初中数学九年级 期中测试卷(含答案)

合集下载

初三数学期中考试试卷及答案

初三数学期中考试试卷及答案

初三数学期中考试试卷及答案第一卷:选择题(共80分)一、选择题(每小题1分,共40分)1. 下列各组函数中,相等的是()a) y = x^2 - 2x + 1,y = (x - 1)^2b) y = |2x - 1|,y = -(2x - 1)c) y = |2x - 1|,y = 2|x| - 1d) y = 2|x + 1|,y = -2|x + 1|2. 单项式 2x^3 y z^2 的次数是()a) 2 b) 3 c) 4 d) 53. 若 a:b = 7:5,b:c = 4:3,求 a:b:c =a) 7:5:3 b) 7:4:5 c) 7:10:12 d) 28:20:154. 圆心坐标为 (-4, 2),半径为 5 的圆方程是()a) (x + 4)^2 + (y - 2)^2 = 5^2b) (x - 4)^2 + (y + 2)^2 = 5^2c) (x + 4)^2 + (y + 2)^2 = 5^2d) (x - 4)^2 + (y - 2)^2 = 5^2...第二卷:非选择题(共70分)五、计算题(共30分)1. 化简:(3a^2b)^3 / (6a^5b^2) =2. 解方程:4x - 5 = 3x + 73. 已知图中三角形 ABC,其中∠B = 90°,AC = 8cm,BC = 6cm。

求 sin A 和 cos C 的值。

...八、解答题(共20分)1. 某商店购进一批相同的商品,第一天卖出了商品总数的 1/4,第二天又卖出了剩余商品总数的1/3 ,已知最后剩下的商品总数是60 件,求原先购进的商品总数。

2. 一辆汽车从 A 地开往 B 地,全程 300 km,开了 4 个小时到达终点。

第二天,汽车原路返回,回到 A 地用了 6 个小时。

求汽车在去程和返程时的平均速度。

...第三卷:答题卡(共10分)请将你的答案填写在答题卡上。

注意事项:1. 请认真核对试卷上的题号和试卷形式,确保填涂无误。

2023-2024学年全国初中九年级下数学人教版期中试卷(含答案解析)

2023-2024学年全国初中九年级下数学人教版期中试卷(含答案解析)

20232024学年全国初中九年级下数学人教版期中试卷一、选择题(每题2分,共30分)1.下列各数中,是整数的是()A. 0.5B. 1/2C. 3D. 1/32.下列各数中,是无理数的是()A. √9B. √2C. 3D. 1/23.下列各数中,是实数的是()A. √1B. iC. 0.5D. 3/24.下列各数中,是正数的是()A. 1B. 0C. 1/2D. 2/35.下列各数中,是负数的是()A. 0B. 1/2C. 3/4D. 26.下列各数中,是分数的是()A. √9B. 1/2C. 3D. 1/37.下列各数中,是正整数的是()A. 0B. 1/2C. 3D. 2/38.下列各数中,是负整数的是()A. 0B. 1/2C. 3D. 2/39.下列各数中,是正有理数的是()A. 1B. 0C. 1/2D. 2/310.下列各数中,是负有理数的是()A. 0B. 1/2C. 3/4D. 211.下列各数中,是正无理数的是()A. √9B. √2C. 3D. 1/212.下列各数中,是负无理数的是()A. √9B. √2C. 3D. 1/213.下列各数中,是虚数的是()A. √1B. iC. 0.5D. 3/214.下列各数中,是复数的是()A. √1B. iC. 0.5D. 3/215.下列各数中,是实数的是()A. √1B. iC. 0.5D. 3/2二、填空题(每题2分,共20分)1.如果一个数是正数,那么它一定是______数。

