热力过程及主要参数
水蒸气的热力性质和热力过程

水蒸气的热力性质和热力过程水蒸气是水在升温和转化成气态时所形成的物质。
它具有一系列的热力性质和热力过程,对于理解水蒸气的特性和应用都非常重要。
首先,水蒸气的热力性质可以通过热容、比热容、蒸发潜热和饱和水蒸气压等参数来描述。
热容是指物质在吸收或释放热量时,温度的变化程度。
对于水蒸气来说,它的热容随着温度的升高而增加,这是因为水蒸气的分子间作用力较小,因此吸收热量后分子运动更活跃,温度升高的速率更快。
比热容是指单位质量物质温度升高一个单位时所吸收的热量,对于水蒸气来说,其比热容比水要小。
其次,水蒸气的热力过程包括等容过程、等压过程、准静态过程等。
等容过程是指在恒容条件下,水蒸气吸收或释放热量,而温度发生变化。
等压过程是指在恒压条件下,水蒸气吸收或释放热量,而温度发生变化。
准静态过程是指在过程中系统处于平衡状态,及时微小的温度波动也会使系统不再处于平衡状态。
水蒸气还具有一个重要的性质就是饱和水蒸气压。
饱和水蒸气压是指在一定温度下,液态水和水蒸气达到动态平衡时,水蒸气对应的压力。
饱和水蒸气压与温度之间存在着密切的关系,在一定温度范围内,饱和水蒸气压随着温度的升高而增加。
这个关系可以通过饱和水蒸气压与温度的对数关系来描述,即饱和水蒸气压-温度曲线。
这个曲线在一定条件下是稳定的,不会出现温度降低而饱和水蒸气压增加的情况。
水蒸气的热力过程在许多工业和自然现象中都有重要的应用。
例如,在汽轮机中,水的热力能被转化为机械能;在冷凝器中,水蒸气被冷却并变成液态水,释放出大量的热量,用于加热其他物质;在天气系统中,水的蒸发和凝结过程是形成云、降雨、雪等气象现象的基础。
综上所述,水蒸气具有一系列的热力性质和热力过程,对于理解其特性和应用具有重要意义。
我们可以通过热容、比热容、蒸发潜热和饱和水蒸气压等参数来描述水蒸气的热力性质。
水蒸气的热力过程包括等容过程、等压过程和准静态过程等。
这些性质和过程对于水蒸气在工业、自然现象中的应用都有重要的意义。
《热力学》理想气体的热力过程

p2 p1
v1 v2
n
T2 T1
v1 v2
n1
T2 T1
p2 p1
(n1) / n
n lnp2 lnp1 lnv2 ln v1
(2)利用已知或可求的与n有关的能量求解
2020年10月20日
第四章 理想气体的热力过程
28
例4-3(p80) 有一台空气压缩机,压缩前空气的温度为27 ℃、 压力为0.1 MPa,气缸的容积为5 000 cm3;压缩后空气的温度升 高到213 ℃。压缩过程消耗的功为1.166 kJ。试求压缩过程的多变 指数n。
15
(2)图表法 由
ds
cp0
dT T
Rg
dp p
对可逆绝热过程可得
ln
p2 p1
1 Rg
T2
T1
c
p
0
dT T
A:利用热力性质表中的标准状态熵
ln
p2 p1
1 Rg
T1
T0
c
p
0
dT T
c T2
T0
p0
dT T
1 Rg
s0 T2
s0 T1
T2 工质的热力性质表中还提供了u与h的数值。
2020年10月20日
第四章 理想气体的热力过程
19
例4-2 (p76) 一台燃气轮机装置,从大气吸入温度为17 ℃、压 力为0.1 MPa的空气,然后在压气机中进行绝热压缩,使空气 的压力提高到0.9MPa。试求压气机消耗的轴功:(1)按定值比 热容计算;(2)按空气热力性质表计算。
思路:
定值比热容
2020年10月20日
第四章 理想气体的热力过程
14
变比热容分析
化学反应的热力学参数

