模电实验报告
元件模拟电路实验报告(3篇)

一、实验目的1. 理解并掌握基本模拟电路元件(电阻、电容、电感)的特性及其在电路中的作用。
2. 掌握模拟电路的测试方法,包括伏安特性曲线的测量、阻抗测量等。
3. 培养实验操作技能,提高分析问题、解决问题的能力。
二、实验原理1. 电阻元件:电阻元件是模拟电路中最基本的元件之一,其特性表现为对电流的阻碍作用。
电阻元件的伏安特性曲线为直线,其斜率即为电阻值。
2. 电容元件:电容元件的特性表现为储存电荷的能力。
电容元件的伏安特性曲线为非线性,其斜率与电容值和电压值有关。
3. 电感元件:电感元件的特性表现为储存磁场能量的能力。
电感元件的伏安特性曲线为非线性,其斜率与电感值和电流值有关。
4. 电路测试方法:伏安特性曲线的测量方法为在电路中施加一定的电压,测量通过电路的电流,然后绘制电压与电流的关系曲线。
阻抗测量方法为测量电路的电压和电流,然后根据欧姆定律计算电路的阻抗。
三、实验器材1. 电阻元件:R1、R2、R3(不同阻值)2. 电容元件:C1、C2、C3(不同容量)3. 电感元件:L1、L2、L3(不同电感值)4. 直流稳压电源5. 电压表6. 电流表7. 示波器8. 电路实验板四、实验步骤1. 测量电阻元件的伏安特性曲线(1)将电阻元件R1、R2、R3分别接入电路,测量通过电阻元件的电流和对应的电压值。
(2)根据测量的电压和电流值,绘制电阻元件的伏安特性曲线。
2. 测量电容元件的伏安特性曲线(1)将电容元件C1、C2、C3分别接入电路,测量通过电容元件的电流和对应的电压值。
(2)根据测量的电压和电流值,绘制电容元件的伏安特性曲线。
3. 测量电感元件的伏安特性曲线(1)将电感元件L1、L2、L3分别接入电路,测量通过电感元件的电流和对应的电压值。
(2)根据测量的电压和电流值,绘制电感元件的伏安特性曲线。
4. 测量电路阻抗(1)将待测电路接入电路实验板,测量电路的电压和电流值。
(2)根据测量的电压和电流值,计算电路的阻抗。
大学模电实验报告

一、实验目的1. 理解模拟电子技术的基本概念和基本原理。
2. 掌握模拟电路的搭建和调试方法。
3. 培养实验操作能力和数据分析能力。
二、实验原理模拟电子技术是研究模拟信号处理和模拟电路设计的学科。
本实验主要涉及以下原理:1. 基本放大电路:包括共射放大电路、共集放大电路、共基放大电路等。
2. 运算放大器:包括反相比例放大、同相比例放大、加法运算、减法运算等。
3. 滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
三、实验仪器与设备1. 模拟电子技术实验箱2. 函数信号发生器3. 示波器4. 数字多用表5. 绝缘导线6. 插头四、实验步骤1. 搭建共射放大电路:- 根据实验指导书,连接共射放大电路。
- 调整偏置电阻,使晶体管工作在放大区。
- 使用函数信号发生器输入正弦波信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
2. 搭建运算放大器电路:- 根据实验指导书,连接运算放大器电路。
- 输入不同电压信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
3. 搭建滤波电路:- 根据实验指导书,连接滤波电路。
- 输入不同频率的信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
五、实验结果与分析1. 共射放大电路:- 输入信号频率为1kHz,输出信号频率为1kHz,放大倍数为20。
- 当输入信号频率为10kHz时,输出信号频率为10kHz,放大倍数为10。
2. 运算放大器电路:- 反相比例放大电路:输入电压为1V,输出电压为-2V。
- 同相比例放大电路:输入电压为1V,输出电压为2V。
- 加法运算电路:输入电压分别为1V和2V,输出电压为3V。
- 减法运算电路:输入电压分别为1V和2V,输出电压为-1V。
3. 滤波电路:- 低通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.5V;当输入信号频率为10kHz时,输出信号幅度为0.1V。
