非线性时滞系统自适应backstepping输出反馈控制
具有输出限制的纯反馈系统的神经网络控制

具有输出限制的纯反馈系统的神经网络控制史昱;尹丽子【摘要】为了研究一类具有输出限制的不确定非线性纯反馈系统的自适应神经网络追踪控制问题,利用神经网络的非线性逼近能力与自适应控制的反推法给出该系统的自适应控制器;利用障碍Lyapunov函数与隐函数存在定理进行控制器的设计.结果表明,该控制方法保证了闭环系统所有信号的半全局一致最终有界性.%To investigate the adaptive neural network tracting control problem of a class of uncertain nonlinear pure-feedback systems with output constraints, an adaptive controller of the systems was provided by using the ability of Neural Network approximation and the adaptive backstepping techniques.The controller was designed by the barrier Lyapunov function and the implicit function theorem.The results show that the developed control scheme guarantees semiglobally uniform ultimate boundedness of all the signals in the closed-loop systems.【期刊名称】《济南大学学报(自然科学版)》【年(卷),期】2017(031)005【总页数】7页(P394-400)【关键词】纯反馈系统;输出限制;障碍Lyapunov函数;隐函数定理;自适应控制【作者】史昱;尹丽子【作者单位】山东交通学院理学院,山东济南250357;济南大学数学科学学院,山东济南250022【正文语种】中文【中图分类】O231.2多层神经网络、径向基(RBF)神经网络、高阶神经网络可以在紧集内以任意精度逼近非线性函数,具有良好的函数逼近能力,被广泛应用于系统函数未知的控制工程[1-2]。
【国家自然科学基金】_积分反推_基金支持热词逐年推荐_【万方软件创新助手】_20140801

2014年 科研热词 高阶非线性系统 连续状态反馈 辐射特性 超高速撞击 温度 反溅碎片云 反推方法 全局强稳定 光谱 推荐指数 1 1 1 1 1 1 1 1 1
科研热词 高阶随机非线性系统 非线性系统 逆动态 近空间飞行器 输出反馈 自适应状态反馈 线性矩阵不等式 积分输入状态稳定 积分滤波器 滑模干扰观测器 未知控制方向 反推 依概率全局稳定 backstepping
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8
科研热词 反推 非线性系统 非线性控制 锅炉-汽轮机单元 积分输入到状态稳定 状态反馈 比例积分微分 协调控制
推荐指数 2 1 1 1 1 1 1 1
2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13
2011年 科研热词 飞行器编队控制 逆最优 轴向柱塞电机泵 自适应控制 滑模控制 泵控缸 建模 容错控制 反推法 参数自适应 卫星姿态控制 六自由度 仿真 推荐指数 1 1 1 1 1 1 1 1 1 1 5 6 7 8 9 10 11 12 13 14
2008年 序号 1 2 3 4 5 6 7 8
科研热词 积分反推 非线性大系统 随机非线性系统 自适应控制 神经网络 时滞 大系统 分散输出反馈控制
推荐指数 2 1 1 1 1 1 1 1
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12
科研热词 鲁棒控制 鲁棒 随机高阶下三角系统 速度跟踪 运动补偿 自适应反步法 永磁同步电机 望远系统 指向反射镜 成像光谱仪 干扰抑制 地面分辨率
控制系统中的自适应反馈控制技术研究

控制系统中的自适应反馈控制技术研究在现代工业控制系统中,自适应反馈控制技术扮演着越来越重要的角色。
自适应反馈控制技术是指控制系统根据外部环境及内部变化的反馈信息,自主实现对控制参数的调节和优化,以达到更好的控制效果。
目前,自适应反馈控制技术已经广泛应用于机械、电子、化工、水利等多个领域,并取得了显著的成效。
一、自适应反馈控制技术的基本原理自适应反馈控制技术的基本原理是根据外部环境及内部变化的反馈信息自主调整控制参数。
其核心是反馈控制,在传统的PID控制器中,控制器参数是固定的,不随过程变化而调整,因此无法应对复杂的非线性和时变性控制系统。
而自适应反馈控制技术则是通过反馈信息不断地调整控制器参数,使得控制器总是处于最优状态。
具体来说,自适应反馈控制技术需要解决两个问题。
一是如何获得反馈信息,二是如何根据反馈信息调整控制器参数。
对于第一个问题,通常采用传感器来采集过程变量,这些变量可以反映系统的状态和动态变化。
对于第二个问题,常见的方法是采用自适应学习算法,通过网络结构,模型辨识,参数预测等技术,根据反馈信息实现控制器参数优化和调整。
二、自适应反馈控制技术在工业控制系统中的应用自适应反馈控制技术在工业控制系统中的应用广泛,主要涉及到机械加工、电力、化工、航空航天和水利控制等多个领域。
例如,在机械加工领域中,自适应反馈控制技术可以实现数控机床的高效精确控制,提高机械加工的精度和生产效率;在电力领域中,自适应反馈控制技术可以实现电力系统的稳定工作,避免发生供电不足或过载等问题;在化工领域中,自适应反馈控制技术可以实现化工反应过程的自动控制,减少人因误操作而导致的事故风险;在航空航天领域中,自适应反馈控制技术可以实现飞行器姿态控制,提高飞行安全性。
三、自适应反馈控制技术的未来发展自适应反馈控制技术作为控制系统中的一个重要分支,未来的发展方向已经越来越明确。
首先,自适应反馈控制技术将更加注重控制方法的稳健性和鲁棒性,以适应更加复杂的控制系统和变化的环境。
一类输入受限的不确定非线性系统自适应 Backstepping变结构控制

一类输入受限的不确定非线性系统自适应 Backstepping变结构控制李飞;胡剑波;王坚浩;汪涛【摘要】针对一类输入受限的不确定非线性系统,提出了一种自适应Backstepping变结构控制器设计方法.建立了受未知非线性特征约束的执行器故障模型,可以描述系统存在死区、齿隙、饱和、滞回等输入受限情形以及可能发生的执行器失效、卡死等故障情形.设计径向基函数神经网络补偿未建模动态项,引入一阶低通滤波器避免了Backstepping控制中的计算复杂性问题.自适应近似变结构控制能够有效削弱控制信号抖振.理论分析和仿真实验结果证明,提出的自适应鲁棒控制律能够在输入受限的情况下自适应地调节控制输入,使得闭环系统稳定且满足控制性能要求.%An adaptive Backstepping sliding mode control method is proposed for a class of uncertain nonlinear systems with input constraints.A model for the nonlinear actuator is developed, which includes input constrained situations such as dead zone, backlash, saturation, hysteresis, and unknown faults such as partial loss of effectiveness fault and actuator stuck fault.Radial basis function neural network is employed to approximate the unknown nonlinear functions.The explosion of complexity is avoided in the traditional Backstepping design method by introducing a first order filter.Adaptive approximate variable structure control is effective to reduce the chatting of the control signal.Theoretical analysis and simulation results are presented to demonstrate the effectiveness of this method by adaptively adjusting control input.【期刊名称】《系统工程与电子技术》【年(卷),期】2017(039)008【总页数】11页(P1823-1833)【关键词】未知非线性;未知故障;不确定性;自适应Backstepping控制;径向基函数神经网络【作者】李飞;胡剑波;王坚浩;汪涛【作者单位】空军工程大学理学院, 陕西西安 710051;空军工程大学装备管理与安全工程学院, 陕西西安 710051;空军工程大学装备管理与安全工程学院, 陕西西安710051;空军工程大学装备管理与安全工程学院, 陕西西安 710051【正文语种】中文【中图分类】TP273物理器件的固有特性、机械设计和制造偏差、外部环境干扰以及安全因素的制约,使得死区、齿隙、饱和以及滞回等非线性特征不可避免地存在于机械系统、伺服系统、压电系统等实际控制系统中,使得系统控制信号受到一定的约束限制,影响被控系统的性能,甚至会造成系统出现发散、震荡等不稳定情况。
几类严格反馈非线性系统的稳定性分析及控制