2.如果一个数是负数,那么它一定是______数。

3.如果一个数是分数,那么它一定是______数。

4.如果一个数是整数,那么它一定是______数。

5.如果一个数是实数,那么它一定是______数。

6.如果一个数是无理数,那么它一定是______数。

7.如果一个数是虚数,那么它一定是______数。

8.如果一个数是复数,那么它一定是______数。

9.如果一个数是正数,那么它一定是______数。

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。

初三数学期中试题及答案

初三数学期中试题及答案

初三数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 0答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 1/5D. -1/5答案:A3. 以下哪个方程是一元一次方程?A. x^2 + 2x - 3 = 0B. 2x - 3y = 5C. 3x + 4 = 7x - 2D. x/2 + 3 = 5答案:C4. 一个等腰三角形的底角是45°,那么顶角是:A. 45°B. 90°C. 135°D. 无法确定答案:B5. 一个数的立方根是2,那么这个数是:A. 2B. 4C. 8D. 6答案:C6. 以下哪个函数是正比例函数?A. y = 2x + 3B. y = 3x^2C. y = 5/xD. y = 4x答案:D7. 如果一个角的补角是120°,那么这个角是:A. 60°B. 120°C. 180°D. 240°答案:A8. 以下哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆答案:D9. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 以下哪个选项是不等式?A. 3x + 2 = 7B. 2x - 3 > 5C. x^2 - 4x + 4 = 0D. 3x - 2 ≤ 7答案:D二、填空题(每题3分,共30分)11. 一个数的平方是36,这个数是____。

答案:±612. 如果一个角的余角是30°,那么这个角是____。

答案:60°13. 一个等腰三角形的周长是18cm,底边长6cm,那么腰长是____。

答案:6cm14. 一个数的算术平方根是4,那么这个数是____。

答案:1615. 如果一个数的立方根是-2,那么这个数是____。

2024-2025学年第一学期九年级数学期中测评卷(21-23章) 答案

2024-2025学年第一学期九年级数学期中测评卷(21-23章) 答案

2024-2025学年第一学期期中测评卷九年级数学(卷面分值:100分 考试时间:100分钟)一、选择题(每题3分,共27分,请将选择题的答案写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 答案1.下列是一元二次方程的是( )0.2=++c bx ax A 0.23=−x x B 052.=−y x C 01.2=−x D2.函数32+=x y 的图像经过点(-2,m ),则m 的值为( )1.A 7.B 5.C 4.D3.下列图形中,是中心对称图形但不是轴对称图形的是( )4.若抛物线142−+=x ax y 与x 轴有两个交点,则a 的取值范围是( )4.>a A 4.−>a B 04.≠−a a C 且> 4.−<a D5.如果将方程0262=+−x x 配方成b a x =+2)(的形式,则a-b 的值为( )10.−A 10.B 5.C 9.D6.关于函数342++=x x y 的图像和性质,下列说法错误的是( )A.函数图像开口向上B.当x >-2时,y 随x 的增大而增大C.函数图像的顶点坐标是(-2,-1)D.函数图像与x 轴没有交点7.三角形的两边长分别是3和6,第三边长是方程0862=+−x x 的根,则该三角形的周长等于( )11.A 13.B 1311.或C 12.D8.已知方程0252=+−x x 的两根分别是21x x ,,则2221x x +的值为( )18.A 19.B 20.C 21.D9.如图所示为长20米、宽 15米的矩形空地,现计划要在中间修建三条等宽的小道,其余面积种植绿植,种植面积为 400平方米,若设小道的宽为 xx 米,则根据题意,列方程为( )40021520.2=−×+x x A 40021520.=−×x B400)15)(220.(=−−x x C 400)215)(20.(=−−x x D二.填空题(每空3分,共18分)10.将方程1322+=−x x x 化为一般式,其结果是____________. 11.若m 是方程0752=−−x x 的根,则152+−m m 的值等于________.12.已知关于x 的方程0142=−+x kx 没有实数根,则k 的取值范围是________. 13.将二次函数2)1(3+−=x y 的图像先向右平移2个单位长度,再向下平移4个单位长度,所得到的函数解析式为____________.14.已知抛物线c ax y +=2与22x y =的形状相同,开口方向相反,且经过点(-1,5),则其解析式为_____________.15.超市搞促销活动,将某商品经过两次降价,售价由86元降至52元,若两次降价的百分率相同均为x,可列方程为_____________.三.解答题(共6小题,共55分) 16.(10分)解方程091012=+−x x )( 6)6()2(+=+x x x17.(8分)已知关于x 的一元二次方程024)12(2=−++−m x m x . 求证:无论 m 取何值,这个方程总有实数根.18.(10分)已知抛物线的顶点坐标为(-1,3),且经过点(2,12). (1)求函数解析式.(2)当21≤≤−x 时,求函数的最大值.19.(8分)冬季易引发流感,刚开始有2人患流感,经过两轮传染共有288人患病,求每轮传染中平均一个人传染几个人?20.(9分)某商品售价为每件60元,每周可卖出300件,为提高利润,商家决定涨价销售,经过一段时间发现,每涨价5元,每周少卖50件,已知商品的进价为每件40元,当售价定为多少时利润最大?求最大利润.21.(10分)如图为抛物线c=2,图像经过点(-1,8).直线3−y+x=axy与抛物+线交于B,C两点.点A,B在x轴上.(1)求抛物线与直线的函数解析式.(2)求△ABC的面积.。