- 高通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.1V;当输入信号频率为10kHz时,输出信号幅度为0.5V。
模电实验报告范文

模电实验报告范文本文以一个模拟电路实验为案例,撰写了一份超过1200字的实验报告。
实验报告一、实验目的通过本次实验,我们旨在了解并学习模拟电路的基本概念,以及使用实际器件搭建模拟电路的方法。
通过实验,我们将会验证和应用理论知识,提高我们的实际动手能力。
二、实验原理本次实验使用了一个基础的模拟电路,反相比例放大器。
反相比例放大器是模拟电路中最常见的电路之一,通过调节输入电压和电阻的值,可以实现电压信号的放大和反向。
反相比例放大器的电路示意图如下:在理想情况下,输入电阻和放大倍数可分别通过以下公式计算得到:输入电阻:Rin=R1放大倍数:Av=-R2/R1三、实验设备与器件本次实验所使用的设备与器件如下:1.功率供应器:用于提供电源电压,实验中使用的是可调直流电源,可以提供0-10V的调整范围。
2.变阻器:用于调节输入电阻的大小。
3.电容:用于调节电路的高频性能。
4.电阻:用于调节电路的低频性能。
四、实验步骤1.按照电路图连接电路:将功率供应器的正负极分别与电路中的相应位置连接,注意连接的正确性。
2.调节功率供应器的输出电压:将功率供应器的输出电压调整到2V,作为测试电压。
3.调节变阻器的大小:根据所使用电阻的阻值范围,调节变阻器的旋钮,使得输入电阻的大小适合于所需的放大倍数。
4.测试电路:将待放大的电压信号输入到电路的输入端,同时将示波器的探头分别连接到输入端和输出端,分别观察和记录两个信号的波形。
5.调整电容和电阻:根据实际需要,对电路中的电容和电阻进行适当调整,以满足对高频和低频的需求。
6.改变输入信号的幅度:逐步改变输入信号的幅度,观察并记录输出信号的变化情况。
五、实验结果与分析在完成以上实验步骤后,我们观察到输入信号与输出信号的波形,并记录了不同输入信号幅度下的输出信号。
通过对比和分析,我们得出以下结论:1.输入信号经过反相放大后,输出信号的幅度相对放大,且符号相反,验证了反相放大器的基本原理。
模电实验报告

模电实验报告摘要:本文是关于模拟电路实验的报告,通过对不同电路的实验,探索了模拟电路的基本原理和特性。
实验过程中,我们使用了多种常见的模拟电路元件,并利用实验数据进行分析和计算。
通过实验的验证,深入理解了模拟电路的工作原理和性能特点。
引言:模拟电路是电子设备中的重要组成部分,广泛应用于各种电子设备中。
了解模拟电路的基本原理和特性对于电子工程师来说至关重要。
本次实验旨在通过实践操作,验证和加深对模拟电路的理解。
通过实验数据的分析与计算,验证了模拟电路的工作原理和性能特点。
一、直流放大电路实验直流放大电路是模拟电路中常见的一种电路。
通过实验,我们验证了直流放大电路的增益特性、输入和输出特性。
实验中,我们设计了基本的共射放大电路,并通过测量输入电压和输出电压的变化,计算了电路的增益,进一步验证了直流放大电路的性能。
二、交流放大电路实验交流放大电路是指对交流信号进行放大处理的电路。
通过实验,我们验证了交流放大电路的频率特性和增益特性。
实验中,我们设计了基本的共射放大电路,并通过测量不同频率下输入和输出电压的变化,得到了电路的频率响应曲线和增益特性曲线。
实验结果显示了交流放大电路的频率衰减和相位差的关系,验证了电路的性能。
三、滤波电路实验滤波电路是用于对信号进行滤波处理的电路。
通过实验,我们验证了滤波电路的频率特性和幅频特性。
实验中,我们设计了基本的低通滤波电路和高通滤波电路,并通过测量不同频率下输入和输出电压的变化,得到了电路的频率响应曲线和幅频特性曲线。
实验结果显示了滤波电路的滤波特性和截止频率,验证了电路的性能。
四、比较器电路实验比较器电路是用于比较两个输入信号的大小的电路。
通过实验,我们验证了比较器电路的比较特性和输出特性。
实验中,我们设计了基本的比较器电路,并通过输入不同大小的信号,观察了电路输出的变化。
实验结果显示了比较器电路的比较特性和阈值电平,验证了电路的性能。
结论:通过本次实验,我们深入了解了模拟电路的原理和特性。
模电仿真实验报告

模电仿真实验报告模电仿真实验报告引言模拟电子技术是电子工程中的重要分支,通过对电子电路的仿真实验,可以更好地理解和掌握电路的工作原理和性能特点。
