时变时滞随机非线性系统的自适应神经网络跟踪控制

合集下载

不确定随机非线性时滞系统的自适应神经网络跟踪控制

不确定随机非线性时滞系统的自适应神经网络跟踪控制
满 足 不 等 式
f ( £ + ()
() ≤ £ )f
f ()f ( () 面 £ 十
() )
() 5
假 设 2 存 在非 负定 的未 知连 续 函数 ( ) 对 于 i 2 3 … , 使 函数 ( ) 足 ・, 一 , , , ・满
(( + ()≤ ∑ l ( (( + () 三£ j ) ) ) 三 £ ) )
W E R ∈ n
假 设 4 对 VA ∈ n存在 最优 常数 权 向量 w , 使
l 1 w ly≤ 7… , l ( 】 . )l U ≤
由式 ( ) 8 得

… >0

青岛大学学 报 ( 程技 术版 ) 工

第 2 7卷
w ( + () s )+ I ∑ l () 7 + ≤邮 () s ) 3 ≤I , W ( I1()≤ I2 s . 2 .
z 一 一 a一 , 1 一 1, 3, , 2, … ( 4)
其中,
是待 定 的虚拟 控制 信号 a 。 。一
假 设 1 对 于 i 1 2 3 … , 存在 一个 非负 定 的未知 连续 函数 ( ) 对 于 z 1 2 … ,使 函数 h ( ) 一 , , , , ・, 一 ,, i ・
第 2 7卷 第 3期
20 1 2年 9月
青 岛 大 学 学 报 ( 程 技 术 版 )’ 工 J UR A F Q N D O UN V RST ( O N L O I G A I E I Y E&T )
Vo. o 1 27 N .3
Se p. 2 0 1 2
器 , 真验 证 了该控 制器 的有效 性 。 仿
1 问题 描 述