2024年最新人教版初三数学(下册)期中考卷及答案(各版本)

2024年最新人教版初三数学(下册)期中考卷及答案(各版本)

2024年最新人教版初三数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是3,则这个数是()A. 9B. 27C. 9D. 272. 下列各式中,正确的是()A. $ \sqrt{9} = 3 $B. $ \sqrt[3]{8} = 2 $C. $ \sqrt{16} = 4 $D. $ \sqrt[3]{27} = 3 $3. 下列各式中,错误的是()A. $ 3^2 = 9 $B. $ (3)^2 = 9 $C. $ 3^3 = 27 $D.$ (3)^3 = 27 $4. 下列各式中,正确的是()A. $ 2^4 = 16 $B. $ 2^5 = 32 $C. $ 2^6 = 64 $D. $ 2^7 = 128 $5. 下列各式中,错误的是()A. $ 5^2 = 25 $B. $ 5^3 = 125 $C. $ 5^4 = 625 $D.$ 5^5 = 3125 $6. 下列各式中,正确的是()A. $ 10^2 = 100 $B. $ 10^3 = 1000 $C. $ 10^4 = 10000 $D. $ 10^5 = 100000 $7. 下列各式中,错误的是()A. $ 2^0 = 1 $B. $ 3^0 = 1 $C. $ 4^0 = 1 $D. $ 5^0 = 1 $8. 下列各式中,正确的是()A. $ 0^2 = 0 $B. $ 0^3 = 0 $C. $ 0^4 = 0 $D. $ 0^5 = 0 $9. 下列各式中,正确的是()A. $ (1)^2 = 1 $B. $ (1)^3 = 1 $C. $ (1)^4 = 1 $D. $ (1)^5 = 1 $10. 下列各式中,错误的是()A. $ (2)^2 = 4 $B. $ (2)^3 = 8 $C. $ (2)^4 = 16 $D. $ (2)^5 = 32 $二、填空题(每题3分,共30分)11. 若一个数的平方根是5,则这个数是__________。

2023-2024学年全国初中九年级下数学仁爱版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级下数学仁爱版期中考试试卷(含答案解析)

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是方程x^2 2x + 1 = 0的解?A. x = 0B. x = 1C. x = 1D. x = 22. 若a:b=3:4,则(3a+5b):(5a3b)等于?A. 9:7B. 9:5C. 7:9D. 5:93. 下列哪个图形是平行四边形?A. 两对边平行且相等的四边形B. 两对边平行但不相等的四边形C. 两对角线相等的四边形D. 对角线互相垂直的四边形4. 下列哪个数是素数?A. 21B. 39C. 41D. 675. 一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是?A. 32cmB. 42cmC. 52cmD. 62cm二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一组数据的中位数和平均数一定相等。

()3. 两个锐角相加的和一定是锐角。

()4. 在平面直角坐标系中,第二象限的点的横坐标和纵坐标都是负数。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 方程3x 7 = 11的解是x = _______。

2. 若a:b=2:3,则3a+4b= _______b。

3. 一个等边三角形的周长是36cm,那么它的边长是 _______cm。

4. 2^5 = _______。

5. 在直角三角形中,若一个锐角是30度,则另一个锐角是_______度。

四、简答题(每题2分,共10分)1. 简述平行线的性质。

2. 什么是算术平均数?如何计算?3. 简述概率的基本性质。

4. 什么是直角三角形?它有哪些特点?5. 如何判断一个数是否为完全平方数?五、应用题(每题2分,共10分)1. 甲乙两地相距120km,甲地到乙地的速度是60km/h,乙地到甲地的速度是40km/h,求两地往返的平均速度。

2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的对角线长度。

重庆市开州初中教育集团2024-2025学年九年级上期中测试数学试卷(含答案)

重庆市开州初中教育集团2024-2025学年九年级上期中测试数学试卷(含答案)