摘要对于几类严格反馈的非线性系统, 本文依据模糊逻辑系统、Backstepping技术、command滤波和Nussbaum函数等方法对其进行控制器设计, 并且进行了稳定性分析. 具体内容如下:1.针对一类具有状态约束的严格反馈非线性系统, 构造了一个模糊跟踪控制器, 借助于模糊逻辑系统来近似非线性函数, 所提出的控制方案解决了有限时间跟踪控制问题.2.针对一类具有不确定参数的随机非线性系统, 构造了一个有限时间跟踪控制器. 通过构造一个tan−型的障碍Lyapunov函数, 证明了闭环系统是有限时间稳定的;跟踪误差在有限时间内收敛到零的一个足够小的邻域内.3.针对一类具有不确定扰动的非线性系统, 讨论了基于command滤波的有限时间自适应模糊控制问题. 通过用误差补偿信号和模糊逻辑系统, 提出了一个模糊控制方案, 保证了输出跟踪误差在有限时间内收敛到零的一个足够小的邻域内, 并且闭环系统中的所有信号都是有界的.4.为了处理一类具有未知控制方向的非线性系统, 提出了一个基于command滤波的自适应控制方案. 在控制方案中, 用模糊逻辑系统来处理非线性函数、用command滤波来解决由重复可导的虚拟函数引起的复杂性问题、用Nussbaum函数来解决未知控制方向问题.关键词:非线性系统; 模糊逻辑系统; 障碍Lyapunov函数;command滤波; 误差补偿信号;Nussbaum函数.ABSTRACTFor several classes of strict-feedback nonlinear systems, the controller is designed and stability is analyzed in this paper based on fuzzy logic system, backstepping technique, command filter and Nussbaum function. The specific contents are as follows:1. A fuzzy tracking controller is constructed for a class of strict-feedback nonlinear systems with full state constraints. Because fuzzy logic system is used to approximate the unknown nonlinear functions, the proposed control scheme addresses the finite-time tracking control problem.2. A finite-time tracking controller is constructed for a class of stochastic nonlinear systems with parametric uncertainties. By constructing a tan-type Barrier Lyapunov Function, the proposed control scheme ensures that the closed-loop system is finite-time stable and the output tracking errors converge to a sufficiently small neighborhood of the origin in finite-time.3. A command filter-based finite-time adaptive fuzzy control problem is discussed fora class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a fuzzy control scheme is proposed to ensure that the output tracking errors converge to a sufficiently small neighborhood of the origin in finite-time and all signals in the closed-loop systems are bounded.4. To deal with a class of nonlinear systems with unknown control directions, a command filter-based adaptive control scheme is proposed. In the design process, fuzzy logic system is required to handle nonlinear functions, command filter is employed to settle the explosion of complexity problem arose from repeated differentiation of virtual control function and Nussbaum function is introduced to deal with the problem of unknown control directions.Key words:nonlinear systems; fuzzy logic system; Barrier Lyapunov Function; command filter; error compensation signals; Nussbaum function.目录第一章前言 (1)1.1论文研究背景 (1)1.2本文的主要研究内容和安排 (3)第二章一类状态约束非线性系统的有限时间自适应模糊控制 (5)2.1模型描述及基本假设 (5)2.2控制器设计和稳定性分析 (7)2.3仿真结果 (12)2.4本章小结 (14)第三章一类状态约束随机非线性系统的有限时间跟踪控制 (15)3.1模型描述及基本假设 (15)3.2控制器设计和稳定性分析 (16)3.3仿真结果 (23)3.4本章小结 (25)第四章一类未知扰动非线性系统的有限时间自适应模糊控制 (26)4.1模型描述及基本假设 (26)4.2控制器设计和稳定性分析 (27)4.3仿真结果 (32)4.4本章小结 (33)第五章一类未知控制方向非线性系统的自适应跟踪控制 (34)5.1模型描述及基本假设 (34)5.2控制器设计和稳定性分析 (35)5.3仿真结果 (41)5.4本章小结 (42)第六章总结与展望 (43)参考文献 (44)致谢 (49)攻读硕士学位期间参与的科研项目和发表的学术论文 (50)第一章前言1.1 论文研究背景在工业、生活和生产中, 几乎所有系统都可以用非线性系统来描述, 例如机器人控制设计、无人机飞行器设计和网络信号传输控制设计等. 研究非线性系统为解决实际问题提供了理论帮助. 不像线性系统因其数学模型比较简单和容易建立, 非线性系统中包含了各种未知因素和扰动, 并且其系统不满足叠加原理. 所以研究非线性系统具有非常重要的意义.在之前的研究中, 可以用泰勒展式等处理非线性函数, 将其转化为线性问题, 从而应用线性系统完善的理论和方法解决非线性问题. 但是随着科技、计算机技术的发展和非线性系统的进一步研究, 应用线性系统来解决非线性问题显得捉襟见肘. 为了在研究中保证实际系统的良好性能和稳定性, 需要对实际系统建立精确的模型. 而实际系统存在不确定性和扰动等因素, 例如实际系统中能量消耗、重心转移引起的误差因素和系统本身的时滞性等. 这些因素难以测量, 不被我们熟知, 所以对非线性系统的研究比线性系统的研究更加困难和具有挑战性. 为了使非线性系统更加接近实际问题, 考虑非线性系统的不确定性是十分必要的.由于许多被控对象的数学模型随时间、能量消耗、环境等的变化而变化. 针对这类变化, 研究者们提出了许多解决方案. 当其数学模型变化的范围较小时, 可用反馈控制、最优控制等来消除或减弱对控制性能的不利影响. 而数学模型的变化范围较大时, 以上方法不可用, 从而引发了人们对自适应控制问题的研究. 在50年代末, Whitaker首次在飞机自动驾驶问题上提出了自适应控制方案, 但是没有进行实际应用. 1966 年, Parks根据Lyapunov方法提出了自适应算法, 保证了系统的全局渐近稳定. 但是该算法降低了自适应对干扰的抑制能力. Landau把超稳定性理论应用到自适应控制中, 使得系统是全局渐近稳定的, 并且增强了系统的抗干扰能力. 由于自适应控制对系统有良好的控制性能, 到目前为止自适应控制理论被广泛应用在线性系统理论、非线性系统理论、计算机控制、航空航天、空间飞行器的控制等各个方面[1]-[2].20世纪90年代初, 非线性系统自适应控制的研究引起越来越多的关注.Kanellakopoulos,Kokotovic和Morse等对部分线性的严格反馈系统提出了自适应反推(backstepping)方法. 在此基础上, [3]首次介绍了非线性系统的自适应backstepping设计方法. 但是, 由于自适应理论刚刚发展, 早期的backstepping方法还不成熟, 即存在过度参数化问题. Jiang和Praly将推广的匹配条件应用到高阶非线性系统, 成功的将估计参数减少了一半.Krsti在文[6]中通过引入调节函数处理了估计参数, 彻底地解决了过度参数化问题. 由于自适应backstepping设计方法不要求非线性系统满足匹配条件, 因此, 该方法在近年来引起了广泛的应用[4]-[10]. 但是backstepping设计方法Ge S S和存在局限性, 那就是针对的系统是严格反馈的非线性系统. 在2002年, .. Wang C用均值定理和隐函数定理, 通过设计backstepping方法, 解决了纯反馈系统.的自适应跟踪控制问题. 但到目前为止, 对于非严格反馈系统的控制器设计还没有得到解决.backstepping设计方法采用反向递推的设计思想, 对于严格反馈的系统, 将其分解成不超过系统阶数的子系统, 在每一个子系统中设计相应的Lyapunov函数和虚拟控制信号, 使得其具有一定的收敛性. 在下一个子系统中, 将上一个虚拟控制律作为跟踪目标, 获得该子系统的虚拟控制信号. 以此类推, 完成了整个backstepping设计, 构造了跟踪控制器, 并且实现系统的全局调节或跟踪.L A Zadeh在为了用数学方法解决自然界中不精确的信息, 1965年, 美国科学家..论文Fuzzy Set中提出了模糊理论. 模糊理论是建立在模糊集合和模糊逻辑的基础上,用于描述模糊信息, 处理模糊现象的一种新的数学工具. 至此, 模糊集理论得到了飞跃性的发展. 模糊控制是以模糊集理论、模糊语言变量、模糊逻辑推理为基础的一种智能控制, 是智能控制的重要组成部分. 同时, 模糊控制也是控制领域中非常有前景的一个分支, 并且已经得到了成功的应用. 1974年, Mamdani利用模糊语言构成模糊控制器, 首次在蒸汽机和锅炉的控制中应用模糊控制理论.当模糊控制应用于复杂的非线性系统时, 为了得到更好的控制效果, 需要有更完善的控制策略. 由于系统本身的性质、外界扰动等影响, 造成了原有的模糊机制不完善. 为了弥补这一问题, 自适应模糊控制被提出[11]. 自适应在处理和分析过程中, 能够自动的调节处理方法、参数等, 通过在线辨识, 使其达到最佳的效果, 使模型越来越接近实际系统. 将自适应控制和模糊控制相结合, 形成具有自我调节能力的更完善的控制系统. 根据控制对象的动态变化, 实时地调整对应的模糊控制器, 从而更有效的解决了非线性问题. 