基于神经网络的非线性系统控制技术研究

基于神经网络的非线性系统控制技术研究

基于神经网络的非线性系统控制技术研究随着机器学习和人工智能技术的飞速发展,神经网络控制技术被广泛应用于非线性系统控制领域。

本文将重点介绍基于神经网络的非线性系统控制技术研究,探讨其在实际应用中的优势和挑战。

一、神经网络控制技术概述神经网络控制技术是一种将神经网络应用于非线性系统控制的方法,其核心思想是通过神经网络建模和预测实现系统控制。

与传统的控制方法相比,神经网络控制技术具有以下优势:1. 适用范围广神经网络可以对非线性系统进行建模和预测,而传统的控制方法往往只适用于线性系统。

2. 建模精度高神经网络可以根据系统在不同时间步的输入输出数据进行学习,从而得到更为准确的系统模型。

3. 控制效果好神经网络控制具有自适应性和鲁棒性,能够在复杂环境下实现精确控制。

二、基于神经网络的非线性系统建模方法神经网络控制技术的核心在于神经网络的建模和预测,下面介绍基于神经网络的非线性系统建模方法。

1. 前向神经网络建模方法前向神经网络是一种常用的人工神经网络类型,其具有简单明了的结构和较高的预测精度。

该方法通常将非线性系统输出作为神经网络的目标变量,将非线性系统的输入与输出作为神经网络的输入数据,通过神经网络模拟实现非线性系统的预测和控制。

2. 循环神经网络建模方法循环神经网络是一种带有时序信息的神经网络,其可以用于描述非线性系统的时序演化过程。

该方法通常将非线性系统的输出序列作为循环神经网络的目标变量,将非线性系统的输入序列作为循环神经网络的输入数据,通过循环神经网络模拟实现非线性系统的预测和控制。

三、基于神经网络的非线性系统控制方法基于神经网络的非线性系统控制技术包括开环控制、闭环控制和模糊神经网络控制等方法。

下面将重点介绍闭环控制方法。

闭环控制是一种基于系统反馈调节的控制方法,其核心在于将神经网络控制器与系统的反馈环结合,实现系统控制。

该方法通常将被控系统的测量输出作为反馈信号,将神经网络输出作为控制信号,通过反馈作用实现系统的实时控制。

基于神经网络的自适应控制技术研究

基于神经网络的自适应控制技术研究

基于神经网络的自适应控制技术研究神经网络作为一种模拟人脑神经元网络的计算模型,在多个领域得到了广泛的应用。

其中,自适应控制技术是神经网络研究的重要方向之一。

使用神经网络进行自适应控制,可以有效地解决各种非线性、时变和模型不确定的动态系统控制问题。

一、神经网络的基本原理神经网络模仿人类大脑组织,由若干个神经元构成。

每个神经元接受若干个输入信号,并将它们加权求和后传递到激活函数中进行处理,最终得到输出信号。

多个神经元可以组成网络,进行更加复杂的信息处理和控制。

神经网络的学习过程是通过对输入和输出数据的训练实现的。

通常采用的训练方法是反向传播算法。

该算法基于一种误差反向传播的思想,通过计算每个神经元的误差,根据误差大小对神经元的权重进行更新和调整,不断减小网络的误差,达到有效的学习效果。

二、自适应控制技术自适应控制技术是一种针对动态系统进行控制的技术。

动态系统具有非线性、时变性、模型不确定等特性,传统的线性控制方法往往难以达到理想的效果。

自适应控制技术基于神经网络模型,可以进行模型自适应、参数自适应和信号处理等多种操作,以适应各种复杂的动态系统。

常见的自适应控制方法有基于模型参考自适应控制、基于模型自适应控制、基于直接自适应控制等。

其中,基于模型参考自适应控制是一种应用广泛的方法。

该方法将实际输出与期望参考模型的输出进行比较,通过误差反馈,计算调整控制器参数的信号,最终实现对动态系统的控制。

三、神经网络自适应控制技术的研究进展神经网络自适应控制技术在航空、机械、电力、化工等行业中得到了广泛的应用。

在航空领域,神经网络自适应控制技术可以应用于飞机自动驾驶、导航、起降控制等方面。

在机械领域,神经网络自适应控制技术可以应用于机械臂、机器人控制、数控机床等领域。

在电力、化工领域,神经网络自适应控制技术可以应用于发电机组调节、化工装置控制等领域。

目前,神经网络自适应控制技术的研究主要集中在以下几个方面:1.神经网络自适应PID控制技术PID控制是一种基于比例、积分、微分三个控制器参数的控制方法。

时变时滞非仿射大系统的分散自适应控制

时变时滞非仿射大系统的分散自适应控制
小邻 域 内。 最后 , 真 结 果 验 证 了所 提 控 制 方 案 的 有 效 性 。 仿
关键词 : 自适 应 控 制 ;非仿 射 系统 ; 分散 控 制 ; 经 网络 ;未 知 时 变 时 滞 神 中 图 分 类 号 : P 7 T23 文 献 标 志 码 : A
De e r l e d p i e c nt o f c nt a i d a a tv o r lo z l r e s a e no f n i e v r i g de a y t m s a g - c l na i e tm - a y n l y s s e
n n f n u cin r e a ae y t e me n v l e te r m, w i h e t ci n f t e u k o i ea s a d t e o af e fn t swe e s p r td b h a au h o e i o h l t e r sr t s o h n n wn t e i o me d ly n h u c r i i —a yn ea n ec n e t n e e r lx d b t iig t e s p r t n tc n q e a d t e Yo n ’ ie u l y i n et nt a me v r i g d ly i tr o n ci sw r e a e y u i zn h e a ai e h i u n h u gS n q a 对 一 类具 有 未知 时 变 时滞 的 非 仿 射 互 联 大 系统 基 于神 经 网络 的 逼 近 能 力 , 出 了 一 种 分 散 自适 应 神 针 提
经 网络控制方案。该方案利用 中值 定理 对未知非仿射 函数 进行分 离;利用分 离技 术和 Y ug on’ S不等式放 宽 了对 未知 时滞及 时滞互联 不确定项的限制 ,同时大大减 少了在 线调 节参 数的数 量。此外 ,利用 L au o—rsvki 函补偿 ypn vKaosi 泛 了未知时滞带来的不确定性。通过理论分析 ,证明 了闭环 系统所有信 号是 有界 的,输 出跟踪 误差收敛 到原点的一 个

