几类不确定非线性系统的智能控制问题研究

合集下载

《多智能体系统的几类编队控制问题研究》

《多智能体系统的几类编队控制问题研究》

《多智能体系统的几类编队控制问题研究》一、引言多智能体系统由多个可以互相通信与合作的智能体组成,其应用领域广泛,包括无人驾驶车辆、无人机群、机器人集群等。

编队控制是多智能体系统研究的重要方向之一,它通过协调各智能体的运动,实现整体协同的编队行为。

本文将针对多智能体系统的几类编队控制问题进行研究,旨在为相关领域的研究与应用提供理论支持。

二、多智能体系统编队控制基本理论编队控制是多智能体系统协同控制的核心问题之一,它要求各智能体在动态环境中协同完成任务,形成特定的几何形状或空间布局。

编队控制的基本理论包括编队结构、通信机制、协同策略等。

编队结构是编队控制的基础,它决定了智能体的空间布局和运动轨迹。

常见的编队结构包括线性编队、环形编队、星形编队等。

通信机制是实现智能体之间信息交互的关键,它包括无线通信、视距通信等多种方式。

协同策略则是根据任务需求和系统状态,制定合适的控制策略,实现编队的稳定性和灵活性。

三、几类多智能体系统编队控制问题研究1. 固定环境下多智能体编队控制问题在固定环境下,多智能体需要形成稳定的编队结构,并按照预定的路径进行运动。

针对这一问题,可以采用基于规则的编队控制方法、基于优化的编队控制方法等。

其中,基于规则的编队控制方法通过设计合适的规则,使智能体根据自身状态和邻居状态进行决策;基于优化的编队控制方法则通过优化算法,求解最优的编队结构和控制策略。

2. 动态环境下多智能体编队跟踪问题在动态环境下,多智能体需要实时调整编队结构,以适应环境变化。

针对这一问题,可以采用基于领航者的编队跟踪方法、基于分布式控制的编队跟踪方法等。

其中,基于领航者的编队跟踪方法通过领航者引导智能体进行运动;而基于分布式控制的编队跟踪方法则通过分布式控制器实现各智能体的协同运动。

3. 异构多智能体编队控制问题异构多智能体系统中,各智能体的性能、能力等存在差异。

针对这一问题,需要研究异构智能体的协同策略、任务分配等问题。

非线性模型预测控制的若干问题研究

非线性模型预测控制的若干问题研究

非线性模型预测控制的若干问题研究一、概述随着现代工业技术的快速发展,非线性模型预测控制(Nonlinear Model Predictive Control,NMPC)已成为控制领域的研究热点。

非线性系统广泛存在于实际工业过程中,其特性复杂、行为多样,且具有不确定性,这使得传统的线性控制策略在面对非线性系统时往往难以取得理想的效果。

研究非线性模型预测控制策略,对于提高控制系统的性能、稳定性和鲁棒性具有重要意义。

非线性模型预测控制是一种基于非线性模型的闭环优化控制策略,其核心思想是在每个采样周期,以系统当前状态为起点,在线求解有限时域开环最优问题,得到一个最优控制序列,并将该序列的第一个控制量作用于被控系统。

这种滚动优化的策略使得非线性模型预测控制能够实时地根据系统的状态变化调整控制策略,从而实现对非线性系统的有效控制。

非线性模型预测控制的研究也面临着诸多挑战。

由于非线性系统的复杂性,其预测模型的建立往往较为困难,且模型的准确性对控制效果的影响较大。

非线性模型预测控制需要在线求解优化问题,这对计算资源的需求较高,限制了其在实时性要求较高的系统中的应用。

非线性模型预测控制的稳定性和鲁棒性也是研究的重点问题。

本文旨在深入研究非线性模型预测控制的若干关键问题,包括非线性模型的建立、优化算法的设计、稳定性和鲁棒性的分析等。

通过对这些问题的研究,旨在提出一种高效、稳定、鲁棒的非线性模型预测控制策略,为实际工业过程的控制提供理论支持和实践指导。

1. 非线性模型预测控制(NMPC)概述非线性模型预测控制(Nonlinear Model Predictive Control,简称NMPC)是一种先进的控制策略,广泛应用于各种动态系统的优化控制问题中。

NMPC的核心思想是在每个控制周期内,利用系统的非线性模型预测未来的动态行为,并通过求解一个优化问题来得到最优控制序列。

这种方法能够显式地处理系统的不确定性和约束,因此非常适合于处理那些对控制性能要求较高、环境复杂多变的实际系统。

一类不确定非线性系统基于SVR的Backstepping自适应跟踪控制

一类不确定非线性系统基于SVR的Backstepping自适应跟踪控制
第4 2卷 增- ( ) ? I l 】
21 0 2年 9月
东 南 大 学 学 报 (自然科 学版 )
J R L O OU H AS I R IY ( aua SineE io ) OU NA FS T E TUN VE ST N trl c c dt n e i
Vo. 142
Absr c :A n a a tv o ln a o to lri e eo e o b n n c t p i g tc n q e wih t e ta t d p i e n n i e rc nr le s d v l p d c m i i g ba kse p n e h i u t h


戈 = 贾) △ ) g( ) + g( + I ( + ( + “ △ 贾) d
y=
误差 、 存在未 知外 界 扰 动 等 控制 问题 时 , 果并 不 效 理想 . 。
为 弥补 传统 自适应 B c s p ig控 制 的 不足 , ak t pn e 解 决多 种不 确定 因素作 用 下 的非线 性 系 统 控 制 问 题 , 多学 者将 智 能控 制 方 法 引入 其 中. 别 是 随 诸 特 着神 经 网络的发 展 , 们利 用神经 网络 能够 以任 意 人 理想精 度 逼近平 滑非 线性 函数 的特性 , 系统未 知 对 不确 定性 进行逼 近 , 合 自适 应 B cs p ig控 制 结 akt p e n 方法 , 设计 具有 较 强鲁 棒 性 的 非线 性 控 制 器 , 得 取 了一 系列 研究成 果 ” . 同样 基于 “ ” 核 的学 习 方法 , 支持 向量 机 (u . sp p r vco cie S M )自 2 ot etrmahn , V 0世 纪 9 0年 代 由 Vank1 提 出 以来 , p i ] 4 理论 研究 和算 法 实 现 上 都 取 得 了突 破性进 展 . 同于神 经 网络 , 持 向量 机 建 不 支 立在 结构 风 险最 小 化 (t cua r kmii zt n, su trl i nmia o r s i S M) R 原则 基 础 之上 , 不存 在 “ 数 灾 难 ” “ 学 维 和 过 习” 问题 , 广 性 好 , 解 决 控 制 问题 上 也 取 得 了 推 在 较 大进 展 . 于神 经 网络 的 控 制方 法 与基 于支 基 持 向量 机 的控 制方 法 的主要不 同点 在于 , 前者 通过 调 节未 知 的网络互 联权值 来 实现参 数 的优化 , 而后 者 将状 态 向量序 列作 为未 知 参 数 向量 的一 部分 进 行 优 化 计 算 . 径 向 基 函数 (ail ai fn . 就 rda b s u c s t n R F 神经 网络而 言 , 隐层节 点数 目, 向基 i ,B ) o 其 径 函数 中心 和宽度 需要依 赖 于经验 进行设 定 , 而支持 向量机 则 在对偶 空 间 的优 化 计 算 过程 中 自动 确定 函数参 数 , 有更 强 的适 应性 . 具 本 文在 相关 研究基 础 上 , 针对 一类 不确 定非线 性 系 统 , 支 持 向量 回 归 (u p r vco c ie 将 sp ot etrmahn rges n S e rs o ,VR) B c s p ig控制 方法 相 结合 , i 与 akt pn e 基 于 B cs p i akt pn e g方法 构造镇 定控 制器 , 采用 S R V 逼 近系统 非线性 过程 不确 定项 , 引入 自适应 算法 调 节S VR权 值 , 最终 得 到 满 足 闭环 系统 全 局 渐 近 稳 定 的控制 器 . 过 对 典 型系 统 的 仿 真分 析 表 明 , 通 该 控制 方法 控制效 果 较好 , 具有 一定 的鲁棒 性 . 且