由于该控制系统能够不断的调节自己的控制机制来改变其性能, 因此越来越多的控制方案应用到工业、电力系统、航空航天等实际性问题中, 并且取得了令人瞩目的结果[12]-[17].在实际系统中, 我们常常需要在有限的时间内实现收敛. 因此, 有限时间控制问题已成为一个重要的研究课题. 随着有限时间稳定性理论的发展, 近年来有限时间控制问题得到了研究, 并给出了非线性系统的有限时间控制结果[18]-[27]. 随机现象在制造过程、机器人操作系统等实际系统中经常发生, 它会引起系统的不稳定性. 因此, 随机是需要考虑的另一个重要因素, 对随机非线性系统的研究近年来也受到越来越多的关注[28]-[38].此外, 以上文献中的控制方法都存在计算复杂性问题. 因为backstepping技术在α进行重复求导, 导致较高阶虚拟控制器和最终实际控每一步中都要对虚拟控制器i制器所含项随着系统阶数的增加呈现爆炸性增长, 使得控制器的计算复杂程度剧增, 从而限制了这种方法在实际工程中的应用. 庆幸的是, 文献[39]首次提出了一种动态面控制技术, 解决了以上复杂性问题. 随后, Levant[40]提出了Command滤波, 用来解决重复可导的虚拟控制器引起的复杂性问题. 之后, 各种非线性系统的动态面自适应控制方案[41]-[44]和Command滤波自适应控制方案[45]-[50]被提出.控制方向代表了系统在任意控制下的运动方向, 在控制设计中具有重要意义. 但是控制方向很难检测或从物理意义上决定, 这使得控制设计更加困难. 连续Nussbaum增益法在控制设计中易于实现, 是解决控制方向未知问题的一种常用方法. 该方法的关键是利用Nussbaum函数去估计控制系数的符号, 从而解决非线性系统中未知控制方向的问题[51]-[58].总的来说, 本文在有关不确定非线性系统的自适应控制方面已经取得了一定的研究成果, 但是还需要进一步的讨论与研究. 本文对几类严格反馈的非线性系统进行了稳定性分析及控制器设计, 对进一步研究基于自适应backstepping方法的非线性不确定系统控制问题具有一定的参考价值.1.2 本文的主要研究内容和安排本文主要对于几类严格反馈的非线性系统, 进行了控制器的设计, 并且以自适应控制、backstepping设计方法和模糊控制为理论基础进行了稳定性分析. 全文内容安排如下:第一章: 前言. 介绍了论文的研究背景以及本文的主要研究内容和安排.第二章: 针对一类状态约束的严格反馈非线性系统, 构造了一个模糊跟踪控制器, 证明了输出跟踪误差信号在有限时间收敛到零的任意小的领域内, 同时闭环系统中所有的信号都是有界的.第三章: 针对一类具有不确定参数的随机非线性系统, 研究了状态约束严格反馈随机非线性系统的稳定性问题, 证明了系统输出能够有效地跟踪参考信号, 并且闭环系统中所有的信号都是有界的.第四章: 针对一类具有不确定扰动的非线性系统, 构造了一个命令滤波模糊控制器, 保证了误差收敛于零的任意小邻域内, 而且系统中闭环信号均有界.第五章: 对于一类控制方向未知的非线性系统, 提出了一个command滤波跟踪控制方案. 保证了误差信号收敛到原点附近, 并且所有闭环信号都是有界的.第六章: 对全文的工作做了总结, 并指出了以后的工作中需要解决的问题.以上章节均给出仿真实例, 并且验证了所提出的方法的有效性.第二章 一类状态约束非线性系统的有限时间自适应模糊控制针对一类严格反馈的非线性系统, 本章设计了一个有限时间模糊跟踪控制器. 将tan −型障碍Lyapunov 函数、模糊逻辑系统和backstepping 技术灵活地结合起来, 给出了控制器的设计步骤. 所提出的控制方案保证了输出跟踪误差在有限时间内收敛到零的任意小的领域内, 同时系统中的所有信号均有界. 仿真实例说明了该方法的有效性.2.1 模型描述及基本假设2.1.1 模型描述:考虑如下严格反馈非线性系统:11,11,()()((,),)i i i i i i n n n n n i x f x g x x x f x g x n x u y +=≤≤−+==+ (2-1)其中12[,,,],,T n n x x x x R y R u R ∈∈∈ 分别为系统状态、输出和输入; 12[,,,]T i i x x x x = ; ()i i f x 是未知的光滑非线性函数并且满足(0)0i f =; ()i i g x 是已知的光滑非线性函数; 内, i c k 是正常数. 本章的目的是针对系统(2-1), 设计一个有限时间模糊跟踪控制器, 使得:(1)输出在有限时间内能够很好地跟踪参考信号;(2)闭环系统中所有信号均有界;(3)所有的状态都不能违反其约束边界.2.1.2 基本假设:模糊逻辑系统的基本原理:IF-THEN 规则: i R : 如果1x 属于1i F , ..., n x 属于i n F , 则y 属于,1,,i B i N = , 其中12[,,,],T n n x x x x R y R ∈∈ 分别为系统状态和输出; i j F 和i B 是模糊集; ()j i j F x µ和()iB y µ是模糊隶属度函数. 通过模糊系统规则, 可以将模糊逻辑系统表示为1111()()[()]i j i j nN i j F i j n N j F i j x y x x µµ====Φ=∑∏∑∏, 其中()i i y R B max y µ∈Φ=. 令111(()[)()]i j i j n j F j i n N j F i j x p x x µµ====∏∑∏, 12()[(),(),,()]T N P x p x p x p x = ,1[,,]T N Φ=ΦΦ , 则上式可写成()()T y x P x =Φ. (2-2)引理 2.1[16]. ()f x 是定义在紧集Ω上的一个连续函数, 则对于任何给定的常数0ε>, 存在模糊逻辑系统(2-2), 使得()()T x sup f x P x ε∈Ω−Φ≤.引理2.2[18]. 对于任何实数1,,n x x …和01b <<, 以下不等式成立:n 11(++)b n b bx x x x …≤…++. 定义2.1[19]. 如果对于任意00()t ζζ=, 存在正常数ε和驻留时间0(,)T εζ<∞, 对任意1120210()ln (1)1T V x λλµµµµ−+−≤.推论2.1.对于任何实数12,00µµ>>, 01λ<<, 01β<<和0τ<<∞, 如果存在一个21102011122()1ln (1)()(1)V x T λλλµβµµλτµβµβµ−−+≤−+−. 证明: 从(2-3)可知, 对于任意01β<<, 有122()()()(1)().V x V x V x V x λλµβµβµτ≤−−−−+定义集合2{()}(1)x x V x λτβµΩ=≤−∣和2{()}(1)x x V x λτβµΩ=>−∣. 以下分两种情形进行讨论: 情形1: 如果()x x t ∈Ω, 则12()()()V x V x V x λµβµ≤−− , 所以假设1. 对于连续函数)(i i g x , 存在正常数0g , 满足00()i i g g x <≤. 不失一般性, 假2.2 控制器设计和稳定性分析在这一部分中, 对于系统(2-1), 构造了一个有限时间自适应模糊跟踪控制器. 首先, 定义111,,id i i x y x ξξα−=−=− (2-5) 其中i ξ是状态跟踪误差, i α是虚拟控制器并且满足i i αα<, i α是正常数. 定义2i i θΦ. 给出以下tan −型的候选障碍Lyapunov 函数:22*2tan()2ii i b i b k V k πξπ=,其中:{,,1,,}i i i i b R k i n ξξξξ∈Ω=∈<=…, 11010,0i ib c b c i k k Y k k α−=−>=−>.第1步: 由(2-5)可得11112.d d x y f g x yξ−+==−选择如下障碍Lyapunov 函数:*121112V V θ=+ , 其中111ˆθθθ=− , 并且1ˆθ为1θ的估计. 定义222cos ()2iiiib k ξξϑπξ=, 计算1V 的导数:11122111111221112111ˆ(())cos ()2ˆ()),(d b V f g y k f g ξαθθπξϑξαξξθθ=−−=++−++ (2-6)其中11d f f y =− . 由引理2.1可知, 对于任何10τ>, 存在模糊逻辑系统111()TP X Φ, 使得以下式子成立:111111111()(),,()Tf P X X X δδτ=Φ+≤11)(X δ为近似误差. 通过使用'Young s 不等式, 可以得到:1111122221111111111121()()2222TTP P a f P X X a ξξξξξϑθϑτϑϑϑδ=Φ+≤+++, (2-7)1a 是一个给定的正常数. 设计虚拟控制器1α如下:11111122221111,1222111121111sin()cos()cos ()ˆ2221[]22tan Tb b b K K S k k k P P g aαξξπξπξπξϑθϑαξξ=−−−−, (2-8)其中1100,K K α>>是常数, ,tan i S 定义为:22,2221222tan ta (),0,2()(),,t 22n an i i i i i i b tan ii i i i b b if k S l l else k k απξξεπξπξ ≥> = +(2-9) 2212122251(),(),01,tan tan 04422i i i ii i i b b l l k k ααπεπεαε−−==−<<>. 根据洛必达法则可得 11221112211sin()cos()220,0.b b K k k πξπξξξ→→当这意味着奇点不会出现在1α的第一项中. 构造(2-9)是为了避免奇点发生在1α的第二项中. 根据洛必达法则, 有11221,1211cos ()20,0tan b K S k απξξξ→→当.将(2-7), (2-8)代入(2-6), 得到1111111111111122221111111211121222222221111111111112112222112211122ˆ()2222ˆˆ()(tan )22222222()(2tan tan tan 2TT T b b b b P P a V g a P P P P a K K g k k a a K K k k ξξξξξξξααξααϑθϑτϑξαθθϑθϑϑθϑπξπξτϑξθθπξπξ+++++−≤−−−−+++++−−−≤≤ 112221111121121ˆ)().222T P P a g a ξξϑτϑξθθ++++− (2-10)第i 步: 从(2-5), 可以得到111()ii i i i i i i x f g ξαξαα−+−=−=++− . 