控制系统中的自适应控制与神经网络控制比较

控制系统中的自适应控制与神经网络控制比较

控制系统中的自适应控制与神经网络控制比较在控制系统中,自适应控制和神经网络控制是两种常见的控制方法。

它们都旨在通过对系统模型和输入输出关系进行学习和调整,实现系统的自适应性能。

然而,它们在实现方式、性能和适用范围等方面存在一些差异。

本文将对自适应控制和神经网络控制进行比较,以帮助读者理解它们的优缺点和适用情况。

自适应控制是一种基于模型参考自适应原理的控制方法。

其核心思想是通过建立系统模型并根据模型误差来调整自适应控制器的参数。

自适应控制根据系统模型的准确性进行分类,可以分为基于精确模型的自适应控制和基于近似模型的自适应控制。

基于精确模型的自适应控制方法要求系统模型必须准确地描述系统的动态特性。

这种方法可以针对不同的系统进行定制化设计,控制性能较好。

然而,由于实际系统的模型通常是复杂和不确定的,因此需要大量的模型辨识工作,且容易受到模型误差的影响。

相比之下,基于近似模型的自适应控制方法更常见。

这种方法通过选择适当的模型结构和参数估计方法,利用系统的输入输出数据进行模型辨识和参数调整。

基于近似模型的自适应控制方法对系统模型的精确性要求较低,适用于对系统了解不充分或者模型难以得到的情况。

然而,近似模型的准确性直接影响自适应控制的性能,需要通过参数调整策略进行优化。

与自适应控制相比,神经网络控制利用神经网络对系统进行建模和控制。

神经网络是一种模仿人脑神经元结构和功能的计算模型,通过大量的神经元连接和权重调整来实现输入输出之间的非线性映射。

在神经网络控制中,神经网络模型可以根据系统的输入输出数据进行在线学习和参数调整。

神经网络控制具有较强的适应性和非线性建模能力,能够有效处理系统模型复杂或不确定的情况。

它不需要事先对系统进行准确建模,适用范围广。

然而,神经网络控制的设计、训练和调参过程较为复杂,需要大量的计算资源和时间,且很难对其内部机制进行解释和理解。

综上所述,自适应控制和神经网络控制都是常见的控制方法,各有其优势和适用范围。

时变大时滞系统的控制方法综述

时变大时滞系统的控制方法综述

时变大时滞系统的控制方法综述1 引言在化工、炼油、冶金、玻璃等一些复杂的工业过程当中,广泛地存在着大时滞现象。

由于时滞的存在,使得被控量不能及时地反映系统所承受的扰动,从而产生明显的超调,使得控制系统的稳定性变差,调节时间延长,对系统的设计和控制增加了很大的困难。

而时变时滞的特性则使得问题更加复杂,因而对此类问题的研究具有重要的理论和实际意义。

自从1957年Smith首次提出针对时滞系统的预估控制方法以来,许多学者在这一领域进行了广泛而深入的研究,相继提出了许多行之有效的控制方法。

根据对专统数学模型的依赖程度的不同,这些方法大致可以分为自适应控制和智能控制两大类。

本文即对此进行了总结介绍,分析了各种控制方法的优点及其所存在的局限性,并且探讨了该领域今后的发展方向。

2 Smith预估器Smith预估器是得到广泛应用的时滞系统的控制方法。

该方法的基本思路是:预先估计出系统在基本扰动下的动态特性,然后由预估器对时滞进行补偿,力图使被延迟了的被调量超前反映到调节器,使调节器提前动作,从而抵消掉时滞特性所造成的影响:减小超调量,提高系统的稳定性$加速调节过程,提高系统的快速性。

Smith预估器的原理如图1所示。

图1 Smith预估器控制框图从理论上分析,Smith预估器可以完全消除时滞的影响,从而成为一种对线性、时不变和单输入单输出时滞系统的理想控制方案。

但是在实际应用中却不尽人意,主要原因在于:Smith预估器需要确知被控对象的精确数学模型,而且它只能用于定常系统。

这一条件事实上相当苛刻,因而影响了Smith预估器在实际应用中的控制性能。

在Smith预估器的基础上,许多学者提出了扩展型的或者改进型的方案,这些方案包括:多变量Smith预估控制,非线性系统的Smith预估器,改进的Smith预估器。

这些方法由于并没有减小对系统数学模型的依赖程度,因而同样也具有很大的局限性。

3 自适应控制方法对大多实际控制过程而言,被控对象的参数在整个被控过程中不可能保持定常,对于这一类系统,如果采用常规的控制方法,不仅控制性能会变差,而且还会造成系统发散,然而利用自适应技术却可以获得比较满意的控制效果。

