)0x x --<,可得14x <<,原不等式的解集为(1,4).故答案为:(1,4).例12.(2022·上海市延安中学高一期中)已知关于x 的不等式221037kx kx x x -+≤-+的解集为空集,则实数k 的取值范围是___________.【答案】[)0,4【解析】2231937024x x x ⎛⎫-+=-+> ⎪⎝⎭恒成立,∴不等式等价于210kx kx -+≤的解集是φ,当0k =时,10≤不成立,解集是φ,当0k ≠时,240k k k >⎧⎨∆=-<⎩,解得:04k <<,综上:04k ≤<.故答案为:[)0,4例13.(2022·湖北·武汉市钢城第四中学高一阶段练习)不等式301x x -≥+的解集是____________.【答案】()[),13,-∞-+∞【解析】原不等式等价于()()31010x x x ⎧-+≥⎨+≠⎩,解得:3x ≥或1x <-,故答案为:()[),13,-∞-+∞.例14.(2022·上海市奉贤区曙光中学高一阶段练习)设关于x 的不等式0ax b +>的解集为(,1)-∞,则关于x 的不等式06ax bx -≥-的解集为______;【答案】[)1,6-【解析】由于关于x 的不等式0ax b +>的解集是(,1)-∞,则1为关于0ax b +=的根,且0a <,0a b ∴+=,得=-b a ,不等式06ax b x -≥-即为06ax a x +≥-,即106x x +≤-,解该不等式得[)1,6x ∈-故答案为:[)1,6-例15.(2022·黑龙江·牡丹江市第三高级中学高一开学考试)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式13x ax -≤-的解集为______.【答案】{}3x x >【解析】∵不等式2510ax x ++≤的解集为11{|}23x x -≤≤-∴12-,13-是方程2510ax x ++=的两根,∴6a =,∴13x a x -≤-可化为303x -≤-∴3x >∴不等式13x ax -≤-的解集为{|3}x x >,故答案为:{|3}x x >.例16.(2022·上海·高一专题练习)关于x 的不等式212x ax -≤--的解集是523x x ⎧⎫≤<⎨⎬⎩⎭,则a 的值为____.【答案】3【解析】由题知,22122x a x x x --≤-=---,整理得()3202x a x -+≤-,所以()()()3220x a x -+-≤,且2x ≠,因为不等式()()()3220x a x -+-≤,且2x ≠,的解集为523x x ⎧⎫≤<⎨⎬⎩⎭,所以()53203a ⋅-+=,3a =.故答案为:3.题型三:绝对值不等式的解法例17.(2022·上海交大附中高一阶段练习)不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为______________;【答案】(]1,3-;【解析】不等式12x -≤等价于212x -≤-≤,解之得:13x -≤≤,不等式511x ≥+等价于()5101x x -+≥+,解之得:14x -<≤,故不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为:(]1,3-.故答案为:(]1,3-.例18.(2022·上海交大附中高一期中)已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{|}1||2B x x =-≤,则A B =___.【答案】(23]-,【解析】解不等式102x x -≤+即(1)(2)020x x x -+≤⎧⎨+≠⎩,解得21x -<≤,故10(2,1]2x A xx ⎧⎫-=≤=-⎨⎬+⎩⎭,解|1|2x -≤,即212x -≤-≤,解得13x -≤≤,故121{|||]3}[B x x =-≤=-,,则(23]A B ⋃=-,,故答案为:(23]-,.例19.(2022·上海浦东新·高一期中)不等式221x x ->+的解集是_________.【答案】1|33x x ⎧⎫-<<⎨⎬⎩⎭【解析】当12x ≤-时,不等式221x x ->+转化为()()221x x -->-+,解得3x >-,此时132x -<≤-,当122x -<<时,不等式221x x ->+转化为()221x x -->+,解得13x <,此时1123x -<<,当2x ≥时,不等式221x x ->+转化为221x x ->+,解得3x <-,此时无解,综上:221x x ->+的解集是1|33x x ⎧⎫-<<⎨⎬⎩⎭.故答案为:1|33x x ⎧⎫-<<⎨⎬⎩⎭例20.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___.【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4.又当a =2时,A ={x |1<x <3},a =4时,A ={x |3<x <5},均满足A 是B 的真子集,∴2≤a ≤4.故答案为:2≤a ≤4题型四:高次不等式的解法例21.(2022·全国·高一课时练习)不等式22132x x x +≥-+的解集为___________.