其中111(1)11111()101ˆ()ˆi i i j i i i j j jj i j d j j j j jd f g x y x y ααααθθ−−−+−−−−+===∂∂∂=+++∂∂∂∑∑∑ . 定义候选障碍Lyapunov 函数: 2112i i i i V V V θ∗−=++ , 其中ˆi i i θθθ=− , 并且ˆiθ是i θ的估计. 计算i V 的导数, 则有1111111ˆ(())ˆ(()),i iii i i i i i i i i i i i i i i i i i i V V f g g V f g ξξξξϑξααθθϑξϑξαθθϑ−−+−−−+=+++−−=+++−− (2-11) 其中111ii i ii i i g f f ξξϑξαϑ−−−=−+ . 根据引理 2.1, 对于任意0i τ>, 存在模糊逻辑系统()i i T i P X Φ, 使得下式成立:()(),,()i i i i i i i i T i f P X X X δδτ=Φ+≤)(i i X δ是近似误差. 利用'Young s 不等式, 以下不等式成立22222()(),2222iiiii i i i i i i i T i ii i i Tf P X X P P a a ξξξξξϑϑϑδϑθϑτ=Φ+≤+++ (2-12)i a 是一个给定的正常数. 设计控制器i α为2222,2222sin()cos()cos ()ˆ2221[]22i iiiiitan iT b i i i i i i ii ii b b iiK K S k k k P P g aαξξπξπξπξϑθϑαξξ=−−−−, (2-13)0,0i i K K α>>是常数. 相似于1α, 奇异点将不会发生在i α中, 将(2-10)、(2-12)和(2-13)代入(2-11), 可得1122222222222211122122112ˆ()222ˆˆtan()tan ()222222222i i i i i i i ii i i i i i i ii i i i i i i i iT T i i i i i i i i i i i i i i i i i b b i T i i i i P P P P a V K K P P a g g k k a V g a a V g ξξξξξξξααξξξϑθϑϑθϑθϑτϑξαϑξθθϑπξπξτϑξϑξθ−−−++−−−≤++++≤−−−−+++++−−++−− 2222212221111ˆ()()()().2222tan tan 2j j i j j i iiii j j j j j jj i j j T i j j j j b b j P g a P a K K k k ξααξϑπξπξτϑθθξθ+====≤−−++++−∑∑∑∑ (2-14)第n 步: 从(2-5), 可以得到11n n n n n n xf g u ξαα−−=−=+− , 其中111(1)11111()101ˆ()ˆn n n j n n n j j j jn j d j j j j jdf g x y x y ααααθθ−−−+−−−−+===∂∂∂=+++∂∂∂∑∑∑ . 定义候选障碍Lyapunov 函数: 2112n n n n V V V θ∗−++ , ˆn n nθθθ=− , 并且ˆn θ是n θ的估计. 计算n V 的导数, 可得11111ˆ()ˆ(),n n nnn n n n n n nn n n n n n n V V f g u g V f g u ξξξξϑαθθϑξϑθθϑ−−−−−=++−−=++−− (2-15)其中111n nn n nn n g f f ξξϑξαϑ−−−=−+ . 根据引理 2.1, 对于任意0n τ>, 存在模糊逻辑系统()n n T n P X Φ, 使得下式成立:()(),,()T n n n n n n n n n f P X X X δδτ=Φ+≤)(n n X δ是近似误差. 利用'Young s 不等式, 以下不等式成立22222()(),2222nnnnn T n n n n n n T n n nnn nf P X X P P a a ξξξξξϑϑϑδϑθϑτ=Φ+≤+++ (2-16)n a 是一个给定的正常数. 设计控制器u 为2222,2222sin()cos()cos ()ˆ2221[]22nnnnnnn n nn tan nT b b b n n n n n n nK K S k k k P P u g a αξξπξπξπξϑθϑξξ=−−−−, (2-17)0,0n n K K α>>是常数. 相似于1α, 奇异点将不会发生在n α中, 将(2-14)、(2-16)和(2-17)代入(2-15), 可得112222222212222111222122ˆˆtan()tan ˆ222()22222222ta 2n(n n n n n n n n nn n n T T n n n n n n n n n n n n n n n n b T n n nn n n n nn n n n nnb ni n i P P P P a V K K g k k a a P P a V V g u g a K ξξξξξααξξξξϑθϑϑθϑπξπξτϑξθϑθϑτϑϑξθθπξθ−−−−−−=≤+++++−≤−−−−++++−−−≤−∑ 22222222111ˆ)()()().2222tan 2iiiiT n n n i i i i i i i i i i i b b i P P a K k k a ξααϑπξτθθ===−+++−∑∑∑ (2-18) 设计自适应率为22ˆˆ2i T i i i i ii P P a ξϑθσθ=− , 则(2-18)能够写成 2222221111ta ˆ()()n t 22a )n (22i i i n n n ni i i i n i i i i i i i b b ia V K K k k ααπξπξτσθθ====≤−−+++∑∑∑∑ . (2-19) 由'Young s 不等式, ˆi i i σθθ 满足2222222222222ˆ222222(1)22222(1)(1).2222i i i i i i i i i i i i i i ii i i i i i i i ii i i i i i iαααασθσθσθθσθσθσθσθσθσθσθασθασσθασθσθασ≤−=−−+−≤−−++−−≤−−+ (2-20)将(2-20)代入(2-19), 有22222222211(1)(tan tan 1)(()())().22222222i i i n ni i i i i i i i i i i n i i i b b a V K K k k αααπξπξτσθασθσθασ=−−≤−−+++−−+∑∑(2-21) 定义111122min{,,,(1),,(1)}nn n b b K K k k ππησασα=…−…−, 11112122}min{,,,2,,2n n n b b K K k k ααααααααππησσ−−=……, 则(2-21)能够写成222222122211tan tan 11[()][()]2222ii i inn b b i ini i i i b b k k V C k k αααααπξπξηθηθππ==≤−+−++∑∑ , 其中2221(1)()2222ni i i i i ia C τσθασ=−=+++∑. 由引理2.2可知:12n n nV V V C αηη≤−−+ . (2-22)定理: 在满足假设1和假设2的条件下考虑系统(2-1). 如果设计的控制器是(2-17),虚拟控制信号是(2-13)和自适应律是22ˆˆ2i T i i i i ii P P a ξϑθσθ=− , 则有: (1)未违反状态约束的条件;(2)闭环系统中的所有信号都是有界的; (3) 误差信号()i t ξ将收敛到max{i i ξε<内,并且驻留时间满足: 110111222((0))1ln (1)()(1)n V T Cαααηξβηηαηβηβη−−+≤−+−.证明: 从(2-22)中可得1n nV V C η≤−+ , 解不等式可得111((0))t n n CCV V e ηηη−≤−+. 因此n V 是有界的. 根据2112n n n n V V V θ∗−++ 可知, i V 和i θ 都是有界的. 因此ˆi i iθθθ=+ 也是有界的. 根据122211()(ta (n 0))2iib t i n n b k CV V e kCηπξπηη−≤≤−+可知ii b k ξ<成立. 由(2-5)和假设2可得11110d b c x y k Y k ξ≤+<+=. 从模糊逻辑系统的定义可知111TP P <. 根据假设1可得11i g g ≤, 所以1ig 是有界的. 因此1α是有界的并且满足11αα≤. 从(2-25)和11αα≤可知222211b c x k k ξαα≤+<+=. 所以2α是有界的并且满足22αα≤. 同理可知,3,,i i c x k i n <=…. 因此, 未违反状态约束的条件.因为控制器u 中的所有信号都是有界的,所以控制器u 是有界的, 由以上分析可知闭环系统中的所有信号都是有界的.根据推论 2.1可知, n V 将在有限时间内收敛到紧集12()(1)n n CV V αβη−≤内. 因为21222()()tan (1)2iib i n b k C V kαπξπβη≤≤−,所以max{ii ξε<, 并且收敛时间满足110111222((0))1ln (1)()(1)nV T Cαααηξβηηαηβηβη−−+≤−+−.证明完毕.2.3 仿真结果:考虑以下非线性系统:11221221,.,xx x x x x u y x =+=+= 参考信号是()0.5sin()d y t t =. 初始条件是12(0)=0.1,(0)=0.1x x , 状态约束在12=1.5,=1.5c c k k 内.在状态区间[-1.5,1.5]中定义了7个模糊集. 并且给出了隶属度函数:222123222456270.5( 1.5)0.5(1)0.5(0.5)0.5()0.5(0.5)0.5(1)0.5( 1.5),,,,,,.i i i iiii i i iiiii x x x F F F x x x F F F x F e e e e e e e µµµµµµµ−+−+−+−−−−−−−=======参数设计为121212122,2,1,1,0.75,0.01,0.01,0.01,0.01K K K K ααασσττ=========. 仿真结果如图2-1至2-5.图2-1 输出y 和参考信号d y 图2-2 系统状态1x 和2x图2-3 自适应率1ˆθ和2ˆθ 图2-4 系统输入u图2-5误差信号1S 和2S2.4 本章小结:针对一类具有状态约束的严格反馈非线性系统, 本章提出了一个自适应有限时间模糊控制方案. 