反馈控制系统稳定性问题及改进方法研究

反馈控制系统稳定性问题及改进方法研究

反馈控制系统稳定性问题及改进方法研究1. 研究背景反馈控制系统是一种常用的控制系统,广泛应用于工业自动化、机器人控制、飞行器等领域。

然而,反馈控制系统在实际应用中常常面临稳定性问题,如系统振荡、不稳定等。

这些问题对系统的性能、可靠性和安全性都会产生负面影响,因此需要进行研究和改进。

2. 稳定性问题的原因分析反馈控制系统稳定性问题的产生原因有多种,主要包括以下几个方面:a. 参数不确定性:如果系统参数存在不确定性,如变化范围较大或存在随机性,会导致系统的稳定性下降。

b. 时滞问题:反馈控制系统中的时滞(包括传感器延迟、信号传输延迟等)会导致系统的稳定性退化。

c. 非线性特性:系统的非线性特性会导致系统稳定性问题的产生和加剧。

d. 信号干扰:如果系统受到外部信号干扰或噪声干扰,会导致系统的稳定性受到影响。

3. 稳定性改进方法针对反馈控制系统的稳定性问题,可以采取如下改进方法:a. 参数估计与鲁棒控制:通过参数估计技术,对系统的参数进行辨识和估计,从而提高系统的鲁棒性和稳定性。