【答案】[0,1)(2,4]⋃【解析】22132x x x +≥-+等价于221032+-≥-+x x x ,即224032x x x x -+≥-+,即(4)0(1)(2)x x x x -≤--,又等价于()()()()()1240120x x x x x x ⎧---≤⎪⎨--≠⎪⎩,利用数轴标根法解得01x ≤<或24x <≤,所以原不等式的解集为[0,1)(2,4]⋃,故答案为:[0,1)(2,4]⋃例22.(2022·天津·静海一中高一阶段练习)不等式()()222344032x x x x x +-+≤+-的解集为___________.【答案】3[,1){2}(3,)2--+∞【解析】由题得2320,3x x x +-≠∴≠且1x ≠-.由题得()()()()2222322320,023(3)(1)x x x x x x x x +-+-≥∴≥---+,所以()()223(1)2(3)0x x x x ++--≥,()()223(1)2(3)0x x x x ++--=零点为3,1,2,32--.当32x <-时,不等式不成立;当312x -≤<-时,不等式成立;当12x -≤<时,不等式不成立;当2x =时,不等式成立;当23x <≤时,不等式不成立;当3x >时,不等式成立.故不等式的解集为:3[,1){2}(3,)2--+∞故答案为:3[,1){2}(3,)2--+∞例23.(2022·上海·华师大二附中高一阶段练习)不等式201712xx x <≤-+的解集为________.【答案】(0,2][6,)⋃+∞【解析】20712xx x <⇒-+()()340x x x -->,根据数轴穿根法可解得03x <<或4x >,22228121100712712712x x x x x x x x x x -+≤⇒-≤⇒≥-+-+-+()()()()2234607120x x x x x x ⎧----≥⇒⎨-+≠⎩,解得2x ≤或34x <<或6x ≥,所以2034017122346x x xx x x x x ⎧<<≤⇒⎨-+≤<<≥⎩或或或,解得(0,2][6,)x ∈⋃+∞.故答案为:(0,2][6,)⋃+∞例24.(2022·上海·华师大二附中高一期末)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩,解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.例25.(2022·上海·高一专题练习)不等式()()()()2321120x x x x ++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x -≤或1x =-或12x ≤≤时,()()()()2321120x x x x ++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.例26.(2022·浙江·诸暨中学高一期中)不等式()()2160x x x -+-<的解集为______.【答案】()(),31,2-∞-【解析】因为()()2160x x x -+-<,所以()()()1320x x x -+-<,解得3x <-或12x <<.所以不等式()()2160x x x -+-<的解集为:()(),31,2-∞-.故答案为:()(),31,2-∞-例27.(2022·上海·高一专题练习)不等式()()22221221x xx x x x ++>++的解集为_________.【答案】()()(),11,02,-∞--+∞.【解析】()()22221221xxx x x x ++>++等价于()()2120,x x x +->当1x =-时,不等式不成立,当1x ≠-时,不等式等价于()20x x ->,解得0x <或2x >且1x ≠-,故不等式的解集为()()(),11,02,-∞--+∞.故答案为:()()(),11,02,-∞--+∞.例28.(2022·上海市复兴高级中学高一期中)不等式()()()()2233021x x x x x --≥-+-的解集是______.【答案】23x x ⎧≤⎨⎩或}13x <≤【解析】不等式()()()()2233021x x x x x --≥-+-等价为()()()23310x x x ---≥且10x -≠,∴23x ≤或13x <≤,∴不等式()()()()2233021x x x x x --≥-+-的解集是23x x ⎧≤⎨⎩或}13x <≤故答案为:23x x ⎧≤⎨⎩或}13x <≤例29.(2022·贵州·遵义航天高级中学高一阶段练习)不等式()()232101xx x x -++≤-的解集为()A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-.故选:D .题型五:一元二次不等式恒成立问题例30.(2022·江苏·高一专题练习)若正实数,x y 满足244x y xy ++=,且不等式()2222340x y a a xy +++-≥恒成立,则实数a 的取值范围是()A .532⎡⎤-⎢⎥⎣⎦,B .(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭C .532⎛⎤- ⎥⎝⎦,D .