化学反应的热力学参数热力学是研究能量变化和转化的物理学分支,而化学反应的热力学参数则是描述反应的能量特征和行为的重要指标。
本文将围绕化学反应的热力学参数展开讨论,探究其含义、计算方法以及对反应过程的影响。
一、热力学参数的含义化学反应涉及物质的能量转化和物质结构的变化。
热力学参数是用于描述反应过程能量状态和稳定性的物理量。
其中最常用的参数包括焓变(ΔH)、熵变(ΔS)和自由能变(ΔG)。
焓变(ΔH)表示反应过程中吸热(ΔH>0)或放热(ΔH<0)的情况,即系统与周围环境之间的能量交换。
焓变为正值时,反应吸收能量;焓变为负值时,反应放出能量。
熵变(ΔS)是反应过程中体系内部的混乱度变化。
熵是物质无序程度的度量,熵变体现了反应过程中物质结构的变化。
当物质的有序性增加,熵变为负值;当物质的有序性减少,熵变为正值。
自由能变(ΔG)是描述反应驱动力的参数,它判断反应的可逆性和方向。
自由能变为负值时,反应是可逆的;自由能变为正值时,反应是不可逆的。
自由能变为零时,反应达到平衡。
二、热力学参数的计算方法热力学参数的计算需要借助热力学公式和实验数据。
以焓变为例,焓变的计算公式为:ΔH = ∑(H生成物 - H反应物)其中ΔH表示焓变,H表示反应物和生成物的焓值。
焓值可以通过测量反应物和生成物在标准状态下的热量变化得到。
熵变和自由能变的计算也需要根据各自的计算公式,其中熵变的计算需要考虑温度对熵的影响。
自由能变的计算通常会结合焓变和熵变,使用以下公式:ΔG = ΔH - TΔS其中ΔG表示自由能变,T表示系统的温度。
三、热力学参数对反应过程的影响热力学参数反映了反应过程中能量的流动和转化,对反应速率、平衡态和可逆性等方面有重要影响。
1. 反应速率:焓变和熵变共同影响反应速率。
一般来说,反应焓变越大,反应速率越快;反应熵变越大,反应速率也越快。
焓变和熵变对反应速率的影响可以通过活化能来解释,其中焓变决定反应的初速度,熵变决定反应的传递过程。
热工计算公式及参数

热工计算公式及参数热工计算是指通过一系列公式和参数来计算热量、功率、效率等热力学参数的过程。
热工计算在工程设计、能源管理和热力学研究等领域起着重要的作用。
本文将介绍一些常用的热工计算公式和参数。
1.热功率计算公式:热功率(Q)是表示单位时间内传输的热量的物理量。
常用的热功率计算公式如下:Q=m×c×ΔT其中,Q表示热功率,m表示物体的质量,c表示物体的比热容,ΔT表示物体的温度变化。
2.传热系数计算公式:传热系数(k)是表示单位时间内在单位面积上传输的热量的物理量。
常用的传热系数计算公式如下:k=Q/(A×ΔT)其中,k表示传热系数,Q表示传输的热量,A表示传热面积,ΔT表示温度差。
3.热效率计算公式:热效率(η)是指燃烧设备、热交换设备或热动力系统中实际产生的热量与理论上可能产生的最大热量之比。
常用的热效率计算公式如下:η=(实际产生的热量/理论可能产生的最大热量)×100%4.压力与体积关系公式:热工系统中的工质一般按照多种状态方程进行描述,其中最常用的是理想气体状态方程:PV=nRT其中,P表示压力,V表示体积,n表示物质的摩尔数,R表示气体常数,T表示温度。
5.比容与温度关系公式:比容(v)是指单位质量的物质占据的体积。
对于理想气体,比容与温度的关系可以用热力学公式来表示:v=(R×T)/P其中,v表示比容,R表示气体常数,T表示温度,P表示压力。
6.热辐射传热计算公式:热辐射传热是指两个物体之间通过热辐射方式传输热量的过程。
常用的热辐射传热计算公式如下:Q=ε×σ×A×(T1^4-T2^4)其中,Q表示传输的热量,ε表示发射率,σ表示热辐射常数,A表示辐射面积,T1和T2分别表示两个物体的温度。
7.热导率计算公式:热导率(λ)是指单位时间内通过单位厚度、单位面积的热流量。
常用的热导率计算公式如下:λ=(Q×L)/(A×ΔT)其中,λ表示热导率,Q表示传输的热量,L表示传热路径的长度,A表示传热的面积,ΔT表示温度差。
工程热力学第四章理想气体热力过程