鲁棒控制策略可以针对参数不确定性,克服参数变化带来的稳定性问题。

b. 时滞补偿:采用时滞补偿技术,通过估计和预测时滞,对控制器进行补偿,消除由于时滞引起的不稳定性。

c. 非线性控制方法:针对系统的非线性特性,可以采用模糊控制、神经网络控制等非线性控制方法。

这些方法可以更好地处理系统的非线性特性,提高系统的稳定性和性能。

d. 信号处理与滤波:对于受到信号干扰的系统,可以通过信号处理和滤波技术来减小干扰的影响,提高系统的稳定性。

4. 实验研究为了验证改进方法的有效性,可以进行实验研究。

首先,建立反馈控制系统的数学模型,并模拟各种稳定性问题的影响。

然后,针对每个稳定性问题,应用相应的改进方法进行实验,比较改进前后系统的稳定性和性能。

实验结果可以提供参考,为实际应用中的系统优化提供指导。

5. 结论反馈控制系统的稳定性问题对于系统的性能和可靠性具有重要影响,需要进行研究和改进。

时滞系统几种控制策略研究

时滞系统几种控制策略研究

时滞系统几种控制策略研究时滞系统几种控制策略研究时滞系统是一类在实际控制中常见的系统,其特点是系统状态变量在对应的输出值上受到时间延迟的影响。

时滞系统在工程领域广泛应用,例如飞行器、机器人等。

然而,由于时滞的存在,时滞系统往往容易出现不稳定、震荡和性能下降的问题,因此如何有效地控制时滞系统,降低时滞对系统性能的影响成为了一个重要的研究方向。

针对时滞系统的控制策略研究,主要包括经典控制方法、自适应控制方法和智能控制方法等。

经典控制方法中,最常用的是PID控制器。

PID控制器是一种基于比例、积分、微分控制的经典控制策略,它能够对系统的误差进行调节。

然而,对于时滞系统,传统PID控制器存在不足之处,因为时滞会导致控制信号滞后,从而影响系统的稳定性。

因此,需要对PID控制器进行改进,使其能够对时滞系统进行有效的控制。

自适应控制方法通过根据系统的特性实时调整控制器的参数,从而适应系统的变化。

其中,模型参考自适应控制(Model Reference Adaptive Control, MRAC)是一种常用的方法。

MRAC通过在线估计系统的模型,并根据估计的模型来调整控制器的参数,从而实现对时滞系统的控制。

此外,自适应滑模控制(Adaptive Sliding Mode Control, ASMC)也是一种常用的控制方法。

ASMC通过引入滑模面,并根据系统误差的变化调整滑模面的位置,以降低时滞对系统的影响。

智能控制方法中,模糊控制和神经网络控制是常见的策略。

模糊控制是一种基于模糊逻辑推理的控制方法,通过将人类的经验和知识转化为模糊规则,来对系统进行控制。

神经网络控制是一种通过训练神经网络来实现对系统的控制的方法,神经网络可以学习系统的非线性映射关系,并通过适当的训练来调整权值,从而实现对时滞系统的控制。

在实际应用中,不同的控制策略可以结合使用,以实现更好的控制效果。

例如,可以将PID控制器和模糊控制器结合,利用PID控制器对系统进行粗略调节,再利用模糊控制器进行微调,从而达到更好的控制效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时变时滞随机非线性系统的自适应神经网络跟踪控制余昭旭;杜红彬【摘要】This paper focuses on the adaptive neural control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delay. Based on the Razumikhin function approach, a novel adaptive neural controller is de- veloped by using the backstepping technique. The proposed adaptive controller guarantees that all the error variables are 4-moment semi-globally uniformly ultimately bounded in a compact set while the tracking error remains in a neighborhood of the origin. The effectiveness of the proposed design is validated by simulation results.%针对一类具有时变时滞的不确定随机非线性严格反馈系统的自适应跟踪问题,利用Razumikhin引理和backstepping方法,提出一种新的自适应神经网络跟踪控制器.该控制器可保证闭环系统的所有误差变量皆四阶矩半全局一致最终有界,并且跟踪误差可以稳定在原点附近的邻域内.仿真例子表明所提出控制方案的有效性.【期刊名称】《控制理论与应用》【年(卷),期】2011(028)012【总页数】5页(P1808-1812)【关键词】自适应跟踪控制;神经网络(NNs);Razumikhin引理;随机系统;时变时滞【作者】余昭旭;杜红彬【作者单位】华东理工大学自动化系,上海200237;华东理工大学自动化系,上海200237【正文语种】中文【中图分类】TP2731 引言(Introduction)随机干扰广泛地存在于各类实际系统中,因此随机非线性系统的稳定性分析及控制器设计受到越来越多的关注[1~6].特别地,对于严格反馈型随机非线性系统,采用backstepping方法提出了许多控制策略[3~6].然而这些控制策略往往要求系统函数已知或满足匹配条件.如果不能获得系统函数的这些先验知识,那么这些方法显然不适用.由于神经网络和模糊系统对未知非线性函数具有良好的逼近性能,采用自适应神经网络控制和自适应模糊控制能较好地避免前面的限制.然而对具有未知系统函数的随机系统的神经网络控制问题和模糊控制问题的研究结果还比较少[6~10]. 