在该方案中, 跟踪误差在有限时间内收敛到零的任意小邻域内. 闭环系统中的信号均有界, 并且不违反状态约束的条件.第三章 一类状态约束随机非线性系统的有限时间跟踪控制本章研究了状态约束随机非线性系统的稳定性问题. 采用反推技术设计了基于tan −型障碍Lyapunov 函数的非线性系统有限时间跟踪控制器. 保证了系统输出能够有效地跟踪参考信号, 并且闭环系统中所有信号都是有界的. 最后, 仿真结果说明了所提出的有限时间控制方案的有效性.3.1 模型描述及基本假设3.1.1 模型描述:考虑如下严格反馈非线性系统:11(()())(),1,,1,(()(),)(),T i i i i i i i i Tn n n n n n n dx f x g x x dt x d i n dx f x g x u dt x d y x φωφω+=++=…−=++= (3-1)其中12[,,,],,T n n x x x x R y R u R ∈∈∈ 分别为系统状态、输出和输入; 12[,,,]T i i x x x x = ;()i i f x 是未知的光滑非线性函数并且满足()()T i i i i f x x θϕ=; i ϕ是光滑函数向量, θ是不确定的常数向量满足{,,}m M M R R θθθθθθ+∈Ω=∈≤∈; ()i i g x 是已知的光滑非线性函数;()i i x φ是已知的非线性函数向量; ω是标准维纳过程.所有的状态都严格约束在紧集, 其中ic k 是正常数.本章的控制目标是针对系统(3-1), 设计一个有限时间跟踪控制器, 使得: (1)输出在有界误差范围内跟踪参考信号; (2)闭环系统中的所有信号都有界; (3)并且所有状态都满足约束条件. 3.1.2 基本假设:考虑如下随机系统:()()dxf x dtg x d ω=+,其中x 为状态向量; ()f x R ∈和()n r g x R ×∈满足局部李普希茨条件和线性增长条件, 并且满足(0)0,(0)0f g ==; ω是一个r 维的标准维纳过程.定义3.1[32] . 对于任何给定的正函数2,1(,)V x t C ∈, 我们定义微分算子L 如下:221[(,)]{}2T V V V L V x t f Tr g g t x x ∂∂∂=++∂∂∂, 其中(.)Tr 是矩阵的迹.引理3.1[33]. ()f x R ∈和()n r g x R ×∈满足局部李普希茨条件和线性增长条件, 如果存在一个2C 上的函数V , K ∞类函数12,µµ, 两个常数0c >和01γ<<, 满足12()()(),()(),x V x x LV x cV x γµµ≤≤≤−则系统是有限时间随机稳定的, 并且驻留时间满足:1001[()]()(1)E T x V x c γγ−≤−.引理3.2[34]. 存在一个2C 上的函数V , K ∞类函数12,µµ, 两个常数0γ>和0ρ>, 满足0[()]()/t E V x V x e γργ−≤+.3.2 控制器设计和稳定性分析在这一部分中, 对于系统(3-2), 构造了一个自适应有限时间控制器. 首先, 定义111,,i d i i x y x ξξα−=−=− (3-2) 其中i ξ是虚拟状态跟踪误差, i α是虚拟控制器并且满足i i αα<, i α是正的常数. 给出以下tan −型的候选障碍Lyapunov 函数:444tan()4iib i i b k V k πξπ∗=,其中:{,,1,,}ii i i b R k i n ξξξξ∈Ω=∈<=…, 11010,0iib c b c i k k Y k k α−=−>=−>.第1步: 由11d x y ξ=−和221x ξα=−可得 11112111211()(())T T T T d d d d dx dy g x y dt d g y dt d ξθϕφωθϕξαφω=−=+−+=++−+ .选择如下障碍Lyapunov 函数:1112T V V θθ∗=+ ,其中ˆθθθ=− 并且ˆθ为θ的估计. 定义3442cos ()4i ii ib k ξξϑπξ=, 由定义3.1可知: 111111444261111443211112114423411443cos()2sin()44(())cos ()2cos ()44b b b T T d b b b k k k LV g y k k kπξπξξπξξθϕξαφθθπξπξ+=++−++. (3-3) 令11ωϕ=和111ˆξθτωϑσθ=−. 设计虚拟控制器1α如下: 1111111144421111,144411331114411433322114441144),sin()cos()cos ()4441ˆ(2sin()41(3)cos()cos()44tan b b b T d b b b b K K S k k k y g k k kkαπξπξπξαθωξξπξπξφπξπξ=−−−++ (3-4)其中1100,K K α>>是常数, ,tan i S 定义为:44,4421244tan ta (),0,4()(),,t 44n an i i i i i i b tan ii i i i b b if k S l l else k k απξξεπξπξ ≥> = +(3-5) 4412124451(),()444t n n 4a ta i ii i i i b b l l k k ααπεπε−−==−. 根据洛必达法则可得 114411144131sin()cos()440,0.b b K k k πξπξξξ→→当这意味着奇点不会出现在1α的第一项中. 构造(3-5)是为了避免奇异发生在1α的第二项中. 根据洛必达法则, 有11421,14131cos ()400tan b K S k απξξξ→→当.通过使用'Young s 不等式, 以下不等式成立:1111111114444264111111444333231221114443343411114443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444b b b b b b b b b k k k k S k k kkk πξπξπξξπξπξξφφπξπξπξ+≤++. (3-6)将(3-4)和(3-6)代入(3-3), 得到11111111144421111,1444311112433211144411433322111444114433121431sin()cos()cos ()444(cos ()42sin()41ˆ(3))cos()cos()44cos (4tan b b bT d bbT d b b b K K S k k k LV g y k k y k k k k απξπξπξξθϕξπξξξπξπξθωφπξπξξπξ≤+−−−−++ 111111111114411433214344411111214431144441114431111ˆˆtan()tan ()()442sin()41(3)3)cos()41ˆˆ()()()43tan tan 43bT b b bT T T b T T b bb K K k S k k g k k S K K k k S αξαθξααπξπξθϕξθωθπξπξφθθπξϑπξπξθθτσθθθϑ≤−−++−+−+++≤−−−−+++ 112.g ξ(3-7)第2步: 从221x ξα=−和332x ξα=−可得 22122312223212()(())T T T Td dx d g x dt d g dt d ξαθϕαφωθϕξααφω=−=+−+=++−+ ,其中1111211()Tg x x ααθϕη∂=++∂ ,22()11111111(1)2111ˆ()()ˆ2i Td i i d y x x y x αααηθφφθ−=∂∂∂=++×∂∂∂∑ . 上式可写为 12,2,223212121(())T Tr r d g dt d g x dt x αξθϕξαηφω∂=++−+−∂,其中1,2,2211[,],[,]TT T Tr r x αθθθϕϕϕ∂==−∂, 选择候选障碍Lyapunov 函数:212V V V ∗=+. 由定义3.1可得22222244426222244322121,2,2232112244234122443cos()2sin()44(())cos ()2cos ()44.b b b Tr r b b b k k k LV LV g g x x k k k πξπξξπξξαθϕξαηφπξπξ+∂=+++−−+∂(3-8) 令212212121,x ξαωϕϕττωϑ∂=−=+∂. 设计控制器2α为222221222244422222,2444221332224422433312122221244412244sin()cos()cos()4441ˆ[2sin()41(3)],cos()cos()44tanb b b Tbbb bK K Sk k kgk gg xxkk kαξξπξπξπξαθωηξξπξπξϑξαφϑπξπξ=−−−+∂++−∂(3-9) 220,0K Kα>>是常数. 通过使用'Young s不等式, 下列不等式成立:2222222224444264222222444333232222224443343422224443cos()2sin()2sin()4441(3)32cos()cos()cos()444bb b bb bb b bkk k kSk kk k kπξπξπξξπξπξξφφπξπξπξ+≤++. (3-10) 将(3-7), (3-9)和(3-10)代入(3-8), 得到2222221222244422222,24443221,2,2234332222444224333122222244422443222sin()cos()cos()444(cos()42sin()41ˆ(3))cos()cos()44tanb b bTr rbbTbb bK K Sk k kLV LV gkk gkk kαξξπξπξπξξθϕξπξξξπξπξϑξθωφϑπξπξξ≤++−−−+−2222221222442243332244334222444422122312244324422244112sin()41(3)3cos()cos()441tan()tan()443ˆtan()tan()()44ii ibbb bTb bTi iii ib bkSkk kLV K K g gk k SK Kk kααξξξααπξπξφπξπξπξπξϑξϑξϑθωπξπξθθτ==++≤−−++−≤−−−+−+∑∑2223311ˆ.3Ti igSθξσθθϑξ=++∑(3-11)第i步: 从1i i ixξα−=−和11i i ixξα++=−, 可得111(())Ti i i i iTi i iid dx d g dt dξαθϕξααφω−+−=−=++−+,其中111111()iTii jj jj jig xxααθϕη−−−+−=∂=++∂∑, 21()1111(1)1,11ˆ()()ˆ2ij Ti i ii d kij jjkjj j k kdy x xx xyαααηθφφθ−−−−−−==∂∂∂=++×∂∂∂∂∑∑. 