03
CHAPTER
等容过程
等容过程是指气体在变化的整个过程中,其容积保持不变的过程。
定义
特点
适用场景
气体在等容过程中,气体温度和压力会发生变化,但容积保持不变。
等容过程常用于高压、高温或低温等极端条件下的气体处理。
03
02
01
等容过程定义
在等容过程中,气体吸收的热量等于气体所做的功和气体温度升高所吸收的热量之和。
多变过程的具体形式取决于气体所经历的压力和温度的变化规律。
多变过程定义热力学第一定律 Nhomakorabea热力学第二定律
理想气体状态方程
热效率
多变过程的热力学计算
01
02
03
04
能量守恒定律,用于计算多变过程中气体吸收或释放的热量。
熵增原理,用于分析多变过程中气体熵的变化。
描述气体压力、体积和温度之间的关系,可用于多变过程的计算。
衡量多变过程能量转换效率的指标,通过比较输入和输出的热量来计算。
提高热效率的方法
优化多变过程参数,如压力和温度的变化规律,以减少不可逆损失和提高能量转换效率。
热效率与熵增的关系
根据熵增原理,不可逆过程会导致熵的增加,从而降低热效率。因此,减少不可逆损失是提高多变过程热效率的关键。
热效率计算公式
$eta = frac{Q_{out}}{Q_{in}}$,其中$Q_{out}$为输出热量,$Q_{in}$为输入热量。
计算公式
通过优化气体的初态和终态,以及选择合适的加热和冷却方式,可以提高等容过程的热效率。同时,也可以通过改进设备结构和操作方式来提高热效率。
提高热效率的方法
等容过程的热效率
04
CHAPTER
理想气体基本热力过程

理想气体的基本热力过程热力设备中,热能与机械能的相互转化,通常是通过气态工质的吸热、膨胀、放热、压缩等热力过程来实现的。
实际的热力过程都很复杂,而且几乎都是非平衡、非可逆的过程。
但若仔细观察会发现,某些常见过程非常近似一些简单的可逆过程。
常见的主要有四种简单可逆过程-基本热力过程,指系统某一状态参数保持不变的可逆过程。
包括定容过程、定压过程、定温过程和绝热过程。
我们以1kg理想气体的闭口系统为例来分析这几种基本热力过程,分析方法包括5点:(1)依据过程特点建立过程方程式;(2)由过程方程和理想气体状态方程确定初、终态基本状态参数之间的关系,即P1、v1、T1和P2、v2、T2之间的关系;(3)绘制过程曲线;我们主要绘制两种坐标图P-v图和T-s图,因为P-v图上可以表示过程中做功量的多少,而T-s图上可以表示过程中吸收或放出热量的多少;(4)分析计算△u,△h,△s;(5)分析计算过程的热量q和功w。
一、定容过程定容过程即工质的容积在整个过程中维持不变,dv=0,通常是一定量的气体在刚性容器中进行定容加热或定容放热。
(1)依据过程特点建立过程方程式定容过程的特点是体积保持不变,所以建立过程方程式:v=常数;或dv=0或v1=v2(2)由过程方程和理想气体状态方程确定初、终态基本状态参数之间的关系过程方程式:v1=v2理想气体状态方程:112212Pv P v T T = 由以上两个方程可以得到初末基本状态参数之间的关系:122211v v P T P T =⎧⎪⎨=⎪⎩ 即定容过程中工质的压力与温度成正比。
(3)绘制过程曲线;定容过程有两种情况:定容加热和定容放热。
(4)分析计算△u ,△h ,△s ;2211v v u u u c dT c T ∆=-==∆⎰ 2211p p h h h c dT c T ∆=-==∆⎰ 222111ln ln ln p v v v P P s c c c v P P ∆=+=或222111ln ln ln v v T v T s c R c T v T ∆=+= (5)分析计算过程的热量q 和功w 。
热力学基本状态参数