开州初中教育集团2024-2025上九年级期中测试数学试卷(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色2B 铅笔完成.参考公式:抛物线的顶点坐标,对称轴:直线.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的代号填涂在答题卡上.1.下列实数中,最大的数是()A .B .0C .2D .2.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.下列方程中是一元二次方程的是()A .B .C .D .4.对于二次函数的图象,下列说法正确的是( )A .对称轴是直线B .当时,随的增大而增大C .顶点的坐标为D .图象与轴的交点坐标是5.估算的结果()A .在6和7之间B .在7和8之间C .在8和9之间D .在9和10之间6.若关于的一元二次方程没有实数根,则二次函数的大致图象是( )A .B .C .D .2(0)y ax bx c a =++≠24,24b ac b a a ⎛⎫-- ⎪⎝⎭2b x a=-13-2-20ax bx c ++=212x x -=23324x x x -=-250x =21(3)52y x =-++3x =3x <-y x (3,5)--y (0,5)-+x 2210x x k --+=2y kx k =-7.如图,点,,在上,若,则的度数为( )A .B .C .D .8.将一些完全相同的黑点按如图所示的规律摆放,第1个图形有5个黑点,第2个图形有8个黑点,第3个图形有13个黑点,...,按此规律排列下去,则第7个图形中共有黑点的个数是()A .39B .40C .53D .689.如图,为正方形ABCD 的对角线BD 上的一点,连接CM ,将线段CM 绕点顺时针旋转,点的对应点恰好落到边AB 上,线段MN 交对角线AC 于点,且为MN 的中点.若正方形的边长为4,则AG 的长为( )ABC .D .10.已知多项式,多项式,则下列结论正确的有( )①若,则代数式的值为;②当,时,代数式的最小值为;③当时,若,则关于的方程有两个实数根;④当时,若,则的取值范围是.A .1B .2C .3D .4二、填空题:本大题8个小题,每小题4分,共32分,把答案填写在答题卡相应的位置上.11.计算:______.12.已知一个正多边形的每个内角都比它相邻的外角多,则它是正______边形.A B C O 25C ∠=︒ABO ∠50︒55︒60︒65︒M M 90︒C N G G 2232M x x =--23N x ax =-+0M =2521x x x --10-3a =-5x ≥M N -10-0a =0M N ⋅=x 3a =2221513M N M N -++-+=x 723x -<<20223(1)--=100︒13.我国的乒乓球“梦之队”在巴黎奥运赛场上大放异彩,奥运会乒乓球比赛的第一阶段是团体赛,赛制为单循环赛(每两队之间都赛一场),每个组共安排28场比赛.设每个组邀请个球队参加比赛,则可列方程得为______.14.已知是一元二次方程的一个根,则的值为______.15.若,,为二次函数的图象上的三点,则,,的大小关系是(用“<”连接)______.16.若关于的不等式组有且仅有5个整数解,且关于的分式方程有整数解,则所有满足条件的整数的和是______.17.如图,矩形ABCD 中,BE 平分交AD 于点,把EB 绕点逆时针旋转交BC 于点,过点作于点,连接BG ,若,,则______.18.一个四位自然数,若满足,且,,则称四位数为“神奇数”.例如:四位自然数4312,因为,,,所以4312是“神奇数”.若是一个“神奇数”,且,则满足条件的的个数有______个,若是一个“神奇数”,设,,,和都是整数,则的值为______.三、解答题:本大题8个小题,19小题8分,其余每小题10分,共78分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.19.解下列方程(1)(用公式法解)(2).20.为了了解同学们的安全意识,我区某中学开展了“安全知识竞赛”,现从该校七、八年级中各随机抽取10名学生的比赛成绩(成绩为百分制,学生得分均为整数且用表示,)进行整理、描述和分析,并将其共分成四组:(:,:,:,:).下面给出了部分信息:七年级10名学生的比赛成绩是:84,85,86,87,88,92,95,97,98,98.八年级10名学生的比赛成绩在组中的数据是:90,94,94.七、八年级抽取的学生比赛成绩统计表:x a 2310x x -+=2263a a -++()15,A y -21,2B y ⎛⎫- ⎪⎝⎭()33,C y 267y x x =+-1y 2y 3y x 1(32)12532x x x a x⎧-≤+⎪⎨⎪+>-⎩y 2311y a y y --=--a ABC ∠E E 15︒F C CG EF ⊥G 2CF BF =6CE =BG =M abcd =b c ≥a b c =+d b c =-31>431=+231=-M abcd =1d =M M abcd =M badc '=()81M M F M '-=()99M M G M '+=()F M ()G M M 2260x x +-=(1)22x x x -=-x A 85x <B 8590x ≤<C 9095x ≤<D 95100x ≤≤C年级七年级八年级平均数9191中位数90众数100根据以上信息,解答下列问题:(1)______,______,______;(2)根据以上数据,你认为该校七、八年级中哪个年级安全意识更强?