几类严格反馈非线性系统的稳定性分析及控制

几类严格反馈非线性系统的稳定性分析及控制

摘要对于几类严格反馈的非线性系统, 本文依据模糊逻辑系统、Backstepping技术、command滤波和Nussbaum函数等方法对其进行控制器设计, 并且进行了稳定性分析. 具体内容如下:1.针对一类具有状态约束的严格反馈非线性系统, 构造了一个模糊跟踪控制器, 借助于模糊逻辑系统来近似非线性函数, 所提出的控制方案解决了有限时间跟踪控制问题.2.针对一类具有不确定参数的随机非线性系统, 构造了一个有限时间跟踪控制器. 通过构造一个tan−型的障碍Lyapunov函数, 证明了闭环系统是有限时间稳定的;跟踪误差在有限时间内收敛到零的一个足够小的邻域内.3.针对一类具有不确定扰动的非线性系统, 讨论了基于command滤波的有限时间自适应模糊控制问题. 通过用误差补偿信号和模糊逻辑系统, 提出了一个模糊控制方案, 保证了输出跟踪误差在有限时间内收敛到零的一个足够小的邻域内, 并且闭环系统中的所有信号都是有界的.4.为了处理一类具有未知控制方向的非线性系统, 提出了一个基于command滤波的自适应控制方案. 在控制方案中, 用模糊逻辑系统来处理非线性函数、用command滤波来解决由重复可导的虚拟函数引起的复杂性问题、用Nussbaum函数来解决未知控制方向问题.关键词:非线性系统; 模糊逻辑系统; 障碍Lyapunov函数;command滤波; 误差补偿信号;Nussbaum函数.ABSTRACTFor several classes of strict-feedback nonlinear systems, the controller is designed and stability is analyzed in this paper based on fuzzy logic system, backstepping technique, command filter and Nussbaum function. The specific contents are as follows:1. A fuzzy tracking controller is constructed for a class of strict-feedback nonlinear systems with full state constraints. Because fuzzy logic system is used to approximate the unknown nonlinear functions, the proposed control scheme addresses the finite-time tracking control problem.2. A finite-time tracking controller is constructed for a class of stochastic nonlinear systems with parametric uncertainties. By constructing a tan-type Barrier Lyapunov Function, the proposed control scheme ensures that the closed-loop system is finite-time stable and the output tracking errors converge to a sufficiently small neighborhood of the origin in finite-time.3. A command filter-based finite-time adaptive fuzzy control problem is discussed fora class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a fuzzy control scheme is proposed to ensure that the output tracking errors converge to a sufficiently small neighborhood of the origin in finite-time and all signals in the closed-loop systems are bounded.4. To deal with a class of nonlinear systems with unknown control directions, a command filter-based adaptive control scheme is proposed. In the design process, fuzzy logic system is required to handle nonlinear functions, command filter is employed to settle the explosion of complexity problem arose from repeated differentiation of virtual control function and Nussbaum function is introduced to deal with the problem of unknown control directions.Key words:nonlinear systems; fuzzy logic system; Barrier Lyapunov Function; command filter; error compensation signals; Nussbaum function.目录第一章前言 (1)1.1论文研究背景 (1)1.2本文的主要研究内容和安排 (3)第二章一类状态约束非线性系统的有限时间自适应模糊控制 (5)2.1模型描述及基本假设 (5)2.2控制器设计和稳定性分析 (7)2.3仿真结果 (12)2.4本章小结 (14)第三章一类状态约束随机非线性系统的有限时间跟踪控制 (15)3.1模型描述及基本假设 (15)3.2控制器设计和稳定性分析 (16)3.3仿真结果 (23)3.4本章小结 (25)第四章一类未知扰动非线性系统的有限时间自适应模糊控制 (26)4.1模型描述及基本假设 (26)4.2控制器设计和稳定性分析 (27)4.3仿真结果 (32)4.4本章小结 (33)第五章一类未知控制方向非线性系统的自适应跟踪控制 (34)5.1模型描述及基本假设 (34)5.2控制器设计和稳定性分析 (35)5.3仿真结果 (41)5.4本章小结 (42)第六章总结与展望 (43)参考文献 (44)致谢 (49)攻读硕士学位期间参与的科研项目和发表的学术论文 (50)第一章前言1.1 论文研究背景在工业、生活和生产中, 几乎所有系统都可以用非线性系统来描述, 例如机器人控制设计、无人机飞行器设计和网络信号传输控制设计等. 研究非线性系统为解决实际问题提供了理论帮助. 不像线性系统因其数学模型比较简单和容易建立, 非线性系统中包含了各种未知因素和扰动, 并且其系统不满足叠加原理. 所以研究非线性系统具有非常重要的意义.在之前的研究中, 可以用泰勒展式等处理非线性函数, 将其转化为线性问题, 从而应用线性系统完善的理论和方法解决非线性问题. 但是随着科技、计算机技术的发展和非线性系统的进一步研究, 应用线性系统来解决非线性问题显得捉襟见肘. 为了在研究中保证实际系统的良好性能和稳定性, 需要对实际系统建立精确的模型. 而实际系统存在不确定性和扰动等因素, 例如实际系统中能量消耗、重心转移引起的误差因素和系统本身的时滞性等. 这些因素难以测量, 不被我们熟知, 所以对非线性系统的研究比线性系统的研究更加困难和具有挑战性. 为了使非线性系统更加接近实际问题, 考虑非线性系统的不确定性是十分必要的.由于许多被控对象的数学模型随时间、能量消耗、环境等的变化而变化. 针对这类变化, 研究者们提出了许多解决方案. 当其数学模型变化的范围较小时, 可用反馈控制、最优控制等来消除或减弱对控制性能的不利影响. 而数学模型的变化范围较大时, 以上方法不可用, 从而引发了人们对自适应控制问题的研究. 在50年代末, Whitaker首次在飞机自动驾驶问题上提出了自适应控制方案, 但是没有进行实际应用. 1966 年, Parks根据Lyapunov方法提出了自适应算法, 保证了系统的全局渐近稳定. 但是该算法降低了自适应对干扰的抑制能力. Landau把超稳定性理论应用到自适应控制中, 使得系统是全局渐近稳定的, 并且增强了系统的抗干扰能力. 由于自适应控制对系统有良好的控制性能, 到目前为止自适应控制理论被广泛应用在线性系统理论、非线性系统理论、计算机控制、航空航天、空间飞行器的控制等各个方面[1]-[2].20世纪90年代初, 非线性系统自适应控制的研究引起越来越多的关注.Kanellakopoulos,Kokotovic和Morse等对部分线性的严格反馈系统提出了自适应反推(backstepping)方法. 在此基础上, [3]首次介绍了非线性系统的自适应backstepping设计方法. 但是, 由于自适应理论刚刚发展, 早期的backstepping方法还不成熟, 即存在过度参数化问题. Jiang和Praly将推广的匹配条件应用到高阶非线性系统, 成功的将估计参数减少了一半.Krsti在文[6]中通过引入调节函数处理了估计参数, 彻底地解决了过度参数化问题. 由于自适应backstepping设计方法不要求非线性系统满足匹配条件, 因此, 该方法在近年来引起了广泛的应用[4]-[10]. 但是backstepping设计方法Ge S S和存在局限性, 那就是针对的系统是严格反馈的非线性系统. 在2002年, .. Wang C用均值定理和隐函数定理, 通过设计backstepping方法, 解决了纯反馈系统.的自适应跟踪控制问题. 但到目前为止, 对于非严格反馈系统的控制器设计还没有得到解决.backstepping设计方法采用反向递推的设计思想, 对于严格反馈的系统, 将其分解成不超过系统阶数的子系统, 在每一个子系统中设计相应的Lyapunov函数和虚拟控制信号, 使得其具有一定的收敛性. 在下一个子系统中, 将上一个虚拟控制律作为跟踪目标, 获得该子系统的虚拟控制信号. 