(]5,3,2⎛⎫-∞-+∞ ⎪⎝⎭【答案】B【解析】正实数x ,y 满足244x y xy ++=,可得244x y xy +=-,∴不等式()2222340x y a a xy +++-≥恒成立,即()24422340xy a a xy -++-≥恒成立,变形可得()222214234xy a a a +≥-+恒成立,即2221721a a xy a -+≥+恒成立,0x >,0y >,2x y ∴+≥2x y =时等号成立,4244xy x y ∴=++≥+220≥,≥≤舍)可得2xy ≥,要使2221721a a xy a -+≥+恒成立,只需22217221a a a -+≥+恒成立,化简可得22150a a +-≥,即()()3250a a +-≥,解得3a ≤-或52a ≥,故实数a 的取值范围是(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭故选:B .例31.(2022·全国·高一单元测试)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为()A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A .例32.(2022·河南濮阳·高一期末(理))已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为()A .(][),04,-∞+∞UB .[]0,4C .[)4,+∞D .()0,4【答案】A【解析】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为:(][),04,-∞+∞U .故选:A .例33.(2022·浙江·金华市曙光学校高一阶段练习)“不等式20x x m -+>在R 上恒成立”的充要条件是()A .14m >B .14m <C .1m <D .1m >【答案】A【解析】∵不等式20x x m -+>在R 上恒成立,∴24(10)m ∆--<=,解得14m >,又∵14m >,∴140m ∆=-<,则不等式20x x m -+>在R 上恒成立,∴“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A .例34.(2022·四川·广安二中高一阶段练习(理))已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围()A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2∞⎛⎫- ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110a x a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B例35.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D .例36.(2022·陕西安康·高一期中)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞故选:A例37.(2022·广西·南宁市东盟中学高一期中)已知命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则实数a 的取值范围是()A .a -<<B .a <C .3a <D .9 2a <【答案】B【解析】由题知,命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则21,2,2102x x ax ⎡⎤∀∈-+>⎢⎥⎣⎦为真命题,即11,2,22x x a x ⎡⎤∀∈+>⎢⎥⎣⎦恒成立.又12x x +≥12x x =≥2x =等号成立,所以a <故选:B例38.(2022·全国·高一课时练习)已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是()A .4a <B .4a <-C .4a >D .4a >-【答案】A【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足,25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .【过关测试】一、单选题1.(2022·江西·丰城九中高一期末)已知集合{}2870A x x x =-+<,{}14B x x =<<,则“x A ∈”是“x B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意得{}17A x x =<<,所以AB .所以“x A ∈”是“x B ∈”的必要不充分条件.故选:B2.(2022·全国·高一)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为()A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<,当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C3.