请说明理由(一条理由即可);(3)该校七年级有1300名学生、八年级有1500名学生参加了此次“安全知识竞赛”,请估计参加此次比赛成绩不低于90分的学生人数是多少?21.在学习了等腰三角形的相关知识后,小明同学进行了更深入的研究,他发现等腰三角形两底角的角平分线的交点到两底角角平分线与腰的交点的距离相等,可利用证三角形全等得此结论.根据她的想法与思路,完成以下作图与填空.(1)如图,在等腰中,BE 是的角平分线,用尺规作的角平分线分别交BE 、AB 于点、(不写作法,保留作图痕迹).(2)已知是等腰三角形,BE 平分交AC 于点,CD 平分交AB 于点,且BE、CD 交于点.求证:.证明:是等腰三角形①平分,CD 平分 ② ,,在和中b ca =b =c =ABC △ABC ∠ACB ∠O D ABC △ABC ∠E ACB ∠D O OD OE =ABC △∴BE ABC ∠ACB∠ABE ∴∠=12ABC =∠12BCD ACD ACB ∠=∠=∠ABE CBE BCD ACD∴∠=∠=∠=∠OB OC∴=OBD △OCE △( ④ )再进一步研究发现,等腰三角形两底角的外角角平分线所在直线的交点到外角平分线所在直线与两腰所在直线的交点的距离也满足该特点.即等腰三角形两底角的外角角平分线所在直线的交点到外角平分线所在直线与两腰所在直线的交点的距离 ⑤ .22.如图1.在中,,,,为BC 上一点,,动点以每秒1个单位长度的速度,沿着的路线运动.设点运动的时间为秒,的面积为,请解答下列问题:图1图2(1)请直接写出与之间的函数解析式及的取值范围,并在如图2所示的平面直角坐标系中画出该函数的图象;(2)观察该函数的图象,写出该函数的一条性质:__________________________________________.(3)根据图象,直接写出当时,的取值范围______________________________.23.双“十一”期间,商店纷纷搞促销活动,小亮发现某店有、两种玩具正在参加活动,已知每个款玩具的售价是每个款玩具售价的2倍,顾客用160元购买款玩具的数量比用160元购买款玩具的数量少1个.(1)求每个款玩具的售价为多少元?(2)经统计,该店每月卖出款玩具100个,每个款玩具的利润为50元.为了尽快减少库存,该店决定采取适当的降价措施.调查发现,每个款玩具的售价每降低5元,那么平均每月可多售出15个,该店想每月销售款玩具的利润达到5200元,则每个款玩具应降价多少元?24.周日早上,爷爷和小明约定到公园去锻炼身体,公园在小明家正东方向的处,但是由于AE 道路施工,爷爷先沿正北方向走了300米到达处,再从处沿北偏东方向行走300米到达处,从处沿正东方向走了150米到达处,最后沿方向到达处,已知点在点的南偏东方向.爷爷先出发3分钟后小明从家选择另一路线步行前往处,已知点在点的南偏东方向,且点在点的正南方向.OB OCBOD COE ⎧⎪=⎨⎪∠=∠⎩③OBD OCE ∴△≌△OD OE∴=Rt ABC △90B ∠=︒30C ∠=︒4AB =E 4BE =P B A C →→P t PBE △S S t t 2S ≤t A B A B A B B A A A A A E B B 60︒C C D D E →E E D 45︒A F E →→E F A 60︒F E(1)求AE 的长度(结果保留根号);(2)若爷爷步行速度为50米/分,小明步行速度为70米/分,小明和爷爷始终保持匀速行驶,请计算说明)25.如图,抛物线交轴于点和点,交轴于点.备用图(1)求抛物线的表达式;(2)若点是直线BC 下方抛物线上一动点,连接PC ,PB ,当的面积最大时,求点的坐标及面积的最大值;(3)在(2)的条件下,若点是直线BC 上的动点,在平面内的是否存在点,使得以、、、为顶点的四边形是㥿形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由.26.在中,,为AC 中点,为平面内一点.图1图2图3(1)如图1,点在边BC 上,连接AD ,FD ,若,,,求BD 的值;(2)如图2,连接AD ,将AD 绕点逆时针旋转到AE ,使得,连接DE ,DE 恰好过点,若,证明:;(3)如图3,点在边BC 上,将线段AD 绕点顺时针旋转得到线段AP ,后,,请直接写出FP 的最小值.开州初中教育集团2024-2025上九年级期中测试数学参考答案一、选择题(每小题4分,共40分)1.C 2.A 3.D 4.B 5.C 6.B 7.D 8.C 9.C 10.C二、填空题(每小题4分,共32分)1.4≈ 1.7≈22y ax bx =+-x (1,0)A -(2,0)B y C P PBC △P N Q P B N Q Q ABC △AC AB =F D D 30B ∠=︒4AB =DF =A DAE BAC ∠=∠F 2DF EF =2180ABD AFD ∠+∠=︒D A 60︒120BAC ︒∠=2AB =11.12.九13.14.515.16.17.18.5 909919.(1)(用公式法求解)(2)解:,,解:,,20.(1);;.