上式能够写成11,,1111(())i iiT T ir i r iji i ji jjid g dt d g x dtxαξθϕξαηφω−−+−+=∂=++−+−∂∑,其中11,,1111[,,],[,,,]T T T Ti ir i r ii iix xααθθθϕϕϕϕ−−−−∂∂=…=−…−∂∂. 选择候选障碍Lyapunov函数:1i iiV V V∗−=+.根据定义3.1可得444264431211,,111441234443cos()2sin()44(())cos ()2cos ()44.i i iiiii i ii i i i i j b i b b Ti i r i r i i j ii i j i j b b b k k k LV LV g g x x k k kπξπξξπξξαθϕξαηφπξπξ−−−+−+=+∂=+++−−+∂∑(3-12)令1111,ii i j i i ji i i j x ξαωϕϕττωϑ−−−=∂=−=+∂∑. 设计控制器i α为14442,444133444331311221441444sin()cos()cos ()4441ˆ[2sin()41(3)],cos()cos()44i i i i ii i i i ii i ii i i i i ta ii ii ij n ib b b T i i b i i i j j b b b j i i K K S k k k g k g g x x k k k αξξπξπξπξαθωηξξπξπξϑξαφϑπξπξ−−−−−+==−−−+∂++−∂∑ (3-13)0,0i i K K α>>是常数.通过使用'Young s 不等式, 以下不等式成立:44442644443332322444334344443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444i iiiiiii ii i i ib b bbii b b b b i ii ii i i ibk k k k S k k kk k πξπξπξξπξπξξφφπξπξπξ+≤++. (3-14) 将(3-11), (3-13)和(3-14)代入(3-12), 得到14442,44431,,14332444433312244444sin()cos()cos ()444(cos ()42sin()41ˆ(3))cos()cos()44i iiii i iii iita i i i i i i i ii i i n ib b b T i r i r i i b b i T ib b b iiiii i K K S k k k LV LV g k k g k kkαξξπξπξπξξθϕξπξξξπξπξϑξθωφϑπξπξ−−+−≤++−−−+−14443333224433444441114434444112sin()41(3)3cos ()cos()441tan()tan ()443tan()tan ()44iii ii i i iiji jj i i iii i i i i i i b it b b b T i i i b b i iij j j b j j b k S k k k LV K K g g kkS K K kk ααξξξααπξπξξφπξπξπξπξϑξϑξϑθωπξπξ−−+−==++≤−−+−++≤−−∑ 1311ˆˆ()3.i iii i jT T i j g S θξθθτσθθϑξ+=−++−+∑∑(3-15)第n 步: 从1nn n x ξα−=−可得 11()T Tn n n n n n n d dx d g u dt d ξαθϕαφω−−=−=+−+ ,其中2111()11111111(1)111,11ˆ()()()ˆ2,n nn n T i Tn n n n n i n n d k k i i i i i k k d i i i i i i g y x x x x x y x αααααθϕηηθφφθ−−−−−−−−+−−−====∂∂∂∂=++=++×∂∂∂∂∂∑∑∑∑ . 上式能够写成11,,111()n TT n nr nr n n n ni i i id g u dt d g x dt x αξθϕηφω−−−+=∂=+−+−∂∑, 其中11,,1111[,,],[,,,]T T T T n n r n r nn n n x x ααθθθϕϕϕϕ−−−−∂∂=…=−…−∂∂. 选择候选障碍Lyapunov 函数: 1n n n V V V ∗−=+. 根据定义3.1可得444264431211,,11441234443cos()2sin()44()cos ()2cos ()4.4nnnnnni n n b nn n b bTn n n n r n r n n n i n i nn b i bb k k k LV LV g u g x x k k kπξπξξπξξαθϕηφπξπξ−−−−+=+∂=++−−+∂∑(3-16)令1111,ni in n n n n n n i x ξαωϕϕττωϑ−−−=∂=−=+∂∑. 设计控制器u 为14442,444133444331311221441444sin()cos()cos ()4441ˆ[2sin()41(3)],cos()cos()44n nnnnn n nnnn n n n tan nb b b T n n nnnn i nn b n n n nni i n n b b ib K K S k k k u g k g g x x k kkαξξπξπξπξθωηξξπξπξϑξαφϑπξπξ−−−−−+==−−−+∂++−∂∑(3-17)0,0n n K K α>>是常数.通过使用'Young s 不等式, 以下不等式成立:44442644443332322444334344443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444nnnnnnnn nn n n b nn nb bbn nnn n n n n bb b b bk k k k S k k kk k πξπξπξξπξπξξφφπξπξπξ+≤++. (3-18)将(3-15), (3-17)和(3-18)代入(3-16), 得到14442,44431,,433244443331224444432sin()cos()cos ()444ˆ(cos ()42sin()41(3))cos()cos()44n n n nnnn nn n nn n nn tan nb b b T T n n n r n r n nn n nb n nb n n nn n nb b b nK K S k k k LV LV k k g k k k αξξπξπξπξξθϕθωπξξξπξπξϑξφϑπξπξξ−−−≤+−−−+−14443332443344444114434444112sin()41(3)3cos ()cos()441tan()tan ()443ˆtan()tan ()()44nnn nn n n n n i i i n nb n n n n n b b b T n nn n n n nb b nnn T i ii n i i b b k S k k k LV K K g k k S K K k k ααξξααθπξπξφπξπξπξπξϑξϑθωπξπξθθτσ−−−==++≤−−+−≤−−−+−+∑∑ 311ˆ.3n T i i S θθ=+∑(3-19)。
时变时滞随机非线性系统的自适应神经网络跟踪控制

时变时滞随机非线性系统的自适应神经网络跟踪控制余昭旭;杜红彬【摘要】This paper focuses on the adaptive neural control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delay. Based on the Razumikhin function approach, a novel adaptive neural controller is de- veloped by using the backstepping technique. The proposed adaptive controller guarantees that all the error variables are 4-moment semi-globally uniformly ultimately bounded in a compact set while the tracking error remains in a neighborhood of the origin. The effectiveness of the proposed design is validated by simulation results.%针对一类具有时变时滞的不确定随机非线性严格反馈系统的自适应跟踪问题,利用Razumikhin引理和backstepping方法,提出一种新的自适应神经网络跟踪控制器.该控制器可保证闭环系统的所有误差变量皆四阶矩半全局一致最终有界,并且跟踪误差可以稳定在原点附近的邻域内.仿真例子表明所提出控制方案的有效性.【期刊名称】《控制理论与应用》【年(卷),期】2011(028)012【总页数】5页(P1808-1812)【关键词】自适应跟踪控制;神经网络(NNs);Razumikhin引理;随机系统;时变时滞【作者】余昭旭;杜红彬【作者单位】华东理工大学自动化系,上海200237;华东理工大学自动化系,上海200237【正文语种】中文【中图分类】TP2731 引言(Introduction)随机干扰广泛地存在于各类实际系统中,因此随机非线性系统的稳定性分析及控制器设计受到越来越多的关注[1~6].特别地,对于严格反馈型随机非线性系统,采用backstepping方法提出了许多控制策略[3~6].然而这些控制策略往往要求系统函数已知或满足匹配条件.如果不能获得系统函数的这些先验知识,那么这些方法显然不适用.由于神经网络和模糊系统对未知非线性函数具有良好的逼近性能,采用自适应神经网络控制和自适应模糊控制能较好地避免前面的限制.然而对具有未知系统函数的随机系统的神经网络控制问题和模糊控制问题的研究结果还比较少[6~10]. 时滞现象大量存在于如计算机网络、核反应器等实际系统中,并且往往会导致系统的不稳定,因此时滞系统一直是研究的热点问题[11].Lyapunov-Krasovskii方法和Lyapunov-Razumikhin方法也广泛地应用于时滞随机非线性系统的稳定性分析和控制器设计.