本实验旨在通过模电仿真实验,探索和研究电路的性能参数及其相互关系,提高对电路的理论与实际应用的认识。
实验目的本次模电仿真实验的主要目的是研究和分析RC电路的频率响应特性,并通过仿真实验验证理论计算结果的准确性。
具体目标如下:1. 理解RC电路的基本原理和频率响应特性;2. 通过仿真实验测量RC电路的频率响应曲线,并与理论计算结果进行对比分析;3. 掌握模电仿真软件的基本操作和参数设置。
实验原理RC电路是由电阻(R)和电容(C)组成的一种基本电路,其频率响应特性是指电路在不同频率下对输入信号的响应程度。
根据理论计算,RC电路的频率响应曲线呈现低通滤波特性,即在低频时通过输入信号的幅度较大,而在高频时则衰减较快。
实验步骤1. 搭建RC电路:根据实验要求,选择合适的电阻和电容值,搭建RC电路。
2. 设置仿真参数:打开模电仿真软件,选择合适的电源和信号源,设置仿真参数。
3. 仿真实验:通过模电仿真软件进行RC电路的频率响应仿真实验,记录实验数据。
4. 数据分析:根据实验数据,绘制RC电路的频率响应曲线,并与理论计算结果进行对比分析。
5. 结果总结:总结实验结果,评价实验的准确性和实用性。
实验结果与分析根据实验步骤和原理,我们进行了RC电路的频率响应仿真实验,并得到了实验数据。
通过数据分析和计算,我们绘制了RC电路的频率响应曲线,并与理论计算结果进行了对比。
实验数据显示,随着频率的增加,RC电路的输出幅度逐渐减小,符合低通滤波特性。
而理论计算结果与实验数据吻合较好,验证了理论计算的准确性。
实验总结通过本次模电仿真实验,我们深入了解了RC电路的频率响应特性,并通过仿真实验验证了理论计算结果的准确性。
同时,我们也掌握了模电仿真软件的基本操作和参数设置,为今后的模电实验和电路设计提供了基础。
模电实验实训结果分析报告

一、实验目的本次模电实验实训旨在通过实际操作和理论分析,加深对模拟电子技术基本原理的理解,提高电路分析和设计能力。
通过实验,学生能够熟练掌握基本模拟电路的设计、搭建、测试和分析方法,为后续的专业学习和实践打下坚实基础。
二、实验内容本次实训主要包含以下几个实验:1. 晶体二极管伏安特性实验2. 晶体三极管共射极放大电路实验3. 集成运算放大器基本应用实验4. 滤波电路实验5. 电源电路实验三、实验结果以下是对各个实验结果的分析:1. 晶体二极管伏安特性实验实验中,我们使用了Multisim软件对二极管进行伏安特性仿真,并使用示波器观察实际电路中的伏安特性。
实验结果显示,二极管的伏安特性曲线符合理论分析,即在正向电压作用下,电流随电压增加而迅速增大;在反向电压作用下,电流几乎为零。
通过实验,我们验证了二极管单向导通的特性。
2. 晶体三极管共射极放大电路实验在共射极放大电路实验中,我们搭建了基本放大电路,并使用示波器观察输入信号和输出信号的变化。
实验结果显示,放大电路能够将输入信号放大,且放大倍数与电路参数相关。
通过调整电路参数,我们可以实现不同的放大倍数和带宽。
实验过程中,我们还分析了电路的输入阻抗、输出阻抗和增益带宽等特性。
3. 集成运算放大器基本应用实验在集成运算放大器实验中,我们搭建了基本的运算电路,如反相比例放大器、同相比例放大器、加法器和减法器等。
实验结果显示,这些运算电路能够实现相应的数学运算,且运算精度较高。
通过实验,我们掌握了集成运算放大器的基本应用方法。
4. 滤波电路实验滤波电路实验中,我们搭建了低通滤波器和高通滤波器,并使用示波器观察滤波效果。
实验结果显示,滤波电路能够有效滤除高频或低频信号,实现对信号的分离。
通过调整电路参数,我们可以实现不同的滤波效果。
5. 电源电路实验电源电路实验中,我们搭建了简单稳压电路和开关稳压电路,并使用示波器观察输出电压的稳定性。
实验结果显示,稳压电路能够有效稳定输出电压,使其不受输入电压波动的影响。
模电的实验报告

模电的实验报告模电的实验报告模电这门课程,它是一门综合应用相关课程的知识和内容来解决书本上定理的课程以及锻炼学生们的动手操作能力。
下面是模电的实验报告,欢迎阅读!模电的实验报告1在本学期的模电实验中一共学习并实践了六个实验项目,分别是:①器件特性仿真;②共射电路仿真;③常用仪器与元件;④三极管共射级放大电路;⑤基本运算电路;⑥音频功率放大电路。
实验中,我学到了PISPICE等仿真软件的使用与应用,示波器、信号发生器、毫伏表等仪器的使用方法,也见到了理论课上学过的三极管、运放等元件的实际模样,结合不同的电路图进行了实验。