(2)解:八年级安全意识更强.理由如下:八年级学生安全知识竞赛成绩中位数为94高于七年级学生安全知识竞赛成绩中位数为90.(同理分析众数)(3)(人)答:参加此次比赛成绩不低于90分的学生人数为1700人.21.(1)(2) 相等22.解:(1)函数图像如图所示(2)①当时,随的增大而增大;当时,随的增大而减小;2-(1)282x x -=123y y y <<4-2260x x +-=(1)22x x x -=-2a = 1b =6c =-(1)220x x x -+-=2142(6)49∴∆=-⨯⨯-=(1)2(1)0x x x -+-=174x -±∴=(2)(1)0x x +-=132x ∴=22x =-12x ∴=-21x =40a =94b =98c =513001500(120%10%)170010⨯+⨯--=ABC ACB ∠=∠CBE ∠DBO CEO ∠=∠ASA 2(04)12(412)t t S t t <≤⎧=⎨-+<<⎩04t <<y x 412t <<y x②当时,函数有最大值为8;无最小值.(回答一条即可)(3)当时,或.23.解:(1)设每个款玩具的售价为元.由题意得,解得经检验:是原分式方程的解,且符合题意答:每个款玩具的售价为80元.(2)设每个款玩具应降价元.由题意得,解得,为了尽快减少库存答:每个款玩具应降价10元.24.解:(1)延长AB 、DC 交于点,过点作于点.由题意得,米,米,,.在中,米,米,米在中,米(米)答:AE 的长度为米.(2)在中,,米在中,,米4t =2S ≤01t <≤1012t≤<B x 16016012x x -=80x =80x =B A a (50)1001552005a a ⎛⎫-+⨯= ⎪⎝⎭110a =2203a = 10a ∴=A M D DN AE ⊥N 300AB BC ==150CD =903060FAE ∠︒︒=︒=-45NDE ∠=︒Rt MBC △300BC =60MBC ∠=︒11502MB BC ∴==MC ==450AM DN AB MB ∴==+=Rt DNE △45NDE ∠=︒450DN NE ∴==600AE AN NE MC CD NE ∴=+=++=600)+Rt DNE △45NDE ∠=︒450DN NE ==DE ∴==Rt AEF △30FAE ∠=︒600AE =米,米爷爷到达所用时间:分钟小明到达所用时间:分钟小明先到达公园25.解:(1)抛物线交轴于点和点解得抛物线的表达式为(2)过点作轴交BC 于点在中,令,得 直线BC 的解析式为设,则当时,的面积有最大值为1,此时150EF AE ∴==+2300AF EF ==+27.650AB BC CD DE t +++==≈爷332470AF EF t +=+=+≈明2427.6< ∴ 22y ax bx =+-x (1,0)A -(2,0)B 204220a b a b --=⎧∴⎨+-=⎩11a b =⎧⎨=-⎩∴22y x x =--P //PE y E22y x x =--0x =2y =-(0,2)C ∴-(2,0)B ∴2y x =-()2,2P a a a --(,2)(02)E a a a -<<22222PE a a a a a∴=--++=-+()2212(1)12BCP B C S PE x x a a a ∴=⋅⋅-=-+=--+△10-< ∴1a =PBC △(1,2)P -(3)26.(1)解:过点作于点,过点作于点过程略(2)证明:取DF 中点,连接AM 、CE证证证,,,即(3)1(0,1)Q -212Q ⎛⎫- ⎪ ⎪⎝⎭312Q ⎛⎫- ⎪ ⎪⎝⎭4117,66Q ⎛⎫- ⎪⎝⎭A AH BC ⊥H F FG BC ⊥G 2BD =-M ABD ACE ABD ACE⇒∠=∠△≌△⇓ADM AEF AM AF⇒=△≌△⇓AMF CEF AM CE AF CF ⇒===△≌△CFE CEF ∠=∠⇓2ACE AFE ∠=∠2180AFE AFD ACE AFD ︒∠+∠=∠+∠=2180ABD AFD ∠+∠=︒32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学
(考试时间:120分钟 满分:150分)
一. 选择题(每题3分,共18分)
1.比例尺为1:800的学校地图上,某条路的长度约为5 cm ,它的实际长度约为( ) A . 400 cm B .40m C .200 cm D .20 m 2.如果y x 43=(0≠y ),那么下列比例式中正确的是( )
A.
4
3=y x B.
y
x 43= C.
4
3y x = D.
3
4y x = 3.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( ) A . B . C . D .
4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC , 若S △ADE :S △ABC =4:9,则AD :AB =( ) A .1:2 B .2 :1 C .2:3 D .1:3
(第4题) (第6题) (第11题) (第13题)
5.若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则x 的值 可以为( )
A .12
B .10