(2022·江苏·高一专题练习)若存在正实数y ,使得54y xx y xy-=+,则实数x 的最大值为()A .15B .54C .1D .4【答案】A 【解析】115454y x x y x y xy x y-=+⇔-=+,因为0y >,所以144y y +≥,所以154x x-≥,当0x >时,154x x-≥⇔25410x x +-≤,解得105x <≤,当0x <时,154x x-≥⇔25410x x +-≥,解得1x <-,故x 的最大值为15.故选:A4.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是()A .()()12-∞⋃+∞,,B .()12,C .()()21-∞-⋃+∞,,D .()21-,【答案】D【解析】关于x 的不等式ax b >的解集为{|2}x x <,0a ∴<,20a b -=,()()10ax b x ∴+->可化为()()210a x x +->,21x ∴-<<,∴关于x 的不等式()()10ax b x +->的解集是()21-,.故选:D .5.(2022·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是()A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,【答案】C【解析】因为不等式22(11)m x mx m x +<+++对R x ∈恒成立,所以210mx mx m ++-<对R x ∈恒成立,所以,当0m =时,10-<对R x ∈恒成立.当0m ≠时,由题意,得20Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <,综上,m 的取值范围为(]0-∞,.故选:C6.(2022·江苏·高一)已知不等式20ax bx c ++>的解集为{}|21x x -<<,则不等式20cx bx a -+<的解集为()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()2,1-【答案】A【解析】关于x 的不等式20ax bx c ++>的解集为{}|21x x -<<0a ∴<,且2-和1是方程20ax bx c ++=的两个根,则4200a b c a b c -+=⎧⎨++=⎩b a ∴=,2c a =-,关于x 的不等式20cx bx a -+<,即220ax ax a --+<,2210x x ∴+-<,解得112x -<<,故不等式的解集为11,2⎛⎫- ⎪⎝⎭,故选:A7.(2022·北京师大附中高一期末)关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤;综上所述:实数a 的取值范围为(],3-∞.故选:B .8.(2022·广西·桂林中学高一期中)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为()A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞【答案】A【解析】因0ax b ->的解集为(,2)-∞,则0a <,且2ba=,即有2,0b a a =<,因此,不等式2056ax bx x +≥--化为:22056ax a x x +≥--,即22056x x x +≤--,于是有:220560x x x +≤⎧⎨-->⎩或220560x x x +≥⎧⎨--<⎩,解220560x x x +≤⎧⎨-->⎩得2x -≤,解220560x x x +≥⎧⎨--<⎩得16x -<<,所以所求不等式的解集为:(,2](1,6)-∞--.故选:A 二、多选题9.(2022·湖北黄石·高一阶段练习)下列结论错误的是()A .不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅B .不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤C .若函数()20y ax bx c a =++≠对应的方程没有实根,则不等式20ax bx c ++>的解集为RD .不等式11x>的解集为1x <【答案】CD【解析】对于选项A ,当0a ≥时,210ax x ++≥的解集不为∅,而当0a <时,要使不等式210ax x ++≥的解集为∅,只需140a ∆=-<,即14a >,因0a <,故不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅,因此A 正确;对于选项B ,当0a <且240b ac ∆=-≤时,20ax bx c ++≤在R 上恒成立,故不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤,因此B 正确;对于选项C ,因函数()20y ax bx c a =++≠对应的方程没有实根,但a 正负不确定,故20ax bx c ++>或20ax bx c ++<恒成立,因此不等式20ax bx c ++>的解集不一定为R ,故C错;对于选项D ,由11x>,得10x x ->,即()10x x ->,解得01x <<,故D 错.故选:CD .10.(2022·黑龙江·尚志市尚志中学高一阶段练习)设p :实数x 满足1021x x -≤-,则p 成立的一个必要不充分条件是()A .11 2x ≤≤B .112x <≤C .01x ≤≤D .01x <≤【答案】ACD【解析】由题设,若p 成立,(1)(21)0210x x x --≤⎧⎨-≠⎩,解得112x <≤,∴p 成立的一个必要不充分条件,只需1(,1]2在某个范围内,但不相等即可.