当学过的理论知识付诸实践的时候,对理论本身会有更具体的了解,各种实验方法也为日后更复杂的实验打下了良好的基础。
几次的实验让我发现,预习实验担当了不可或缺的作用,一旦对整个实验有了概括的了解,对理论也有了掌握,那实验做起来就会轻车熟路,而如果没有做好预习工作,对该次实验的内容没有进行详细的了解,就会在那里问东问西不知所措,以致效率较低,完成的时间较晚。
由于我个人对模电理论的不甚了解,所以在实验原理方面理解起来可能会比较吃力,但半学期下来发现理论知识并没有占过多的比例,而主要是实验方法与解决问题的方法。
比如实验前先要检查仪器和各元件(尤其如二极管等已损坏元件)是否损坏;各仪器的地线要注意接好;若稳压源的电流示数过大,证明电路存在问题,要及时切断电路以免元件的损坏,再调试电路;使用示波器前先检查仪器是否故障,一台有问题的示波器会给实验带来很多麻烦。
做音频放大实验时,焊接电路板是我新接触的一个实验项目,虽然第一次焊的不是很好,也出现了虚焊的情况,但技术都是在实践中成熟,相信下次会做的更好些。
而这种与实际相结合的`电路,在最后试听的环节中,也给我一种成就感,想来我们的实验并非只为证实理论,也可以在实际应用上小试身手。
对模电实验的建议:①老师在讲课过程中的实物演示部分,可以用幻灯片播放拍摄的操作短片,或是在大屏幕上放出实物照片进行讲解,因为用第一排的仪器或元件直接讲解的话看的不是很清楚。
电源模电实验报告(3篇)

第1篇一、实验目的1. 掌握直流稳压电源的基本组成和工作原理。
2. 学会使用变压器、整流二极管、滤波电容和集成稳压器设计直流稳压电源。
3. 掌握直流稳压电源的调试及主要技术指标的测量方法。
二、实验原理直流稳压电源一般由变压器、整流电路、滤波电路和稳压电路组成。
变压器将市电交流电压转换为所需的低压交流电压;整流电路将交流电压转换为脉动直流电压;滤波电路滤除脉动直流电压中的纹波成分,得到平滑的直流电压;稳压电路使输出的直流电压保持稳定。
三、实验器材1. 变压器:220V/12V/1A2. 整流桥:4只1N4007二极管3. 滤波电容:4700μF/25V4. 集成稳压器:LM78055. 电阻:10kΩ、1kΩ、100Ω6. 电压表:0~30V7. 电流表:0~5A8. 示波器:双踪示波器9. 实验电路板四、实验步骤1. 按照实验电路图连接电路,将变压器、整流桥、滤波电容和集成稳压器依次接入电路。
2. 调整变压器输出电压,使整流电路输出电压约为15V。
3. 测量整流电路输出电压,观察电压波形。
4. 调整滤波电容,使滤波电路输出电压约为12V。
5. 测量滤波电路输出电压,观察电压波形。
6. 调整集成稳压器输出电压,使输出电压稳定在12V。
7. 测量输出电压,观察电压波形。
8. 使用电流表测量输出电流,观察电流变化。
9. 使用示波器观察输出电压和电流的波形。
五、实验结果与分析1. 整流电路输出电压约为15V,电压波形为脉动直流电压。
2. 滤波电路输出电压约为12V,电压波形为平滑的直流电压。
3. 集成稳压器输出电压稳定在12V,电压波形为稳定的直流电压。
4. 输出电流约为1A,电流波形为稳定的直流电流。
实验结果表明,所设计的直流稳压电源能够将市电交流电压转换为稳定的12V直流电压,满足实验要求。
六、实验总结通过本次实验,我们掌握了直流稳压电源的基本组成和工作原理,学会了使用变压器、整流二极管、滤波电容和集成稳压器设计直流稳压电源,并掌握了直流稳压电源的调试及主要技术指标的测量方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告总结:多功能函数发生器
1.课题名称
多功能函数发生器之能产生矩形波和三角波的模拟电路
2.内容摘要
本实验设计的函数信号发生器可产生方波和三角波这两种波形,其输出频率可在1KHz至10KHz范围内连续可调。
两种波形的幅值及方波的占空比均在一定范围内可调。
报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法
函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器,可产生不同波形、频率和幅度的信号。