C .2
D .0 6.在△ABC 中,AB=AC ,AD ⊥BC ,中线C
E 交AD 于点
F ,AD=18,EF=5,则BC 长为( )
A .12
B .14
C .16
D .18 二. 填空题(每题3分,共30分)
7.一组数据﹣3,﹣2,0,1,2,3的极差是________.
8.若关于x 的一元二次方程x 2-2x +a -1=0有两个相等实数根,则a = .
9. 已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =9cm ,b=4cm ,则线段c=________. 10.若圆O 的半径是5,圆心的坐标是(0,0),点P 的坐标是(﹣4,﹣3),则点P 与⊙O
的位置关系是 .
11.如图,在⊙O 的内接四边形ABC D 中,AB =AD ,∠C =110°,则∠ABD = °. 12. 圆心角是60°,半径为2的扇形的弧长等于__________. 13.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若
△ABC 与△A 1B 1C 1是位似图形,且顶点都在格点上,则位似中心的坐标是 . 14. 如图,某种鱼缸的主视图可视为弓形,该鱼缸装满水时的最大深度CD 为18cm ,半径OC
为13cm ,则鱼缸口的直径AB=_______ cm.
(第14题) (第15题) (第16题) 15. 在Rt △ABC 中,∠ACB=90º,AC=8,BC=6,点D 、E 分别在AC 、AB 上,且△ADE 是
直角三角形,△BDE 是等腰三角形,则BE=____________. 16.如图,在等腰Rt ABC △中,22AC BC ==,点P 在以斜边AB 为直径的半圆上,M 为PC
的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是________. 三. 解答题(共102分) 17.(12分)解方程 (1)0522=--x x (2) x (3-2x )= 4 x -6
18.(8分)已知关于x 的一元二次方程x 2﹣(4m+1)x+3m 2+m=0. (1)求证:无论m 取何实数时,原方程总有两个实数根; (2)若原方程的两个实数根之和大于0,求m 的取值范围. 19.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)写出表格中a ,b ,c 的值;
(2)分别运用上表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名
参赛,你认为应选哪名队员?
20.(8分)初三(1)班要从甲、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会.
(1)已确定甲参加,则另外1人恰好选中乙的概率是_________;
(2)随机选取2名同学,用树状图或列表求出恰好选中甲和乙的概率.
21.(10分)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点A(0,4)、
B(-4,4)、C(-6,2),请在网格图中进行如下操作:
(1)利用网格
....图确定该圆弧所在圆的圆心D的位置(保留
..
画图痕迹
....);
(2)连接AD、CD,则⊙D的半径为_ __(结果保留
根号),∠ADC的度数为_ __;
(3)若扇形DAC是一个圆锥的侧面展开图,求该圆锥
底面半径.(结果保留根号).
22.(10分)如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,且AB⊥CD,垂足为G,点E在劣弧⌒
AB上,连接CE.
(1)求证CE平分∠AEB;
(2)连接BC,若BC∥AE,且CG=4,AB=6,求BE的长.
23.(本题10分)某批发商以20元/千克的价格购入了某种水果100千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y=30+2x,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需20元的费用.
(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为(元/千克),获得的总利润为(元);
(2)设批发商在保存了x天后一次性卖出了保存水果,获得了760元的利润,求这批水果的保存时间.
C
B A
O
y
x
24.(10分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,经过A、D两点的圆的圆心O恰好落在AB上,⊙O分别与AB、AC相交于点E、F.
(1)判断直线BC与⊙O的位置关系并证明;
(2)若⊙O的半径为2,AC=3,求BD的长度.
25.(12分)如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG. (1)求证:AH=BE;
(2)∠AGO的度数是否为定值?说明理由;
(3)若∠OGC=90°,BG=6,求△OGC的面积.
26.(14分)已知:a、b、c均为非零实数,且a>b>c,关于x的一元二次方程0
2=
bx
ax
+c
+(a≠0)其中一个实数根为2。