以此类推, 完成了整个backstepping设计, 构造了跟踪控制器, 并且实现系统的全局调节或跟踪.L A Zadeh在为了用数学方法解决自然界中不精确的信息, 1965年, 美国科学家..论文Fuzzy Set中提出了模糊理论. 模糊理论是建立在模糊集合和模糊逻辑的基础上,用于描述模糊信息, 处理模糊现象的一种新的数学工具. 至此, 模糊集理论得到了飞跃性的发展. 模糊控制是以模糊集理论、模糊语言变量、模糊逻辑推理为基础的一种智能控制, 是智能控制的重要组成部分. 同时, 模糊控制也是控制领域中非常有前景的一个分支, 并且已经得到了成功的应用. 1974年, Mamdani利用模糊语言构成模糊控制器, 首次在蒸汽机和锅炉的控制中应用模糊控制理论.当模糊控制应用于复杂的非线性系统时, 为了得到更好的控制效果, 需要有更完善的控制策略. 由于系统本身的性质、外界扰动等影响, 造成了原有的模糊机制不完善. 为了弥补这一问题, 自适应模糊控制被提出[11]. 自适应在处理和分析过程中, 能够自动的调节处理方法、参数等, 通过在线辨识, 使其达到最佳的效果, 使模型越来越接近实际系统. 将自适应控制和模糊控制相结合, 形成具有自我调节能力的更完善的控制系统. 根据控制对象的动态变化, 实时地调整对应的模糊控制器, 从而更有效的解决了非线性问题. 由于该控制系统能够不断的调节自己的控制机制来改变其性能, 因此越来越多的控制方案应用到工业、电力系统、航空航天等实际性问题中, 并且取得了令人瞩目的结果[12]-[17].在实际系统中, 我们常常需要在有限的时间内实现收敛. 因此, 有限时间控制问题已成为一个重要的研究课题. 随着有限时间稳定性理论的发展, 近年来有限时间控制问题得到了研究, 并给出了非线性系统的有限时间控制结果[18]-[27]. 随机现象在制造过程、机器人操作系统等实际系统中经常发生, 它会引起系统的不稳定性. 因此, 随机是需要考虑的另一个重要因素, 对随机非线性系统的研究近年来也受到越来越多的关注[28]-[38].此外, 以上文献中的控制方法都存在计算复杂性问题. 因为backstepping技术在α进行重复求导, 导致较高阶虚拟控制器和最终实际控每一步中都要对虚拟控制器i制器所含项随着系统阶数的增加呈现爆炸性增长, 使得控制器的计算复杂程度剧增, 从而限制了这种方法在实际工程中的应用. 庆幸的是, 文献[39]首次提出了一种动态面控制技术, 解决了以上复杂性问题. 随后, Levant[40]提出了Command滤波, 用来解决重复可导的虚拟控制器引起的复杂性问题. 之后, 各种非线性系统的动态面自适应控制方案[41]-[44]和Command滤波自适应控制方案[45]-[50]被提出.控制方向代表了系统在任意控制下的运动方向, 在控制设计中具有重要意义. 但是控制方向很难检测或从物理意义上决定, 这使得控制设计更加困难. 连续Nussbaum增益法在控制设计中易于实现, 是解决控制方向未知问题的一种常用方法. 该方法的关键是利用Nussbaum函数去估计控制系数的符号, 从而解决非线性系统中未知控制方向的问题[51]-[58].总的来说, 本文在有关不确定非线性系统的自适应控制方面已经取得了一定的研究成果, 但是还需要进一步的讨论与研究. 本文对几类严格反馈的非线性系统进行了稳定性分析及控制器设计, 对进一步研究基于自适应backstepping方法的非线性不确定系统控制问题具有一定的参考价值.1.2 本文的主要研究内容和安排本文主要对于几类严格反馈的非线性系统, 进行了控制器的设计, 并且以自适应控制、backstepping设计方法和模糊控制为理论基础进行了稳定性分析. 全文内容安排如下:第一章: 前言. 介绍了论文的研究背景以及本文的主要研究内容和安排.第二章: 针对一类状态约束的严格反馈非线性系统, 构造了一个模糊跟踪控制器, 证明了输出跟踪误差信号在有限时间收敛到零的任意小的领域内, 同时闭环系统中所有的信号都是有界的.第三章: 针对一类具有不确定参数的随机非线性系统, 研究了状态约束严格反馈随机非线性系统的稳定性问题, 证明了系统输出能够有效地跟踪参考信号, 并且闭环系统中所有的信号都是有界的.第四章: 针对一类具有不确定扰动的非线性系统, 构造了一个命令滤波模糊控制器, 保证了误差收敛于零的任意小邻域内, 而且系统中闭环信号均有界.第五章: 对于一类控制方向未知的非线性系统, 提出了一个command滤波跟踪控制方案. 保证了误差信号收敛到原点附近, 并且所有闭环信号都是有界的.第六章: 对全文的工作做了总结, 并指出了以后的工作中需要解决的问题.以上章节均给出仿真实例, 并且验证了所提出的方法的有效性.第二章 一类状态约束非线性系统的有限时间自适应模糊控制针对一类严格反馈的非线性系统, 本章设计了一个有限时间模糊跟踪控制器. 将tan −型障碍Lyapunov 函数、模糊逻辑系统和backstepping 技术灵活地结合起来, 给出了控制器的设计步骤. 所提出的控制方案保证了输出跟踪误差在有限时间内收敛到零的任意小的领域内, 同时系统中的所有信号均有界. 仿真实例说明了该方法的有效性.2.1 模型描述及基本假设2.1.1 模型描述:考虑如下严格反馈非线性系统:11,11,()()((,),)i i i i i i n n n n n i x f x g x x x f x g x n x u y +=≤≤−+==+ (2-1)其中12[,,,],,T n n x x x x R y R u R ∈∈∈ 分别为系统状态、输出和输入; 12[,,,]T i i x x x x = ; ()i i f x 是未知的光滑非线性函数并且满足(0)0i f =; ()i i g x 是已知的光滑非线性函数; 内, i c k 是正常数. 本章的目的是针对系统(2-1), 设计一个有限时间模糊跟踪控制器, 使得:(1)输出在有限时间内能够很好地跟踪参考信号;(2)闭环系统中所有信号均有界;(3)所有的状态都不能违反其约束边界.2.1.2 基本假设:模糊逻辑系统的基本原理:IF-THEN 规则: i R : 如果1x 属于1i F , ..., n x 属于i n F , 则y 属于,1,,i B i N = , 其中12[,,,],T n n x x x x R y R ∈∈ 分别为系统状态和输出; i j F 和i B 是模糊集; ()j i j F x µ和()iB y µ是模糊隶属度函数. 通过模糊系统规则, 可以将模糊逻辑系统表示为1111()()[()]i j i j nN i j F i j n N j F i j x y x x µµ====Φ=∑∏∑∏, 其中()i i y R B max y µ∈Φ=. 令111(()[)()]i j i j n j F j i n N j F i j x p x x µµ====∏∑∏, 12()[(),(),,()]T N P x p x p x p x = ,1[,,]T N Φ=ΦΦ , 则上式可写成()()T y x P x =Φ. (2-2)引理 2.1[16]. ()f x 是定义在紧集Ω上的一个连续函数, 则对于任何给定的常数0ε>, 存在模糊逻辑系统(2-2), 使得()()T x sup f x P x ε∈Ω−Φ≤.引理2.2[18]. 对于任何实数1,,n x x …和01b <<, 以下不等式成立:n 11(++)b n b bx x x x …≤…++. 定义2.1[19]. 如果对于任意00()t ζζ=, 存在正常数ε和驻留时间0(,)T εζ<∞, 对任意1120210()ln (1)1T V x λλµµµµ−+−≤.推论2.1.对于任何实数12,00µµ>>, 01λ<<, 01β<<和0τ<<∞, 如果存在一个21102011122()1ln (1)()(1)V x T λλλµβµµλτµβµβµ−−+≤−+−. 证明: 从(2-3)可知, 对于任意01β<<, 有122()()()(1)().V x V x V x V x λλµβµβµτ≤−−−−+定义集合2{()}(1)x x V x λτβµΩ=≤−∣和2{()}(1)x x V x λτβµΩ=>−∣. 以下分两种情形进行讨论: 情形1: 如果()x x t ∈Ω, 则12()()()V x V x V x λµβµ≤−− , 所以假设1. 对于连续函数)(i i g x , 存在正常数0g , 满足00()i i g g x <≤. 不失一般性, 假2.2 控制器设计和稳定性分析在这一部分中, 对于系统(2-1), 构造了一个有限时间自适应模糊跟踪控制器. 首先, 定义111,,id i i x y x ξξα−=−=− (2-5) 其中i ξ是状态跟踪误差, i α是虚拟控制器并且满足i i αα<, i α是正常数. 定义2i i θΦ. 给出以下tan −型的候选障碍Lyapunov 函数:22*2tan()2ii i b i b k V k πξπ=,其中:{,,1,,}i i i i b R k i n ξξξξ∈Ω=∈<=…, 11010,0i ib c b c i k k Y k k α−=−>=−>.第1步: 由(2-5)可得11112.d d x y f g x yξ−+==−选择如下障碍Lyapunov 函数:*121112V V θ=+ , 其中111ˆθθθ=− , 并且1ˆθ为1θ的估计. 定义222cos ()2iiiib k ξξϑπξ=, 计算1V 的导数:11122111111221112111ˆ(())cos ()2ˆ()),(d b V f g y k f g ξαθθπξϑξαξξθθ=−−=++−++ (2-6)其中11d f f y =− . 由引理2.1可知, 对于任何10τ>, 存在模糊逻辑系统111()TP X Φ, 使得以下式子成立:111111111()(),,()Tf P X X X δδτ=Φ+≤11)(X δ为近似误差. 通过使用'Young s 不等式, 可以得到:1111122221111111111121()()2222TTP P a f P X X a ξξξξξϑθϑτϑϑϑδ=Φ+≤+++, (2-7)1a 是一个给定的正常数. 