在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。
信号发生器可按照产生信号产生的波形特征划分为音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。
信号发生器用途广泛,有多种测试和校准功能。
3.设计内容及要求
(1)设计、安装、调试一个能产生方波和三角波的电路,要求波形的频率在一定范围内可调,矩形占空比在一定范围内可调。
(2)用数码管显示波形频率;
(3)用中小规模集成电路(双列直插式)组件和部分分立元件实现所选定的电路;
(4)在计算机上用仿真软件进行仿真优化;
(5)搭建电路、调试,测试。
(6)写出设计总结报告。
4.比较和选定设计的系统方案,画出系统框图。
系统简要框图:
5.单元电路设计、参数计算和元器件选择说明
模电和数电中,
能产生方波信号的电路很多。
比如由运算放大器组成的滞回比较器、
门电路或555定时器组成的多谐振荡电路。
而方波信号经积分电路就可以方便的形成三角波或锯齿波信号。
一个典型的电路是由两个运算放大器构成的方波
-三角波发生器。
方案一:
方案二:
6.画出完整的电路图,并说明电路的工作原理
该电路图前半部分为滞回比较器,滞回比较器可产生方波;
后半部分为积分电路,可将矩形波变化为三角波。
可以通过调节滑动变阻器R3和
R6来改变占空比和频率。
7.组装调试的内容。
①使用的主要仪器和仪表
直流稳压电源 1台
示波器 1台
万用表 1台
集成电路:运算放大器、计数器、寄存器、门电路、555定时器若干
二极管、稳压管、电位器、电阻器、电容器若干
②调试电路的方法和技巧
使用直流稳压电源输出正负15V 电压,CH1和CH2采用串联的方式,CH2的正极输出+15V,CH1的负极输出-15V ,分别接至运放的正负极,而CH2的负极(或CH1
的正极)接地。
③测试的数据和波形并与计算结果比较分析
④测试中出现的故障、原因及排除方法
1没有输出信号:调试时,输出端口并不能收集到相应的波形。
原因:在接地端没有引出地线
2元器件安装时的问题
a.将运放的接触端接错;
b.插线与九孔板插孔接触不好;
2.电路调试问题
a.三角波的上升沿比较粗,下降沿比较细。
通过改变R2和C1的值不断改变波形频率,最后得到相对对称的三角波上升下降沿。
b.输出波形严重失真,通过检查有可能是CH1通路的接线没有用带勾子的线的缘故,更换接线后再重新调试,波形基本没有失真。
8.总结设计电路和方案的优缺点,指出课题的核心及实用价值,提出改进意见和展望。
优点:能计较简单直观的显示矩形波和三角波,便于调整频率和占空比
缺点:集成程度还不够,而且准确度及精度都达不到进行工业生产的要求。
展望:加深对电子电路的认识,而且还及时、真正的做到学以致用,掌握常用元件的识别和测试;学会使用仿真软件对原理电路进行仿真;熟悉常用的仪器仪表;以及如何提高电路的性能等等
9.列出系统需要的元器件
运算放大器两个,可调电阻两个,稳压管,二极管两个,电阻、电容若干。
10.收获、体会
经过本次课程设计,让我对函数发生器的工作原理有了较深的理解,掌握了简易函数发生器的的功能、内部构造及其工作原理。
利用运放电路制作出来的函数发生器具有线路简单,频率和幅度便于调节。
它可可输出方波、三角波以及锯齿波等,输出波形稳定清晰,信号质量好,失真度小。
系统输出频率范围较宽且经济实用。
在这次课程设计的时间里,使我慢慢地学到了不少专业知识。
通过这次的课程设计,我受益匪浅,认识到了自己的许多弱点和缺点。
理论联系实际,需要一段时间。
要想做出一个实用的实物来,并不是自己想象中的那样简单。
因为我们必须掌握一些必备的常识,比如,电路类型的判定以及电阻值的判定。
我们也必须用科学的态度对待我们在实验中所遇到的问题,不能够自以为是,要用科学的房法来分析解决问题。
应该以作为一个工程人员应用的素质去面对,发现问题,解决问题,在实验时应保持冷静,测试有条理。
遵循物质客观规律,不随便改写实验数据。
自己平时要多动手、多动脑,这样当问题来临时你就不会反应慢。
该多画就多画些,比如,电路图的设计就应该多用Multisim画些,以便能增加你对该软件的熟练度,等下次用起来时称心如意,这样就不会浪费时间。
参考文献
模拟电子技术基础(第四版)童诗白华成英主编
模拟电子实验报告册青岛大学电工电子出版。