故选:ACD .11.(2022·江苏南京·高一阶段练习)定义区间(),m n 的长度为n m -,若满足()()2012x ax x -<--的x 构成的区间的长度之和为3,则实数a 的可能取值是()A .14B .13C .3D .4【答案】CD【解析】若14a =,()()()1111220,1,21222x x x x x ⎛⎫⎛⎫-+ ⎪⎪⎛⎫⎝⎭⎝⎭<⇒∈- ⎪--⎝⎭故区间长度之和为1+1=2,不符合题意;若13a =,()()()01,212x x x x x ⎛+ ⎛⎝⎭⎝⎭<⇒∈ --⎝⎭故区间长度之和为符合题意;若3a =,(()()())0212x x x x x +<⇒∈--故区间长度之和为123=,符合题意;若()()()()()224,02,112x x a x x x -+=<⇒∈---故区间长度为3,符合题意.故选:CD .12.(2022·全国·高一专题练习)下列条件中,为“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有()A .04m ≤<B .02m <<C .14m <<D .16m -<<【答案】BC【解析】因为关于x 的不等式210mx mx -+>对R x ∀∈恒成立,当0m =时,原不等式即为10>恒成立;当0m >时,不等式210mx mx -+>对R x ∀∈恒成立,可得∆<0,即240m m -<,解得:04m <<.当0m <时,21y mx mx =-+的图象开口向下,原不等式不恒成立,综上:m 的取值范围为:[)0,4.所以“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有02m <<或14m <<.故选:BC .三、填空题13.(2022·广东·梅州市梅江区梅州中学高一阶段练习)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则不等式(ax +b )(cx -b )<0的解集是________.【答案】3,32⎛⎫- ⎪⎝⎭【解析】由图像知:1和2是关于x 的方程ax 2+bx +c =0(a ≠0)的两个根,所以0a >,12,12b c a a+=-⋅=,所以3,2b a c a =-=.不等式(ax +b )(cx -b )<0可化为()()3230ax a ax a -+<,即()()23230x x a-+<,解得:332x -<<.所以不等式(ax +b )(cx -b )<0的解集是3,32⎛⎫- ⎪⎝⎭.故答案为:3,32⎛⎫- ⎪⎝⎭14.(2022·江苏·南京市金陵中学河西分校高一阶段练习)若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.【答案】12【解析】令1x =,则44a b c ≤++≤,故4a b c ++=,对任意R x ∈,222x ax bx c +≤++,则2(2)20ax b x c +-+-≥恒成立,∴222(2)4(2)(2)4(2)(2)0b ac a c a c a c ∆=---=+---=-+≤∴2c a =+,此时22b a =-,∴2111(22)2(1)2(222ab a a a a a =-=-=--+≤,当15,1,22a b c ===时取等号,此时()()2222333224310222x x ax bx c x x x -+-++=-+=-≥成立,∴ab 的最大值为12.故答案为:12.15.(2022·江苏·扬州大学附属中学高一期中)不等式20ax bx c ++≤的解集为R ,则2222b a c +的最大值为____________.【解析】当0a =时,即不等式0bx c +≤的解集为R ,则0b =,0c ≤,要使得2222b a c +有意义,此时0c <,则22202b a c =+;当0a ≠时,若不等式20ax bx c ++≤的解集为R ,则20Δ40a b ac <⎧⎨=-≤⎩,即204a b ac <⎧⎨≤⎩,所以,22222422b ac a c a c ≤++,因为24b ac ≤,则0ac ≥,当0c =时,则0b =,此时22202b a c =+;当0c <时,则0ac >,令0c t a =>,则22244412122ac t a c t t t ==≤+++当且仅当242b ac c a a c ⎧=⎪⎨=⎪⎩时,等号成立.综上所述,2222b a c +16.(2022·上海·格致中学高一期末)已知关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,则12123a x x x x ++的最小值是___________.【答案】【解析】因为关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,所以12,x x 是方程()226300x ax a a -+-=>的实数根,所以112226,3x x x x a a ==+,因为0a >,所以1212316a x x a x x a ++=+≥16a a =,即a =时等号成立,所以12123a x x x x ++的最小值是故答案为:。