文献[12,13]已将Lyapunov-Razumikhin方法应用到时滞不确定随机非线性系统的稳定性分析.对时滞随机非线性系统的镇定与跟踪问题,大多采用Lyapunov-Krasovskii方法[9,14~16]. 相比Lyapunov-Razumikhin方法,Lyapunov-Krasovskii函数则不易构造,且Lyapunov-Krasovskii函数的复杂性使得稳定性分析与控制器设计也更为复杂.此外Lyapunov-Krasovskii对时滞常常不仅要求有界,而且须满足(t)<ς<1(ς为常数),而Lyapunov-Razumikhin方法仅要求时滞有界.因此针对时变时滞随机非线性系统的跟踪控制问题,采用Lyapunov-Razumikhin方法提出一种新的自适应神经网络控制器设计方法具有重要意义.本文利用Razumikhin引理和backstepping方法,针对一类具有时变时滞的不确定随机非线性严格反馈系统,提出一种新的自适应神经网络跟踪控制策略.所提出的控制器可保证跟踪误差四阶矩半全局一致最终有界.同时由于神经网络参数化[10]的应用,使得自适应控制器中所估计的参数大量减少.2 问题描述及准备(Problem formulation and preliminary results)2.1 预备知识(Preliminary results)考虑以下随机非线性系统:其中:x∈Rn为状态,ω为定义完备概率空间(Ω,F,P)上的r维的标准布朗运动,其中:Ω为采样空间,F为σ域以及P为概率测度;f和h为合适维数的向量值函数或矩阵值函数.针对C2函数V(t,x)定义如下算子L:其中tr(A)为A的迹.Razumikhin引理:考虑时滞随机泛函微分方程(retarded stochastic functional differential equation,RSFDE):dx=f(t,xτ)dt+h(t,xτ)dω,令p > 1,如果存在函数V(t,x)∈ C1,2([−τ,∞]× Rn)和常数ci>0(i=1,2),q>1,满足以下不等式:对所有的t≥0,满足那么RSFDE的具有初值ξ的解x(t,ξ)概率意义下一致最终有界,并且满足其中:|ξ(s)|p,γ=µ1∧.由文献[17]中定理4.1.4取κ =0,ψ(t)=e−t,µ = µ1和ζ(t)= µ2可容易得到以上Razumikhin引理,证明略.本文中考虑p=4.引理1 对于ε>0和任意实数η∈R,存在不等式[18]其中k为常数且满足k=e−(k+1),即k=0.2785.引理2 考虑不等式其中λ为正常数,如果初始条件(0)≥0成立,则对所有t≥0有(t)≥0.本文中,高斯径向基函数(RBF)神经网络用来逼近任意的连续函数g(·):Rn→R,也即=TΦ(Z),其中输入向量Z∈ΩNN⊂Rn,权向量=(w1,···,wl)T ∈ Rl以及核向量Φ(Z)=(s1(Z),s2(Z),···,sl(Z))T;激励函数si(Z)采用高斯函数,即其中:µi=(µi1,···,µin)T为接受域的中心,νi为高斯函数的宽度.通过选择足够多的节点,神经网络在紧集ΩNN⊂Rn上可以逼近任意的连续函数,即“理想”的权向量W∗是为了分析而设想的量,定义为W∗:=arg|g(Z)−Z)|}.假设1 ∀Z∈ΩNN,存在“理想”的常数权向量W∗,使得‖W∗‖∞ ≤ wmax和|δ|≤ δmax,其中上界wmax,δmax > 0.由式(7)容易得到其中:β(Z)==max{δmax,wmax}.2.2 问题描述(Problem formulation)考虑由以下方程描述的时滞随机非线性系统:其中:xi∈R(i=1,···,n)为系统的状态,定义i=[x1···xi]T,x=n;u∈R为控制输入;y∈R为系统的输出;Borel可测函数τ(t):R+→ [0,τ]表示未知的时变时滞;ω与系统(1)定义相同;f(·),g(·),q(·):Rn→ R和h(·):Rn→ Rr皆为未知的非线性光滑函数.本文的主要目的是设计一种自适应状态反馈控制率u(x,θ),=Φ(x,),使得对于某紧集内的初始条件x(0),(0),闭环系统的所有误差变量皆四阶矩半全局一致最终有界,且跟踪误差可以稳定在原点附近的邻域内.假设2 未知非线性函数g(x)的符号已知,且存在正常数bm和bM,满足0<bm≤|g(x)|≤bM<∞,∀x∈Rn.不失一般性,可进一步假设0<bm≤g(x)≤bM<∞.假设3 存在未知k∞类函数Q(·)满足以下不等式:|q(x(t− τ(t)))|≤ Q(‖x(t− τ(t))‖).假设 4 未知非线性函数h(x,x(t−τ(t)))满足以下不等式:‖h(x,x(t− τ(t)))‖2 ≤H1(‖x‖)+H2(‖x(t− τ(t))‖),其中:H1(·)为未知非负光滑函数,H2(·)为未知k∞类函数.(t)皆为连续且有界的.进一步,假定存在常数d,假设 5 参考信号yd(t)及其微分(t),···,使得‖[yd···]T‖ ≤ d.3 控制器设计及稳定性分析(Controller design and stability analysis)这一节,针对系统(9),利用backstepping方法及Razumikhin引理设计一种新的自适应神经网络跟踪控制器.首先,需引入以下误差变量:其中:为待定的虚拟控制函数,.对于1≤i≤n−1,选取Lyapunov函数选取虚拟控制函数为其中:Lαi−1=,ki为待定设计常数.则容易得到以下关系式:其中:p1=k1−3/4>0,pi=ki−1>0(2≤i≤n−1).将式(11)可改写为如下形式:系数di,j为常数.另外,α0(yd)=yd.基于以上的介绍,容易得到下面引理3.引理3 存在正常数ρ,υ,使得其中:Z=[z1···zn:=−θ/bm,表示未知常数θ/bm的估计.下面继续控制器的设计.当i=n时,由Itˆo公式可得其中Lαn−1:=.定义Lyapunov函数由式(2)可得由假设3可得由于Q(·)为k∞类函数,利用引理3及Razumikhin引理可得由引理1,||Fn,其中Fn=Q(2ρq‖Z(t)‖)+Q(2υ),可通过以下不等式进行处理: 由假设4,可得以下不等式:其中:Gn=H2(2ρq‖Z‖)+H2(2υ),ϑ1和ϑ2为任意的正常数.定义一个新的函数在紧集ΩZ中可通过RBF神经网络逼近:其中:Zn=[x[n]]∈ ΩZ,W∗TS(Zn)表示的“理想”神经网络近似,而δ(Zn)表示逼近误差.利用神经网络参数化式(8),可得其中: β(·)==max{δmax,wmax}.构造实际控制器及参数调整算法如下:其中kn,σ与λ为待定的正设计参数.利用不等式θ≥,在控制器(20)(21)的作用下,由式(14)~(19)可得其中pn:=knbm−>0.式(22)可改写为其中: µ :=min{4p1,4p2,···,4pn−1,4pn,λ},ν :=θ2+k(θσ + ε)+由式(23)及Razumikhin引理可知,闭环系统的解四阶矩半全局一致最终有界,且对于足够小的ς>0,存在时间T:=,其中:E|Z(s)|4,γ=µ∧,c1 ≤min{},使得∀t≥T,有E|(y(t)−yd)4|≤ (1+ς)基于以上分析,主要结论可由以下定理描述:定理1 对于满足假设(2)~假设(5)的时变时滞不确定随机非线性系统(9),在控制器(20)和参数自适应率(21)作用下,闭环系统的所有误差信号四阶矩半全局一致最终有界,且跟踪误差稳定在以下集合Ω所定义的区域内:注 1 定义如下紧集:初始值集合Ω0、有界紧集ΩZ、稳态紧集Ωs和神经网络逼近的有效集合ΩNN.在控制器设计过程中为了∀t≥0神经网络逼近皆有效,需保证ΩZ⊆ΩNN.为了阐述方便,由式(23)及Razumikhin引理,可将有界紧集ΩZ和稳态紧集Ωs定义如下:这些集合之间的关系如图1所示.在控制器设计的初始阶段首先定义ΩNN,并且ΩNN与控制器的参数和初始集合Ω0均无关.由式(24)(25)可知:i)初始集合Ω0通过‖ξ‖0影响ΩZ,但与Ωs和ΩNN无关;ii)可通过调整参数ki,λ,σ,ε,ϑ1和ϑ2,使得ΩZ和Ωs足够小.图1 各紧集之间的关系Fig.1 The relationship among compact sets由集合ΩZ和Ωs的界可知,对于给定足够大的ΩNN,存在合适的‖ξ‖0,γ和ν使得ΩZ ⊆ ΩNN和Ωs ⊆ ΩNN. 而由γ和ν的定义可知,γ和ν的值依赖于控制参数ki,λ,σ,ε,ϑ1和ϑ2的选择.因此对于给定足够大的ΩNN和‖ξ‖0=ξmax>0,存在合适的控制参数使得ΩZ⊆ΩNN.定义xi(0),zi(0)和(0)的初始值集合Ω0使得‖ξ‖0<ξmax.这时对于属于Ω0的所有xi(0),zi(0)和(0),∀t>0均有ΩZ⊆ΩNN.4 仿真研究(Simulation example)考虑以下时变时滞不确定随机非线性系统:其中:τ(t)=1+sint,初始条件为x1(0)=0.2和x2(0)=0.1,参考输入信号yd=0.5(sint+sin 0.5t).仿真过程中,采用RBF神经网络来逼近未知函数,W∗TS(Z2)包含729个节点,中心分布在[−5,5]×[− 5,5]×[− 5,5]×[− 5,5]×[− 5,5]×[0,5],宽度为1;其他仿真参数给出如下:k1=4.74,k2=15,λ=5,σ=1.采用定理1中的控制器(20)和参数自适应率(21),其中z1=x1−yd,z2=x2− α1,β = β(Z2).仿真结果由图2~4给出,图2表明所提出的自适应跟踪控制器具有良好的跟踪性能,输出响应y能比较快地跟踪参考输入yd;控制输入如图3所示;图4描述了自适应参数曲线.图2 输出响应y(t)和参考输入yd(t)Fig 2 Output responsey(t)and reference inputyd(t)图3 控制输入u(t)Fig 3 Control inputu(t)图4 自适应参数Fig 4 Adaptive parameter5 结论(Conclusion)本文针对一类具有未知时变时滞的不确定随机非线性严格反馈系统,利用Razumikhin引理和backstepping方法,提出了一种新的神经网络自适应控制器,可以保证跟踪误差四阶矩半全局一致最终有界.所给出的控制器结构简单,易于实现.将该方法推广到更一般的严格反馈型随机非线性系统是下一步工作的方向.参考文献(References):【相关文献】[1]FLORCHINGER P.Lyapunov-like techniques for stochastic stability[J].SIAM Journal on Control and Optimization,1995,33(4):1151–1169.[2]FLORCHINGER P.Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method[J].SIAM Journal on Control and Optimization,1997,35(2):500–511.