设计虚拟控制器1α如下:11111122221111,1222111121111sin()cos()cos ()ˆ2221[]22tan Tb b b K K S k k k P P g aαξξπξπξπξϑθϑαξξ=−−−−, (2-8)其中1100,K K α>>是常数, ,tan i S 定义为:22,2221222tan ta (),0,2()(),,t 22n an i i i i i i b tan ii i i i b b if k S l l else k k απξξεπξπξ ≥> = +(2-9) 2212122251(),(),01,tan tan 04422i i i ii i i b b l l k k ααπεπεαε−−==−<<>. 根据洛必达法则可得 11221112211sin()cos()220,0.b b K k k πξπξξξ→→当这意味着奇点不会出现在1α的第一项中. 构造(2-9)是为了避免奇点发生在1α的第二项中. 根据洛必达法则, 有11221,1211cos ()20,0tan b K S k απξξξ→→当.将(2-7), (2-8)代入(2-6), 得到1111111111111122221111111211121222222221111111111112112222112211122ˆ()2222ˆˆ()(tan )22222222()(2tan tan tan 2TT T b b b b P P a V g a P P P P a K K g k k a a K K k k ξξξξξξξααξααϑθϑτϑξαθθϑθϑϑθϑπξπξτϑξθθπξπξ+++++−≤−−−−+++++−−−≤≤ 112221111121121ˆ)().222T P P a g a ξξϑτϑξθθ++++− (2-10)第i 步: 从(2-5), 可以得到111()ii i i i i i i x f g ξαξαα−+−=−=++− . 其中111(1)11111()101ˆ()ˆi i i j i i i j j jj i j d j j j j jd f g x y x y ααααθθ−−−+−−−−+===∂∂∂=+++∂∂∂∑∑∑ . 定义候选障碍Lyapunov 函数: 2112i i i i V V V θ∗−=++ , 其中ˆi i i θθθ=− , 并且ˆiθ是i θ的估计. 计算i V 的导数, 则有1111111ˆ(())ˆ(()),i iii i i i i i i i i i i i i i i i i i i V V f g g V f g ξξξξϑξααθθϑξϑξαθθϑ−−+−−−+=+++−−=+++−− (2-11) 其中111ii i ii i i g f f ξξϑξαϑ−−−=−+ . 根据引理 2.1, 对于任意0i τ>, 存在模糊逻辑系统()i i T i P X Φ, 使得下式成立:()(),,()i i i i i i i i T i f P X X X δδτ=Φ+≤)(i i X δ是近似误差. 利用'Young s 不等式, 以下不等式成立22222()(),2222iiiii i i i i i i i T i ii i i Tf P X X P P a a ξξξξξϑϑϑδϑθϑτ=Φ+≤+++ (2-12)i a 是一个给定的正常数. 设计控制器i α为2222,2222sin()cos()cos ()ˆ2221[]22i iiiiitan iT b i i i i i i ii ii b b iiK K S k k k P P g aαξξπξπξπξϑθϑαξξ=−−−−, (2-13)0,0i i K K α>>是常数. 相似于1α, 奇异点将不会发生在i α中, 将(2-10)、(2-12)和(2-13)代入(2-11), 可得1122222222222211122122112ˆ()222ˆˆtan()tan ()222222222i i i i i i i ii i i i i i i ii i i i i i i i iT T i i i i i i i i i i i i i i i i i b b i T i i i i P P P P a V K K P P a g g k k a V g a a V g ξξξξξξξααξξξϑθϑϑθϑθϑτϑξαϑξθθϑπξπξτϑξϑξθ−−−++−−−≤++++≤−−−−+++++−−++−− 2222212221111ˆ()()()().2222tan tan 2j j i j j i iiii j j j j j jj i j j T i j j j j b b j P g a P a K K k k ξααξϑπξπξτϑθθξθ+====≤−−++++−∑∑∑∑ (2-14)第n 步: 从(2-5), 可以得到11n n n n n n xf g u ξαα−−=−=+− , 其中111(1)11111()101ˆ()ˆn n n j n n n j j j jn j d j j j j jdf g x y x y ααααθθ−−−+−−−−+===∂∂∂=+++∂∂∂∑∑∑ . 定义候选障碍Lyapunov 函数: 2112n n n n V V V θ∗−++ , ˆn n nθθθ=− , 并且ˆn θ是n θ的估计. 计算n V 的导数, 可得11111ˆ()ˆ(),n n nnn n n n n n nn n n n n n n V V f g u g V f g u ξξξξϑαθθϑξϑθθϑ−−−−−=++−−=++−− (2-15)其中111n nn n nn n g f f ξξϑξαϑ−−−=−+ . 根据引理 2.1, 对于任意0n τ>, 存在模糊逻辑系统()n n T n P X Φ, 使得下式成立:()(),,()T n n n n n n n n n f P X X X δδτ=Φ+≤)(n n X δ是近似误差. 利用'Young s 不等式, 以下不等式成立22222()(),2222nnnnn T n n n n n n T n n nnn nf P X X P P a a ξξξξξϑϑϑδϑθϑτ=Φ+≤+++ (2-16)n a 是一个给定的正常数. 设计控制器u 为2222,2222sin()cos()cos ()ˆ2221[]22nnnnnnn n nn tan nT b b b n n n n n n nK K S k k k P P u g a αξξπξπξπξϑθϑξξ=−−−−, (2-17)0,0n n K K α>>是常数. 相似于1α, 奇异点将不会发生在n α中, 将(2-14)、(2-16)和(2-17)代入(2-15), 可得112222222212222111222122ˆˆtan()tan ˆ222()22222222ta 2n(n n n n n n n n nn n n T T n n n n n n n n n n n n n n n n b T n n nn n n n nn n n n nnb ni n i P P P P a V K K g k k a a P P a V V g u g a K ξξξξξααξξξξϑθϑϑθϑπξπξτϑξθϑθϑτϑϑξθθπξθ−−−−−−=≤+++++−≤−−−−++++−−−≤−∑ 22222222111ˆ)()()().2222tan 2iiiiT n n n i i i i i i i i i i i b b i P P a K k k a ξααϑπξτθθ===−+++−∑∑∑ (2-18) 设计自适应率为22ˆˆ2i T i i i i ii P P a ξϑθσθ=− , 则(2-18)能够写成 2222221111ta ˆ()()n t 22a )n (22i i i n n n ni i i i n i i i i i i i b b ia V K K k k ααπξπξτσθθ====≤−−+++∑∑∑∑ . (2-19) 由'Young s 不等式, ˆi i i σθθ 满足2222222222222ˆ222222(1)22222(1)(1).2222i i i i i i i i i i i i i i ii i i i i i i i ii i i i i i iαααασθσθσθθσθσθσθσθσθσθσθασθασσθασθσθασ≤−=−−+−≤−−++−−≤−−+ (2-20)将(2-20)代入(2-19), 有22222222211(1)(tan tan 1)(()())().22222222i i i n ni i i i i i i i i i i n i i i b b a V K K k k αααπξπξτσθασθσθασ=−−≤−−+++−−+∑∑(2-21) 定义111122min{,,,(1),,(1)}nn n b b K K k k ππησασα=…−…−, 11112122}min{,,,2,,2n n n b b K K k k ααααααααππησσ−−=……, 则(2-21)能够写成222222122211tan tan 11[()][()]2222ii i inn b b i ini i i i b b k k V C k k αααααπξπξηθηθππ==≤−+−++∑∑ , 其中2221(1)()2222ni i i i i ia C τσθασ=−=+++∑. 由引理2.2可知:12n n nV V V C αηη≤−−+ . (2-22)定理: 在满足假设1和假设2的条件下考虑系统(2-1). 如果设计的控制器是(2-17),虚拟控制信号是(2-13)和自适应律是22ˆˆ2i T i i i i ii P P a ξϑθσθ=− , 则有: (1)未违反状态约束的条件;(2)闭环系统中的所有信号都是有界的; (3) 误差信号()i t ξ将收敛到max{i i ξε<内,并且驻留时间满足: 110111222((0))1ln (1)()(1)n V T Cαααηξβηηαηβηβη−−+≤−+−.证明: 从(2-22)中可得1n nV V C η≤−+ , 解不等式可得111((0))t n n CCV V e ηηη−≤−+. 因此n V 是有界的. 根据2112n n n n V V V θ∗−++ 可知, i V 和i θ 都是有界的. 因此ˆi i iθθθ=+ 也是有界的. 根据122211()(ta (n 0))2iib t i n n b k CV V e kCηπξπηη−≤≤−+可知ii b k ξ<成立. 