(1)填空:4a+2b+c0,a0,c0(填“>”,“<”或“=”);
(2)若关于x的一元二次方程0
2=
bx
ax(a≠0)的两个实数根,满足一个根为另一个根
+c
+
的2倍,我们就称这样的方程为“倍根方程”,若原方程是倍根方程,则求a、c之间的关系。

(3)若a=1时,设方程的另一根为m(m≠2),在两根之间(不包含两根)的所有整数的绝对值之和是7,求b的取值范围.
九年级
一. 选择题(每题3分,共18分)
B D B
C A C
二. 填空题(每题3分,共30分)
7. 6 8. 2 9. 6cm 10. 圆上 11.55° 12.
2
3
π 13. (5,4) 14. 24cm 15. 154307或 16. π
三. 解答题(共102分)
17.(12分) (1)
1211x x == (2)
123
,2
2
x x ==- 18.(8分)
(1)△=(2m+1)2≥0 (2)m>-
14
19.(8分) (1)a=7……1分 b=7.5……1分 c=1.2……2分
(2)选甲,方差小或选乙,中位数,众数高……4分(答案不唯一) 20.(8分) (1)
1
3
……2分 (2)图或表……4分 P=
1
6
……2分 21.(10分) (1)图……2分
(2)90°……4分
(3)
分 22.(10分) (1)略……5分
(2)BE=BC=5……3分
23.(本题10分)
(1) 32 , 1060, ……4分 (2) (30+2x-20)·(100-10x)-20x=760 ……3分 x 1=6,x 2=-2 (舍去) ……2分 答…… 1分 24.(10分) (1)相切……1分
证明:连接BD ,过程略……4分 (2)设△BDO ∽△BCA……2分 得BO=4……2分 ∴BD=23……1分
25.(12分)
(1)证△AOA ≌△BOE……4分 (2)方法一:由∠AOB=∠AGB=90°,取AB 中点M ,说明A ,O ,G ,B 在以M 为圆心的
⊙M 上,得∠AGO=ABO=45°
方法二:过O 作AB ,BE 的垂线AM ,AN ,设AM=AN ,得OG 平分∠AGE 得∠AGO=
1
2
∠AGE=45° ……4分 (3)证∠GOH=∠BAH ,∠BAH=∠FBG ,得∠GOB=∠CBG 如(2)中结论可证∠BGO=∠CGB=135°……1分 得△BGO ∽△CGB
G
BG CG OG
B =
∴CG·OG=BG 2=6……2分 ∴S △COG =
1
2
CG·OG=3……1分 26.(14分)
(1)4a+2b+c=0,a>0,c<0……3分 (2) 211
1 ,282
c x a c a c a =
==分或(形式不唯一) ……4分
(3)m=-b-2……1分
m >2时,2与m 之间的和为7的整数是3、4,所以,

,所以
;……2分
m <2时,m 与2之间的绝对值和为7的整数是1、0、-1、-2、-3,所以,

,所以
;……3分。

相关文档
最新文档