时滞现象大量存在于如计算机网络、核反应器等实际系统中,并且往往会导致系统的不稳定,因此时滞系统一直是研究的热点问题[11].Lyapunov-Krasovskii方法和Lyapunov-Razumikhin方法也广泛地应用于时滞随机非线性系统的稳定性分析和控制器设计.文献[12,13]已将Lyapunov-Razumikhin方法应用到时滞不确定随机非线性系统的稳定性分析.对时滞随机非线性系统的镇定与跟踪问题,大多采用Lyapunov-Krasovskii方法[9,14~16]. 相比Lyapunov-Razumikhin方法,Lyapunov-Krasovskii函数则不易构造,且Lyapunov-Krasovskii函数的复杂性使得稳定性分析与控制器设计也更为复杂.此外Lyapunov-Krasovskii对时滞常常不仅要求有界,而且须满足(t)<ς<1(ς为常数),而Lyapunov-Razumikhin方法仅要求时滞有界.因此针对时变时滞随机非线性系统的跟踪控制问题,采用Lyapunov-Razumikhin方法提出一种新的自适应神经网络控制器设计方法具有重要意义.本文利用Razumikhin引理和backstepping方法,针对一类具有时变时滞的不确定随机非线性严格反馈系统,提出一种新的自适应神经网络跟踪控制策略.所提出的控制器可保证跟踪误差四阶矩半全局一致最终有界.同时由于神经网络参数化[10]的应用,使得自适应控制器中所估计的参数大量减少.2 问题描述及准备(Problem formulation and preliminary results)2.1 预备知识(Preliminary results)考虑以下随机非线性系统:其中:x∈Rn为状态,ω为定义完备概率空间(Ω,F,P)上的r维的标准布朗运动,其中:Ω为采样空间,F为σ域以及P为概率测度;f和h为合适维数的向量值函数或矩阵值函数.针对C2函数V(t,x)定义如下算子L:其中tr(A)为A的迹.Razumikhin引理:考虑时滞随机泛函微分方程(retarded stochastic functional differential equation,RSFDE):dx=f(t,xτ)dt+h(t,xτ)dω,令p > 1,如果存在函数V(t,x)∈ C1,2([−τ,∞]× Rn)和常数ci>0(i=1,2),q>1,满足以下不等式:对所有的t≥0,满足那么RSFDE的具有初值ξ的解x(t,ξ)概率意义下一致最终有界,并且满足其中:|ξ(s)|p,γ=µ1∧.由文献[17]中定理4.1.4取κ =0,ψ(t)=e−t,µ = µ1和ζ(t)= µ2可容易得到以上Razumikhin引理,证明略.本文中考虑p=4.引理1 对于ε>0和任意实数η∈R,存在不等式[18]其中k为常数且满足k=e−(k+1),即k=0.2785.引理2 考虑不等式其中λ为正常数,如果初始条件(0)≥0成立,则对所有t≥0有(t)≥0.本文中,高斯径向基函数(RBF)神经网络用来逼近任意的连续函数g(·):Rn→R,也即=TΦ(Z),其中输入向量Z∈ΩNN⊂Rn,权向量=(w1,···,wl)T ∈ Rl以及核向量Φ(Z)=(s1(Z),s2(Z),···,sl(Z))T;激励函数si(Z)采用高斯函数,即其中:µi=(µi1,···,µin)T为接受域的中心,νi为高斯函数的宽度.通过选择足够多的节点,神经网络在紧集ΩNN⊂Rn上可以逼近任意的连续函数,即“理想”的权向量W∗是为了分析而设想的量,定义为W∗:=arg|g(Z)−Z)|}.假设1 ∀Z∈ΩNN,存在“理想”的常数权向量W∗,使得‖W∗‖∞ ≤ wmax和|δ|≤ δmax,其中上界wmax,δmax > 0.由式(7)容易得到其中:β(Z)==max{δmax,wmax}.2.2 问题描述(Problem formulation)考虑由以下方程描述的时滞随机非线性系统:其中:xi∈R(i=1,···,n)为系统的状态,定义i=[x1···xi]T,x=n;u∈R为控制输入;y∈R为系统的输出;Borel可测函数τ(t):R+→ [0,τ]表示未知的时变时滞;ω与系统(1)定义相同;f(·),g(·),q(·):Rn→ R和h(·):Rn→ Rr皆为未知的非线性光滑函数.本文的主要目的是设计一种自适应状态反馈控制率u(x,θ),=Φ(x,),使得对于某紧集内的初始条件x(0),(0),闭环系统的所有误差变量皆四阶矩半全局一致最终有界,且跟踪误差可以稳定在原点附近的邻域内.假设2 未知非线性函数g(x)的符号已知,且存在正常数bm和bM,满足0<bm≤|g(x)|≤bM<∞,∀x∈Rn.不失一般性,可进一步假设0<bm≤g(x)≤bM<∞.假设3 存在未知k∞类函数Q(·)满足以下不等式:|q(x(t− τ(t)))|≤ Q(‖x(t− τ(t))‖).假设 4 未知非线性函数h(x,x(t−τ(t)))满足以下不等式:‖h(x,x(t− τ(t)))‖2 ≤H1(‖x‖)+H2(‖x(t− τ(t))‖),其中:H1(·)为未知非负光滑函数,H2(·)为未知k∞类函数.(t)皆为连续且有界的.进一步,假定存在常数d,假设 5 参考信号yd(t)及其微分(t),···,使得‖[yd···]T‖ ≤ d.3 控制器设计及稳定性分析(Controller design and stability analysis)这一节,针对系统(9),利用backstepping方法及Razumikhin引理设计一种新的自适应神经网络跟踪控制器.首先,需引入以下误差变量:其中:为待定的虚拟控制函数,.对于1≤i≤n−1,选取Lyapunov函数选取虚拟控制函数为其中:Lαi−1=,ki为待定设计常数.则容易得到以下关系式:其中:p1=k1−3/4>0,pi=ki−1>0(2≤i≤n−1).将式(11)可改写为如下形式:系数di,j为常数.另外,α0(yd)=yd.基于以上的介绍,容易得到下面引理3.引理3 存在正常数ρ,υ,使得其中:Z=[z1···zn:=−θ/bm,表示未知常数θ/bm的估计.下面继续控制器的设计.当i=n时,由Itˆo公式可得其中Lαn−1:=.