分式不等式课堂同步练习题

分式不等式课堂同步练习题

分式不等式课堂同步练习题①.分式不等式的解法:1〕标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0()f xg x ≤)的形式, 2〕转化为整式不等式〔组〕()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩; 一.选择题:011>-+x x 的解集是 〔 〕 A.{}1|->x xB.{}01|<<-x x C.{}1|>x xD.{}11|-<>或x x x2. 與不等式032>+-x x 同解的不等式是 〔 〕 A.()()032>+-x x B.()02>-x C. ()()032<+-x xD.()03>+x022≤+-x x 的解集是 〔 〕 A.{}2|≤x x B. {}22|≤≤-x x C. {}22|≤<-x x D. {}22|-<≥或x x x4. 不等式025≥-+x x 的解集是 〔 〕 A.{}2|-<x x B.{}5|-≤x x C.{}25|>-≤x x x 或 D. {}25|≥-≤x x x 或5. 不等式1212<++x x 的解集是 〔 〕 A.{}1|<x x B. {}1|-<x x C. {}12|<<-x x D.{}21|-<>x x x 或2601x x x --->的解集为〔 〕A.{}2,3x x x -<或>B.{}213x x x -<,或<<C.{}213x x x -<<,或>D.{}2113x x x -<<,或<<7、不等式252(1)x x +-≥的解集是〔 〕 A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8、不等式22x x x x --> 的解集是〔 〕A. (02),B. (0)-∞,C. (2)+∞,D. (0)∞⋃+∞(-,0),9、设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,那么不等式()()0f x f x x--<的解集为〔 〕 A .(10)(1)-+∞,,B .(1)(01)-∞-,, C .(1)(1)-∞-+∞,, D .(10)(01)-,,10、设集合A ={x |1x x -<0},B ={x |0<x <3},那么“m ∈A 〞是“m ∈B 〞的〔 〕二.填空题:11、不等式204xx ->+的解集是 . 12、不等式22032x x x ->++的解集是 .131x ≤的解集是 . 14、关于x 的不等式11ax x -+<0的解集是1(,1)(,)2-∞--+∞.那么a = . 15、不等式112x x ->+的解集是__________.三.计算题: 1、045<++x x 2、0232≤-+x x 3、0321>+-x x4、1232<++x x5、1223≥+x x6、23235<-+x x7、 222310372x x x x ++>-+ 8、3113x x +>--9、2223712x x x x +-≥-- 10、 1111x x x x -+<+-11、229152x xx--<+12、2232712x xx x-+>-+13、2121x xx+≤+14、2112xx->-+15、23234xx-≤-16、2212(1)(1)xx x-<+-17、 2206x x x x +<+- 18、 2121x xx +<-19、2321x x x x +>++ 20、211(3)x >-21、(23)(34)0(2)(21)x x x x -->-- 22、 2311x x +≥+23、123123x x x+->---24、25214x x+≤--25.221421xx x≥--26、221(1)(2)xx x-<+-27、(2)3x xx+>-28、22411372x xx x-+≥-+本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

高一数学具体的不等式试题答案及解析

高一数学具体的不等式试题答案及解析

高一数学具体的不等式试题答案及解析1.不等式的解集是A.B.C.D.【答案】D【解析】:因为方程的两个根为,所以不等式的解集是。

故选D。

【考点】一元二次不等式的解法.点评:熟练掌握一元二次不等式的解法和实数的性质是解题的关键.2.不等式的解集是【答案】【解析】等价于,所以,,故不等式的解集是。

【考点】简单分式不等式解法点评:简单题,分式不等式解法,主要是转化成整式不等式求解。

3.不等式≥0的解集 .【答案】R【解析】根据题意,不等式≥0等价于,那么根据绝对值的几何意义可知,任意实数的绝对值都大于等于零,故可知解集为R.【考点】一元二次不等式的解集点评:主要是考查了一元二次不等式的解法的运用,属于基础题。

4.函数在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。

5.已知存在实数使得不等式成立,则实数的取值范围是 .【答案】【解析】解:由题意借助数轴,|x-3|-|x+2|∈[-5,5],∵存在实数x使得不等式|x-3|-|x+2|≥|3a-1|成立,∴5≥|3a-1|,解得-5≤3a-1≤5,即-≤a≤2,故答案为[-,2]【考点】绝对值不等式点评:本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别,本题是一个存在问题,解决的是有的问题,故取|3a-1|≤5,即小于等于左边的最大值即满足题意,本题是一个易错题,主要错误就是出在把存在问题当成恒成立问题求解,因思维错误导致错误6.若不等式kx2-2x+6k<0(k≠0)。

(1)若不等式解集是{x|x<-3或x>-2},求k的值;(2)若不等式解集是R,求k的取值。

【答案】(1);(2)【解析】解:∵不等式kx2-2x+6k<0(k≠0),不等式的解集是{x|x<-3或x>-2},∴根据二次函数与方程的关系,得:k<0,且-3,-2为关于x的方程kx2-2x+6k=0的两个实数根,据韦达定理有-3+(-2)=,(2)根据题意,由于k=0,不符合题意舍去,当k不为零时,则根据开口向下,判别式小于零可知,4-24k<0,k<0得到取值范围是【考点】二次函数与不等式点评:本题考查了函数恒成立问题,着重考查二次函数的图象与性质,同时考查了分类讨论思想的运用和转化思想,易错点在于忽略当k=0的情形,属于中档题7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档