由(2-5)和假设2可得11110d b c x y k Y k ξ≤+<+=. 从模糊逻辑系统的定义可知111TP P <. 根据假设1可得11i g g ≤, 所以1ig 是有界的. 因此1α是有界的并且满足11αα≤. 从(2-25)和11αα≤可知222211b c x k k ξαα≤+<+=. 所以2α是有界的并且满足22αα≤. 同理可知,3,,i i c x k i n <=…. 因此, 未违反状态约束的条件.因为控制器u 中的所有信号都是有界的,所以控制器u 是有界的, 由以上分析可知闭环系统中的所有信号都是有界的.根据推论 2.1可知, n V 将在有限时间内收敛到紧集12()(1)n n CV V αβη−≤内. 因为21222()()tan (1)2iib i n b k C V kαπξπβη≤≤−,所以max{ii ξε<, 并且收敛时间满足110111222((0))1ln (1)()(1)nV T Cαααηξβηηαηβηβη−−+≤−+−.证明完毕.2.3 仿真结果:考虑以下非线性系统:11221221,.,xx x x x x u y x =+=+= 参考信号是()0.5sin()d y t t =. 初始条件是12(0)=0.1,(0)=0.1x x , 状态约束在12=1.5,=1.5c c k k 内.在状态区间[-1.5,1.5]中定义了7个模糊集. 并且给出了隶属度函数:222123222456270.5( 1.5)0.5(1)0.5(0.5)0.5()0.5(0.5)0.5(1)0.5( 1.5),,,,,,.i i i iiii i i iiiii x x x F F F x x x F F F x F e e e e e e e µµµµµµµ−+−+−+−−−−−−−=======参数设计为121212122,2,1,1,0.75,0.01,0.01,0.01,0.01K K K K ααασσττ=========. 仿真结果如图2-1至2-5.图2-1 输出y 和参考信号d y 图2-2 系统状态1x 和2x图2-3 自适应率1ˆθ和2ˆθ 图2-4 系统输入u图2-5误差信号1S 和2S2.4 本章小结:针对一类具有状态约束的严格反馈非线性系统, 本章提出了一个自适应有限时间模糊控制方案. 在该方案中, 跟踪误差在有限时间内收敛到零的任意小邻域内. 闭环系统中的信号均有界, 并且不违反状态约束的条件.第三章 一类状态约束随机非线性系统的有限时间跟踪控制本章研究了状态约束随机非线性系统的稳定性问题. 采用反推技术设计了基于tan −型障碍Lyapunov 函数的非线性系统有限时间跟踪控制器. 保证了系统输出能够有效地跟踪参考信号, 并且闭环系统中所有信号都是有界的. 最后, 仿真结果说明了所提出的有限时间控制方案的有效性.3.1 模型描述及基本假设3.1.1 模型描述:考虑如下严格反馈非线性系统:11(()())(),1,,1,(()(),)(),T i i i i i i i i Tn n n n n n n dx f x g x x dt x d i n dx f x g x u dt x d y x φωφω+=++=…−=++= (3-1)其中12[,,,],,T n n x x x x R y R u R ∈∈∈ 分别为系统状态、输出和输入; 12[,,,]T i i x x x x = ;()i i f x 是未知的光滑非线性函数并且满足()()T i i i i f x x θϕ=; i ϕ是光滑函数向量, θ是不确定的常数向量满足{,,}m M M R R θθθθθθ+∈Ω=∈≤∈; ()i i g x 是已知的光滑非线性函数;()i i x φ是已知的非线性函数向量; ω是标准维纳过程.所有的状态都严格约束在紧集, 其中ic k 是正常数.本章的控制目标是针对系统(3-1), 设计一个有限时间跟踪控制器, 使得: (1)输出在有界误差范围内跟踪参考信号; (2)闭环系统中的所有信号都有界; (3)并且所有状态都满足约束条件. 3.1.2 基本假设:考虑如下随机系统:()()dxf x dtg x d ω=+,其中x 为状态向量; ()f x R ∈和()n r g x R ×∈满足局部李普希茨条件和线性增长条件, 并且满足(0)0,(0)0f g ==; ω是一个r 维的标准维纳过程.定义3.1[32] . 对于任何给定的正函数2,1(,)V x t C ∈, 我们定义微分算子L 如下:221[(,)]{}2T V V V L V x t f Tr g g t x x ∂∂∂=++∂∂∂, 其中(.)Tr 是矩阵的迹.引理3.1[33]. ()f x R ∈和()n r g x R ×∈满足局部李普希茨条件和线性增长条件, 如果存在一个2C 上的函数V , K ∞类函数12,µµ, 两个常数0c >和01γ<<, 满足12()()(),()(),x V x x LV x cV x γµµ≤≤≤−则系统是有限时间随机稳定的, 并且驻留时间满足:1001[()]()(1)E T x V x c γγ−≤−.引理3.2[34]. 存在一个2C 上的函数V , K ∞类函数12,µµ, 两个常数0γ>和0ρ>, 满足0[()]()/t E V x V x e γργ−≤+.3.2 控制器设计和稳定性分析在这一部分中, 对于系统(3-2), 构造了一个自适应有限时间控制器. 首先, 定义111,,i d i i x y x ξξα−=−=− (3-2) 其中i ξ是虚拟状态跟踪误差, i α是虚拟控制器并且满足i i αα<, i α是正的常数. 给出以下tan −型的候选障碍Lyapunov 函数:444tan()4iib i i b k V k πξπ∗=,其中:{,,1,,}ii i i b R k i n ξξξξ∈Ω=∈<=…, 11010,0iib c b c i k k Y k k α−=−>=−>.第1步: 由11d x y ξ=−和221x ξα=−可得 11112111211()(())T T T T d d d d dx dy g x y dt d g y dt d ξθϕφωθϕξαφω=−=+−+=++−+ .选择如下障碍Lyapunov 函数:1112T V V θθ∗=+ ,其中ˆθθθ=− 并且ˆθ为θ的估计. 定义3442cos ()4i ii ib k ξξϑπξ=, 由定义3.1可知: 111111444261111443211112114423411443cos()2sin()44(())cos ()2cos ()44b b b T T d b b b k k k LV g y k k kπξπξξπξξθϕξαφθθπξπξ+=++−++. (3-3) 令11ωϕ=和111ˆξθτωϑσθ=−. 设计虚拟控制器1α如下: 1111111144421111,144411331114411433322114441144),sin()cos()cos ()4441ˆ(2sin()41(3)cos()cos()44tan b b b T d b b b b K K S k k k y g k k kkαπξπξπξαθωξξπξπξφπξπξ=−−−++ (3-4)其中1100,K K α>>是常数, ,tan i S 定义为:44,4421244tan ta (),0,4()(),,t 44n an i i i i i i b tan ii i i i b b if k S l l else k k απξξεπξπξ ≥> = +(3-5) 4412124451(),()444t n n 4a ta i ii i i i b b l l k k ααπεπε−−==−. 根据洛必达法则可得 114411144131sin()cos()440,0.b b K k k πξπξξξ→→当这意味着奇点不会出现在1α的第一项中. 构造(3-5)是为了避免奇异发生在1α的第二项中. 根据洛必达法则, 有11421,14131cos ()400tan b K S k απξξξ→→当.通过使用'Young s 不等式, 以下不等式成立:1111111114444264111111444333231221114443343411114443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444b b b b b b b b b k k k k S k k kkk πξπξπξξπξπξξφφπξπξπξ+≤++. (3-6)将(3-4)和(3-6)代入(3-3), 得到11111111144421111,1444311112433211144411433322111444114433121431sin()cos()cos ()444(cos ()42sin()41ˆ(3))cos()cos()44cos (4tan b b bT d bbT d b b b K K S k k k LV g y k k y k k k k απξπξπξξθϕξπξξξπξπξθωφπξπξξπξ≤+−−−−++ 111111111114411433214344411111214431144441114431111ˆˆtan()tan ()()442sin()41(3)3)cos()41ˆˆ()()()43tan tan 43bT b b bT T T b T T b bb K K k S k k g k k S K K k k S αξαθξααπξπξθϕξθωθπξπξφθθπξϑπξπξθθτσθθθϑ≤−−++−+−+++≤−−−−+++ 112.g ξ(3-7)第2步: 从221x ξα=−和332x ξα=−可得 22122312223212()(())T T T Td dx d g x dt d g dt d ξαθϕαφωθϕξααφω=−=+−+=++−+ ,其中1111211()Tg x x ααθϕη∂=++∂ ,22()11111111(1)2111ˆ()()ˆ2i Td i i d y x x y x αααηθφφθ−=∂∂∂=++×∂∂∂∑ . 上式可写为 12,2,223212121(())T Tr r d g dt d g x dt x αξθϕξαηφω∂=++−+−∂,其中1,2,2211[,],[,]TT T Tr r x αθθθϕϕϕ∂==−∂, 选择候选障碍Lyapunov 函数:212V V V ∗=+. 