定义Lyapunov函数由式(2)可得由假设3可得由于Q(·)为k∞类函数,利用引理3及Razumikhin引理可得由引理1,||Fn,其中Fn=Q(2ρq‖Z(t)‖)+Q(2υ),可通过以下不等式进行处理: 由假设4,可得以下不等式:其中:Gn=H2(2ρq‖Z‖)+H2(2υ),ϑ1和ϑ2为任意的正常数.定义一个新的函数在紧集ΩZ中可通过RBF神经网络逼近:其中:Zn=[x[n]]∈ ΩZ,W∗TS(Zn)表示的“理想”神经网络近似,而δ(Zn)表示逼近误差.利用神经网络参数化式(8),可得其中: β(·)==max{δmax,wmax}.构造实际控制器及参数调整算法如下:其中kn,σ与λ为待定的正设计参数.利用不等式θ≥,在控制器(20)(21)的作用下,由式(14)~(19)可得其中pn:=knbm−>0.式(22)可改写为其中: µ :=min{4p1,4p2,···,4pn−1,4pn,λ},ν :=θ2+k(θσ + ε)+由式(23)及Razumikhin引理可知,闭环系统的解四阶矩半全局一致最终有界,且对于足够小的ς>0,存在时间T:=,其中:E|Z(s)|4,γ=µ∧,c1 ≤min{},使得∀t≥T,有E|(y(t)−yd)4|≤ (1+ς)基于以上分析,主要结论可由以下定理描述:定理1 对于满足假设(2)~假设(5)的时变时滞不确定随机非线性系统(9),在控制器(20)和参数自适应率(21)作用下,闭环系统的所有误差信号四阶矩半全局一致最终有界,且跟踪误差稳定在以下集合Ω所定义的区域内:注 1 定义如下紧集:初始值集合Ω0、有界紧集ΩZ、稳态紧集Ωs和神经网络逼近的有效集合ΩNN.在控制器设计过程中为了∀t≥0神经网络逼近皆有效,需保证ΩZ⊆ΩNN.为了阐述方便,由式(23)及Razumikhin引理,可将有界紧集ΩZ和稳态紧集Ωs定义如下:这些集合之间的关系如图1所示.在控制器设计的初始阶段首先定义ΩNN,并且ΩNN与控制器的参数和初始集合Ω0均无关.由式(24)(25)可知:i)初始集合Ω0通过‖ξ‖0影响ΩZ,但与Ωs和ΩNN无关;ii)可通过调整参数ki,λ,σ,ε,ϑ1和ϑ2,使得ΩZ和Ωs足够小.图1 各紧集之间的关系Fig.1 The relationship among compact sets由集合ΩZ和Ωs的界可知,对于给定足够大的ΩNN,存在合适的‖ξ‖0,γ和ν使得ΩZ ⊆ ΩNN和Ωs ⊆ ΩNN. 而由γ和ν的定义可知,γ和ν的值依赖于控制参数ki,λ,σ,ε,ϑ1和ϑ2的选择.因此对于给定足够大的ΩNN和‖ξ‖0=ξmax>0,存在合适的控制参数使得ΩZ⊆ΩNN.定义xi(0),zi(0)和(0)的初始值集合Ω0使得‖ξ‖0<ξmax.这时对于属于Ω0的所有xi(0),zi(0)和(0),∀t>0均有ΩZ⊆ΩNN.4 仿真研究(Simulation example)考虑以下时变时滞不确定随机非线性系统:其中:τ(t)=1+sint,初始条件为x1(0)=0.2和x2(0)=0.1,参考输入信号yd=0.5(sint+sin 0.5t).仿真过程中,采用RBF神经网络来逼近未知函数,W∗TS(Z2)包含729个节点,中心分布在[−5,5]×[− 5,5]×[− 5,5]×[− 5,5]×[− 5,5]×[0,5],宽度为1;其他仿真参数给出如下:k1=4.74,k2=15,λ=5,σ=1.采用定理1中的控制器(20)和参数自适应率(21),其中z1=x1−yd,z2=x2− α1,β = β(Z2).仿真结果由图2~4给出,图2表明所提出的自适应跟踪控制器具有良好的跟踪性能,输出响应y能比较快地跟踪参考输入yd;控制输入如图3所示;图4描述了自适应参数曲线.图2 输出响应y(t)和参考输入yd(t)Fig 2 Output responsey(t)and reference inputyd(t)图3 控制输入u(t)Fig 3 Control inputu(t)图4 自适应参数Fig 4 Adaptive parameter5 结论(Conclusion)本文针对一类具有未知时变时滞的不确定随机非线性严格反馈系统,利用Razumikhin引理和backstepping方法,提出了一种新的神经网络自适应控制器,可以保证跟踪误差四阶矩半全局一致最终有界.所给出的控制器结构简单,易于实现.将该方法推广到更一般的严格反馈型随机非线性系统是下一步工作的方向.参考文献(References):【相关文献】[1]FLORCHINGER P.Lyapunov-like techniques for stochastic stability[J].SIAM Journal on Control and Optimization,1995,33(4):1151–1169.[2]FLORCHINGER P.Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method[J].SIAM Journal on Control and Optimization,1997,35(2):500–511.[3]PAN Z G,BASAR T.Adaptive controller design for tracking and disturbance attenuation in parameter-feedback nonlinear systems[J].IEEE Transactions on AutomaticControl,1998,43(8):1066–1083.[4]DENG H,KRISTIC M.Stochastic nonlinear stabilization:part 1:a backsteppingdesign[J].Systems&Control Letters,1997,32(3):143–150.[5]DENG H,KRISTIC M.Stochastic nonlinear stabilization:part 2:inverseoptimality[J].Systems&Control Letters,1997,32(3):151–159.