[3]PAN Z G,BASAR T.Adaptive controller design for tracking and disturbance attenuation in parameter-feedback nonlinear systems[J].IEEE Transactions on AutomaticControl,1998,43(8):1066–1083.[4]DENG H,KRISTIC M.Stochastic nonlinear stabilization:part 1:a backsteppingdesign[J].Systems&Control Letters,1997,32(3):143–150.[5]DENG H,KRISTIC M.Stochastic nonlinear stabilization:part 2:inverseoptimality[J].Systems&Control Letters,1997,32(3):151–159.[6]WANG Y C,ZHANG H G,WANG Y Z.Fuzzy adaptive control of stochastic nonlinearsystems with unknown virtual control gainfunction[J].Acta AutomaticaSinica,2006,32(2):170–178.[7]PSILLAKIS H E,ALEXANDRIDIS.NN-based adaptive tracking control of uncertain nonlinear systems disturbed by unknown covariance noise[J].IEEE Transactions on Neural Networks,2007,18(6):1830–1835.[8]YU J J, ZHANG K J, FEI S M. Direct fuzzy tracking control of a class of nonaffine stochastic nonlinear systems with unknown dead-zone input[C] //Proceedings of the 17th World Congress, the International Federation of Automatic Control. Elseviet: International Federation of Accountants, 2008, 12236 – 12241.[9]谢立,何星,熊刚,等,随机非线性时滞大系统的输出反馈分散镇定[J].控制理论与应用,2003,20(6):825–830.(XIE Li,HE Xing,XIONG Gang,et al.Decentralized output feedback stabilization for large scale stochastic nonlinear system with time delays[J].Control Theory&Applications,2003,20(6):825–830.)[10]GE S S,HUANG C C,LEE T,et al.Stable Adaptive Neural Network Control[M].USA:Kluwer Academic,2002.[11]RICHARD J P.Time-delay systems:an overview of some recent advances and open problems[J].Automatica,2003,39(10):1667–1694.[12]MAO X R.Razumikhin-type theorems on exponential stability of stochastic functional differential equataions[J].Stochastic Process and Their Application,1996,65(2):233–250. [13]JANKOVIC S,RANDJELOVIC J,JOVANOVIC M.Razumikhintype exponential stability criteria of neutral stochastic functional differential equations[J].Journal of Mathematical Analysis and Applications,2009,355(2):811–820.[14]CHEN W S,JIAO L C,liJ,et al.Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays[J].IEEE Transations on System,Man and Cybernetics,Part B:Cybernetics,2010,40(3):939–950.[15]LIU S J,GE S S,ZHANG J F.Robust output-feedback stabilization for a class of uncertain stochastic nonlinear systems with timevarying delays[C]//Proceedings of 2007 IEEE International Conference on Control and Automation.Piscataway,NJ:IEEE,2007:2766–2771.[16]余昭旭,杜红彬.基于NN的不确定随机非线性时滞系统自适应有界镇定[J].控制理论与应用,2010,27(7):855–860.(YU Zhaoxu,DU Hongbin.Neural-network-based bounded adaptive stabilization for uncertain stochastic nonlinear systems with timedelay[J].Control Theory&Applications,2010,27(7):855–860.)[17]胡适耕,黄乘明,吴付科.随机微分方程[M].科学出版社,2008:153–156.(HU Shigeng,HUANG Chengming,WU Fuke.Stochastic Differential Equations[M].Beijing:Science Press,2008:153–156.)[18]PLOLYCARPOU M M.Stable adaptive neural control scheme for nonlinearsystems[J].IEEE Transactions on Automatic Control,1996,41(3):447–451.。
【系统仿真学报】_时变时滞_期刊发文热词逐年推荐_20140724

推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2009年 科研热词 时变时滞 非线性时滞系统 非线性pid控制 遗传算法 输出反馈 自适应边界技术 线性矩阵不等式 灰色预测 混沌同步 模糊辨识 时滞依赖 关联系统 不确定参数 t-s模糊模型 h∞控制 h∞ backstepping 推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
推荐指数 1 1 1 1 1 1 1 1 1
2012年 序号 1 2 3 4 5 6 7 8
2012年 科研热词 推荐指数 递归神经网络 1 稳定性 1 标准基因调控网络 1 时变时滞 1 time-varying delay 1 standard genetic regulatory networks 1 stability 1 recurrent neural networks 1
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
科研热词 通信网络 趋近律 线性矩阵不等式 线性时变 滑模控制 流量控制 时滞系统 时滞依赖准则 指数稳定 性能评价 广义最小方差基准 多变量控制系统 关联矩阵 主动队列管理 tcp网络拥塞控制 t-s模糊模型
2010年 序号 1 2 3 4 5 6 7 8
科研热词 马尔可夫跳变系统 输入时滞 网络控制系统 线性矩阵不等式 稳定性 智能控制 保性能控制 t-s模糊系统
推荐指数 1 1 1 1 1 1 1 1
2011年 序号 1 2应 网络化控制系统 模糊逻辑系统 时滞依赖 时变时延 容错控制 动态面控制 丢包
时滞系统几种控制策略研究

时滞系统几种控制策略研究时滞系统几种控制策略研究时滞系统是一类在实际控制中常见的系统,其特点是系统状态变量在对应的输出值上受到时间延迟的影响。
时滞系统在工程领域广泛应用,例如飞行器、机器人等。
然而,由于时滞的存在,时滞系统往往容易出现不稳定、震荡和性能下降的问题,因此如何有效地控制时滞系统,降低时滞对系统性能的影响成为了一个重要的研究方向。
针对时滞系统的控制策略研究,主要包括经典控制方法、自适应控制方法和智能控制方法等。
经典控制方法中,最常用的是PID控制器。
PID控制器是一种基于比例、积分、微分控制的经典控制策略,它能够对系统的误差进行调节。
然而,对于时滞系统,传统PID控制器存在不足之处,因为时滞会导致控制信号滞后,从而影响系统的稳定性。
因此,需要对PID控制器进行改进,使其能够对时滞系统进行有效的控制。
自适应控制方法通过根据系统的特性实时调整控制器的参数,从而适应系统的变化。
其中,模型参考自适应控制(Model Reference Adaptive Control, MRAC)是一种常用的方法。
MRAC通过在线估计系统的模型,并根据估计的模型来调整控制器的参数,从而实现对时滞系统的控制。
此外,自适应滑模控制(Adaptive Sliding Mode Control, ASMC)也是一种常用的控制方法。
ASMC通过引入滑模面,并根据系统误差的变化调整滑模面的位置,以降低时滞对系统的影响。
智能控制方法中,模糊控制和神经网络控制是常见的策略。
模糊控制是一种基于模糊逻辑推理的控制方法,通过将人类的经验和知识转化为模糊规则,来对系统进行控制。
神经网络控制是一种通过训练神经网络来实现对系统的控制的方法,神经网络可以学习系统的非线性映射关系,并通过适当的训练来调整权值,从而实现对时滞系统的控制。
在实际应用中,不同的控制策略可以结合使用,以实现更好的控制效果。
例如,可以将PID控制器和模糊控制器结合,利用PID控制器对系统进行粗略调节,再利用模糊控制器进行微调,从而达到更好的控制效果。