由定义3.1可得22222244426222244322121,2,2232112244234122443cos()2sin()44(())cos ()2cos ()44.b b b Tr r b b b k k k LV LV g g x x k k k πξπξξπξξαθϕξαηφπξπξ+∂=+++−−+∂(3-8) 令212212121,x ξαωϕϕττωϑ∂=−=+∂. 设计控制器2α为222221222244422222,2444221332224422433312122221244412244sin()cos()cos()4441ˆ[2sin()41(3)],cos()cos()44tanb b b Tbbb bK K Sk k kgk gg xxkk kαξξπξπξπξαθωηξξπξπξϑξαφϑπξπξ=−−−+∂++−∂(3-9) 220,0K Kα>>是常数. 通过使用'Young s不等式, 下列不等式成立:2222222224444264222222444333232222224443343422224443cos()2sin()2sin()4441(3)32cos()cos()cos()444bb b bb bb b bkk k kSk kk k kπξπξπξξπξπξξφφπξπξπξ+≤++. (3-10) 将(3-7), (3-9)和(3-10)代入(3-8), 得到2222221222244422222,24443221,2,2234332222444224333122222244422443222sin()cos()cos()444(cos()42sin()41ˆ(3))cos()cos()44tanb b bTr rbbTbb bK K Sk k kLV LV gkk gkk kαξξπξπξπξξθϕξπξξξπξπξϑξθωφϑπξπξξ≤++−−−+−2222221222442243332244334222444422122312244324422244112sin()41(3)3cos()cos()441tan()tan()443ˆtan()tan()()44ii ibbb bTb bTi iii ib bkSkk kLV K K g gk k SK Kk kααξξξααπξπξφπξπξπξπξϑξϑξϑθωπξπξθθτ==++≤−−++−≤−−−+−+∑∑2223311ˆ.3Ti igSθξσθθϑξ=++∑(3-11)第i步: 从1i i ixξα−=−和11i i ixξα++=−, 可得111(())Ti i i i iTi i iid dx d g dt dξαθϕξααφω−+−=−=++−+,其中111111()iTii jj jj jig xxααθϕη−−−+−=∂=++∂∑, 21()1111(1)1,11ˆ()()ˆ2ij Ti i ii d kij jjkjj j k kdy x xx xyαααηθφφθ−−−−−−==∂∂∂=++×∂∂∂∂∑∑. 上式能够写成11,,1111(())i iiT T ir i r iji i ji jjid g dt d g x dtxαξθϕξαηφω−−+−+=∂=++−+−∂∑,其中11,,1111[,,],[,,,]T T T Ti ir i r ii iix xααθθθϕϕϕϕ−−−−∂∂=…=−…−∂∂. 选择候选障碍Lyapunov函数:1i iiV V V∗−=+.根据定义3.1可得444264431211,,111441234443cos()2sin()44(())cos ()2cos ()44.i i iiiii i ii i i i i j b i b b Ti i r i r i i j ii i j i j b b b k k k LV LV g g x x k k kπξπξξπξξαθϕξαηφπξπξ−−−+−+=+∂=+++−−+∂∑(3-12)令1111,ii i j i i ji i i j x ξαωϕϕττωϑ−−−=∂=−=+∂∑. 设计控制器i α为14442,444133444331311221441444sin()cos()cos ()4441ˆ[2sin()41(3)],cos()cos()44i i i i ii i i i ii i ii i i i i ta ii ii ij n ib b b T i i b i i i j j b b b j i i K K S k k k g k g g x x k k k αξξπξπξπξαθωηξξπξπξϑξαφϑπξπξ−−−−−+==−−−+∂++−∂∑ (3-13)0,0i i K K α>>是常数.通过使用'Young s 不等式, 以下不等式成立:44442644443332322444334344443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444i iiiiiii ii i i ib b bbii b b b b i ii ii i i ibk k k k S k k kk k πξπξπξξπξπξξφφπξπξπξ+≤++. (3-14) 将(3-11), (3-13)和(3-14)代入(3-12), 得到14442,44431,,14332444433312244444sin()cos()cos ()444(cos ()42sin()41ˆ(3))cos()cos()44i iiii i iii iita i i i i i i i ii i i n ib b b T i r i r i i b b i T ib b b iiiii i K K S k k k LV LV g k k g k kkαξξπξπξπξξθϕξπξξξπξπξϑξθωφϑπξπξ−−+−≤++−−−+−14443333224433444441114434444112sin()41(3)3cos ()cos()441tan()tan ()443tan()tan ()44iii ii i i iiji jj i i iii i i i i i i b it b b b T i i i b b i iij j j b j j b k S k k k LV K K g g kkS K K kk ααξξξααπξπξξφπξπξπξπξϑξϑξϑθωπξπξ−−+−==++≤−−+−++≤−−∑ 1311ˆˆ()3.i iii i jT T i j g S θξθθτσθθϑξ+=−++−+∑∑(3-15)第n 步: 从1nn n x ξα−=−可得 11()T Tn n n n n n n d dx d g u dt d ξαθϕαφω−−=−=+−+ ,其中2111()11111111(1)111,11ˆ()()()ˆ2,n nn n T i Tn n n n n i n n d k k i i i i i k k d i i i i i i g y x x x x x y x αααααθϕηηθφφθ−−−−−−−−+−−−====∂∂∂∂=++=++×∂∂∂∂∂∑∑∑∑ . 上式能够写成11,,111()n TT n nr nr n n n ni i i id g u dt d g x dt x αξθϕηφω−−−+=∂=+−+−∂∑, 其中11,,1111[,,],[,,,]T T T T n n r n r nn n n x x ααθθθϕϕϕϕ−−−−∂∂=…=−…−∂∂. 选择候选障碍Lyapunov 函数: 1n n n V V V ∗−=+. 根据定义3.1可得444264431211,,11441234443cos()2sin()44()cos ()2cos ()4.4nnnnnni n n b nn n b bTn n n n r n r n n n i n i nn b i bb k k k LV LV g u g x x k k kπξπξξπξξαθϕηφπξπξ−−−−+=+∂=++−−+∂∑(3-16)令1111,ni in n n n n n n i x ξαωϕϕττωϑ−−−=∂=−=+∂∑. 设计控制器u 为14442,444133444331311221441444sin()cos()cos ()4441ˆ[2sin()41(3)],cos()cos()44n nnnnn n nnnn n n n tan nb b b T n n nnnn i nn b n n n nni i n n b b ib K K S k k k u g k g g x x k kkαξξπξπξπξθωηξξπξπξϑξαφϑπξπξ−−−−−+==−−−+∂++−∂∑(3-17)0,0n n K K α>>是常数.通过使用'Young s 不等式, 以下不等式成立:44442644443332322444334344443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444nnnnnnnn nn n n b nn nb bbn nnn n n n n bb b b bk k k k S k k kk k πξπξπξξπξπξξφφπξπξπξ+≤++. (3-18)将(3-15), (3-17)和(3-18)代入(3-16), 得到14442,44431,,433244443331224444432sin()cos()cos ()444ˆ(cos ()42sin()41(3))cos()cos()44n n n nnnn nn n nn n nn tan nb b b T T n n n r n r n nn n nb n nb n n nn n nb b b nK K S k k k LV LV k k g k k k αξξπξπξπξξθϕθωπξξξπξπξϑξφϑπξπξξ−−−≤+−−−+−14443332443344444114434444112sin()41(3)3cos ()cos()441tan()tan ()443ˆtan()tan ()()44nnn nn n n n n i i i n nb n n n n n b b b T n nn n n n nb b nnn T i ii n i i b b k S k k k LV K K g k k S K K k k ααξξααθπξπξφπξπξπξπξϑξϑθωπξπξθθτσ−−−==++≤−−+−≤−−−+−+∑∑ 311ˆ.3n T i i S θθ=+∑(3-19)。