[6]WANG Y C,ZHANG H G,WANG Y Z.Fuzzy adaptive control of stochastic nonlinearsystems with unknown virtual control gainfunction[J].Acta AutomaticaSinica,2006,32(2):170–178.[7]PSILLAKIS H E,ALEXANDRIDIS.NN-based adaptive tracking control of uncertain nonlinear systems disturbed by unknown covariance noise[J].IEEE Transactions on Neural Networks,2007,18(6):1830–1835.[8]YU J J, ZHANG K J, FEI S M. Direct fuzzy tracking control of a class of nonaffine stochastic nonlinear systems with unknown dead-zone input[C] //Proceedings of the 17th World Congress, the International Federation of Automatic Control. Elseviet: International Federation of Accountants, 2008, 12236 – 12241.[9]谢立,何星,熊刚,等,随机非线性时滞大系统的输出反馈分散镇定[J].控制理论与应用,2003,20(6):825–830.(XIE Li,HE Xing,XIONG Gang,et al.Decentralized output feedback stabilization for large scale stochastic nonlinear system with time delays[J].Control Theory&Applications,2003,20(6):825–830.)[10]GE S S,HUANG C C,LEE T,et al.Stable Adaptive Neural Network Control[M].USA:Kluwer Academic,2002.[11]RICHARD J P.Time-delay systems:an overview of some recent advances and open problems[J].Automatica,2003,39(10):1667–1694.[12]MAO X R.Razumikhin-type theorems on exponential stability of stochastic functional differential equataions[J].Stochastic Process and Their Application,1996,65(2):233–250. [13]JANKOVIC S,RANDJELOVIC J,JOVANOVIC M.Razumikhintype exponential stability criteria of neutral stochastic functional differential equations[J].Journal of Mathematical Analysis and Applications,2009,355(2):811–820.[14]CHEN W S,JIAO L C,liJ,et al.Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays[J].IEEE Transations on System,Man and Cybernetics,Part B:Cybernetics,2010,40(3):939–950.[15]LIU S J,GE S S,ZHANG J F.Robust output-feedback stabilization for a class of uncertain stochastic nonlinear systems with timevarying delays[C]//Proceedings of 2007 IEEE International Conference on Control and Automation.Piscataway,NJ:IEEE,2007:2766–2771.[16]余昭旭,杜红彬.基于NN的不确定随机非线性时滞系统自适应有界镇定[J].控制理论与应用,2010,27(7):855–860.(YU Zhaoxu,DU Hongbin.Neural-network-based bounded adaptive stabilization for uncertain stochastic nonlinear systems with timedelay[J].Control Theory&Applications,2010,27(7):855–860.)[17]胡适耕,黄乘明,吴付科.随机微分方程[M].科学出版社,2008:153–156.(HU Shigeng,HUANG Chengming,WU Fuke.Stochastic Differential Equations[M].Beijing:Science Press,2008:153–156.)[18]PLOLYCARPOU M M.Stable adaptive neural control scheme for nonlinearsystems[J].IEEE Transactions on Automatic Control,1996,41(3):447–451.。

相关文档
最新文档