智能控制技术复习题课后答案

智能控制技术复习题课后答案

, N² O 代表
。25、正中、负零
26. 在模糊控制中,模糊推理的结果是
量。26、模糊
27. 在模糊控制中,解模糊的结果是 28. 基本模糊控制器的组成包括知识库以及 模糊化接口、推理机、解模糊接口
量。确定量 、 和 。
29. 在模糊控制中,实时信号需要
才能作为模糊规则的输入,从而完成模糊推理。


17.普通集合可用
函数表示,模糊集合可用
函数表示。特征、隶属
18.某省两所重点中学在(x1~x5)五年高考中,考生“正常发挥”的隶属函数分别为
0.85、0.93、0.89、0.91、0.96 和 0.92、0.96、0.87、0.93、0.94。则在研究该省重点中学高
考考生水平发挥的状况时,论域应为 X

32.暖和、很好
33.在水位、压力、暖和、表演、中年人和比较好中可作为语言变量值的有

和。
33、暖和、中年人和比较好
34.在水位、寒冷、温度、表演和偏高中可作为语言变量值的有

。 34.寒冷、偏高
35. 模糊控制的基本思想是把人类专家对特定的被控对象或过程的
总结成一系列
以“
”形式表示的控制规则。
35、控制策略 “IF 条件 THEN 作用”
29、 模糊化
30.模糊控制是建立在
基础之上的,它的发展可分为三个阶段,分别为




30、人工经验 模糊数学发展和形成阶段 产生了简单的模糊控制器 高性能模糊控制阶段
31.模糊集合逻辑运算的模糊算子为



31、交运算算子 并运算算子 平衡算子
32.在温度、成绩、暖和、口才和很好中可作为语言变量值的有

几类不确定非线性系统的智能控制问题研究

几类不确定非线性系统的智能控制问题研究

几类不确定非线性系统的智能控制问题研究在实际中,大多数系统都是非线性系统,而且通常受到不确定性,时滞以及随机扰动等因素的影响。

自适应控制因其具有辨识对象和在线修改参数的能力,能够有效抑制不确定性的影响,另一方面模糊逻辑系统以及神经网络能以任意精度逼近未知连续函数,因此是处理不确定性特别有效的方法。

近年来,通过将反步递推设计方法与模糊逻辑系统理论或神经网络相结合的反步递推自适应智能控制得到了充分发展,而且取得了很多重要的研究成果,然而仍然存在着很多问题需要进一步研究。

本文将深入研究几类不确定非线性系统的智能控制问题,如具有严格反馈形式的不确定非线性系统,随机非线性系统,以及非线性互联大系统等,并且研究在系统存在时滞情况下的处理方法。

主要研究内容如下:1.针对一类具有严格反馈形式的单输入单输出不确定非线性系统,研究基于滤波器的自适应模糊跟踪控制问题。

首先设计滤波器估计不可测状态,在此基础上结合反步递推设计方法和模糊逻辑系统理论,逐步设计出虚拟控制信号和实际的控制律。

基于Lyapunov函数理论,证明了闭环系统所有信号半全局最终一致有界而且跟踪误差收敛到零的一个小邻域内。

最后通过仿真算例,验证了该方法的有效性。

2.针对一类带有未知时滞且具有严格反馈形式的单输入单输出不确定非线性系统,给出了自适应模糊输出反馈控制方法。

首先设计滤波器估计不可测状态,通过结合反步递推设计方法和动态面控制技术,避免了对虚拟控制器中自变量重复求导,从而降低了计算量,简化了所要设计的控制器。

基于Lyapunov-Krasovskii泛函,证明了闭环系统的所有信号半全局最终一致有界,而且跟踪误差收敛到零的一个小邻域内。

最后通过仿真算例验证了所提方法的有效性。

3.针对一类带有未知时滞且具有严格反馈形式的单输入单输出随机非线性系统,研究了基于观测器的自适应神经网络控制方法。

首先设计状态观测器估计不可测状态,结合反步递推设计方法和动态面控制技术,给出基于观测器的输出反馈控制方法。

非线性控制系统的研究及应用

非线性控制系统的研究及应用

非线性控制系统的研究及应用随着人类科技的不断发展,非线性控制系统已经成为了重要的研究领域。

相比于线性控制系统,非线性控制系统能够更加准确地描述复杂系统的动态行为,因此在很多实际应用场景中具有得天独厚的优势。

一、非线性控制系统的定义及特点非线性控制系统是指控制对象或控制器的函数不符合线性原理的控制系统。

它具有以下特点:1.非线性控制系统是一个典型的时变系统,复杂的非线性控制系统具有高度的不确定性和不可预测性。

2.非线性控制系统通常具有的动态性、复杂性和分析难度高。

3.非线性控制系统在实际应用中非常广泛,例如,飞行器、导弹、卫星、工业过程和人体等控制对象都是非线性的。

总之,非线性控制系统可以看作是一类负责区分和控制系统各种输入、输出量之间非线性关系的控制器。

二、非线性控制系统的研究随着非线性控制系统的实际应用,非线性控制系统研究的重要性日益显现,使得非线性控制系统的理论和应用有很大的进展。

非线性控制系统研究主要包括四个方面:分析、设计、实现和优化。

1.非线性控制系统的分析非线性控制系统的分析主要包括对非线性控制系统的动态性、稳定性和可控性的分析,以及非线性控制系统遇到固有模数或增益的饱和的情况下的问题。

2.非线性控制系统的设计非线性控制系统的设计主要是在非线性模型基础上进行,通过确定控制器的函数,得到非线性控制器的设计方案。

3.非线性控制系统的实现非线性控制系统的实现一般分为两种方法:数学模型仿真和真实系统的实验验证。

模型仿真是通过控制系统的数学模型进行仿真试验,以检查控制系统的性能。

真实系统的实验验证是将非线性控制器部署到实际系统中,对控制器进行实时监控和调节。

4.非线性控制系统的优化非线性控制系统的优化是指通过一系列技巧和方法来改善控制系统的性能和质量。

三、非线性控制系统的应用非线性控制系统的应用非常广泛,如机器人控制、智能交通、航天器控制、化工过程控制、医疗技术等领域均可应用。

以下分别介绍一下其中一些领域的应用。

智能控制系统

智能控制系统

关于智能控制的认识智能控制系统是在人工智能及自动控制等多学科基础上发展起来的新型交叉学科,目前尚未建立起一套完整的智能控制的理论体系,关于它所包含的技术内容也还没取得比较一致的认可。

智能控制的基本概念顾名思义,智能控制就是控制与智能的结合。

从智能角度看,智能控制是智能科学与技术在控制中的应用;从控制角度看,智能控制是控制科学与技术向智能化发展的高阶阶段。

智能控制的研究对象智能控制主要用来解决那些用传统方法难以解决的复杂的控制问题。

其中包括智能机器人系统、计算机集成制造系统(CIMS)、复杂的工业过程控制系统、航天航空控制系统、社会经济管理系统、交通运输系统、环保及能源系统等。

具体来说,智能控制的研究对象通常具有以下一些特点:1.不确定的模型;传统的控制是模型的控制,这里的模型包括控制对象和干扰的模型。

对于传统控制通常认为模型已知或者经过辨识可以得到。

而智能控制的对象通常存在严重的不确定性。

两层意思:一是模型未知或知之甚少;二是模型的结构和参数可能在很大的范围内变化。

无论哪种情况,传统方法很难对它们进行控制,而这正是智能控制系统所要研究解决的问题。

2.高度的非线性:在传统的控制理论中,线性系统的理论比较成熟。

对于具有高度非线性的控制对象,虽然也有一些非线性控制方法,但总的来说,非线性控制理论还不够成熟,而且方法比较复杂。

采用智能控的方法往往可以较好地解决非线性系统的控制问题。

3.复杂的任务要求:对于智能控制系统,任务的要求往往比较复杂。

例如,在智能机器人系统中,它要求系统对一个复杂的任务具有自行规划和决策的能力,有自动躲避障碍运动到期望目标位置的能力。

再如在复杂的工业过程控制系统中,它除了要求对各种被控物理量实现定值调节外,还要求能实现整个系统的自动启停、故障的自动诊断以及紧急情况的自动处理等能力。

智能控制系统智能控制系统是实现某种控制任务的一种智能系统。

所谓智能控制系统是指具备一定智能行为的系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几类不确定非线性系统的智能控制问题研究在实际中,大多数系统都是非线性系统,而且通常受到不确定性,时滞以及随机扰动等因素的影响。

自适应控制因其具有辨识对象和在线修改参数的能力,能够有效抑制不确定性的影响,另一方面模糊逻辑系统以及神经网络能以任意精度逼近未知连续函数,因此是处理不确定性特别有效的方法。

近年来,通过将反步递推设计方法与模糊逻辑系统理论或神经网络相结合的反步递推自适应智能控制得到了充分发展,而且取得了很多重要的研究成果,然而仍然存在着很多问题需要进一步研究。

本文将深入研究几类不确定非线性系统的智能控制问题,如具有严格反馈形式的不确定非线性系统,随机非线性系统,以及非线性互联大系统等,并且研究在系统存在时滞情况下的处理方法。

主要研究内容如下:1.针对一类具有严格反馈形式的单输入单输出不确定非线性系统,研究基于滤波器的自适应模糊跟踪控制问题。

首先设计滤波器估计不可测状态,在此基础上结合反步递推设计方法和模糊逻辑系统理论,逐步设计出虚拟控制信号和实际的控制律。

基于Lyapunov函数理论,证明了闭环系统所有信号半全局最终一致有界而且跟踪误差收敛到零的一个小邻域内。

最后通过仿真算例,验证了该方法的有效性。

2.针对一类带有未知时滞且具有严格反馈形式的单输入单输出不确定非线性系统,给出了自适应模糊输出反馈控制方法。

首先设计滤波器估计不可测状态,通过结合反步递推设计方法和动态面控制技术,避免了对虚拟控制器中自变量重复求导,从而降低了计算量,简化了所要设计的控制器。

基于Lyapunov-Krasovskii泛函,证明了闭环系统的所有信号半全局最终一
致有界,而且跟踪误差收敛到零的一个小邻域内。

最后通过仿真算例验证了所提方法的有效性。

3.针对一类带有未知时滞且具有严格反馈形式的单输入单输出随机非线性系统,研究了基于观测器的自适应神经网络控制方法。

首先设计状态观测器估计不可测状态,结合反步递推设计方法和动态面控制技术,给出基于观测器的输出反馈控制方法。

通过引入四次Lyapunov-Krasovskii泛函,有效补偿了非线性时滞项的影响,保证闭环系统的所有信号均方半全局最终一致有界。

最后通过仿真研究验证了所设计控制方法的可行性。

4.针对一类具有严格反馈形式的随机非线性互联大系统,给出了基于状态观测器的自适应神经网络分散控制方法。

首先,由于非线性互联大系统结构复杂,维数高,因此采用分散控制方法,减少需要处理的信息量,从而使所设计的控制器更易于应用到实际工程中。

另外,通过结合反步递推方法和神经网络,并在递推设计过程中运用动态面控制技术,设计出了有效的直接自适应神经网络控制器。

所设计的控制器结构简单,需要调整的自适应参数少,而且避免了计算复杂问题。

最后通过仿真算例验证了所提方法的有效性。

5.针对机器手指动态系统,研究了机器手指各个关节位置轨迹跟踪控制问题。

通过采用分散控制方法,并且利用前面对模糊逻辑系统以及自适应控制的研究结果,给出了机器手指动态系统自适应模糊分散控制器设计方法。

所设计的控制器具有结构简单,自适应参数少,易于实现等特点,而且通过Puma560机器人验证所提方法的可行性。

相关文档
最新文档