热力学基本状态参数功和热量1-1 工质和热力系一、工质、热机、热源与冷源1、热机(热力发动机):实现热能转换为机械能的设备。
如:电厂中的汽轮机、燃气轮机和内燃机、航空发动机等。
2、工质:实现热能转换为机械能的媒介物质。
对工质的要求:1)良好的膨胀性; 2)流动性好;3)热力性质稳定,热容量大;4)安全对环境友善;5)价廉,易大量获取。
如电厂中的水蒸汽;制冷中的氨气等。
问题:为什么电厂采用水蒸汽作工质?3、高温热源:不断向工质提供热能的物体(热源)。
如电厂中的炉膛中的高温烟气4、低温热源:不断接收工质排放热的物体(冷源)如凝汽器中的冷却水二、热力系统1、热力系统和外界概念热力系:人为划分的热力学研究对象(简称热力系)。
外界:系统外与之相关的一切其他物质。
边界:分割系统与外界的界面。
在边界上可以判断系统与外界间所传递的能量和质量的形式和数量。
边界可以是实际的、假想的、固定的,或活动的。
注意:热力系的划分,完全取决于分析问题的需要及分析方法的方便。
它可以是一个设备(物体),也可以是多个设备组成的系统。
如:可以取汽轮机内的空间作为一个系统,也可取整个电厂的作为系统。
2、热力系统分类按系统与外界的能量交换情况分1)绝热系统:与外界无热量交换。
2)孤立系统:与外界既无能量(功量、热量)交换,又无质量交换的系统。
注意:实际中,绝对的绝热系和孤立系统是不存在的,但在某些理想情况下可简化为这两种理想模型。
这种科学的抽象给热力学的研究带来很大的方便。
如:在计算电厂中的汽轮机作功时,通常忽略汽缸壁的散热损失,可近似看作绝热系统。
状态及基本状态参数状态参数特点u状态参数仅决定于状态,即对应某确定的状态,就有一组状态参数。
反之,一组确定的状态参数就可以确定一个状态。
状态参数的变化量仅决定于过程的初终状态,而与达到该状态的途径无关。
因此,状态参数的变化量可表示为(以压力p为例):二、基本状态参数1.表压与真空表压力:当气体的压力高于大气压力时(称为正压),压力表的读数(pg),如锅炉汽包、主蒸汽的压力等。
分析热力过程的目的方法和内容等容过程等压过程等温过程

u C v T ( C p R ) T 2 ( T 1 )
=(1.157-0.287)(1200-600)
=522 KJ/kg
整理课件
• 例 开始时活塞汽缸的体积为0.1m3,其中有压力 为1.15bar的空气0.1kg,若在压力不变的情况下, 体积缩小为原来的75%,求终点的温度,变化过程 中换热量的大小和方向。
整理课件
§3—2 等容过程
• 一、过程的定义
• 等容过程是指气体在容积不变或比容保持不 变的条件下进行的热力过程。活塞式发动机
和脉动式喷气发动机的燃烧过程就近似于等 容过程。图1—3—1(a)表示等容加热过程, 其中活塞不动。
• 二、过程特点
•
V= 常数
•或
ν= 常数
整理课件
• 三、过程方程
•或 说明:
压力为8bar,定容加热后的压力为40bar, 求加热后的温度,加给空气的热量,设空 气的等容比热为0.718 KJ/k gK
• 解 已知 T= 273+300= 573K, P1 = 8bar
P2 = 40 bar 得加热后的空气温度为
T2P P1 2T148057328K5
• 加热量为
Q m ( v T 2 T C 1 ) 0 . 0 0 . 7 2 ( 2 1 5 8 8 ) 3 7 6 . 2 K 3 5 9
整理课件
• 分析热力过程时,作如下简化假定:
• (1)气体的状态变化过程是一个可逆过程; • (2)气体是完全气体。即在任一平衡状态
下,其参数关系符合完全气体的状态方程 式; • (3)比热容是常数,即比热容不随温度而 变化。 • (4)实际过程近似地看作是具有某一简单 特征的一个特殊过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u 减轻重量和减小迎风面 u 单独火焰筒便于调试 u 拆换方便 u 缺点: u 出口温度场周向不均匀
环形燃烧室
u 由4个同心的圆筒组 成,火焰筒为环形
u 优点:
u 与压气机、涡轮的环 形通道气动配合好, 减少流动损失
u 出口温度场均匀 u 重量轻、迎风面小
u 缺点:
u 喷油与进气不易配合 u 调试需大型气源 u 装拆维护较困难
摩擦、扩压、掺混、加热热 阻
b
p* 3
p*
用总压恢复系数描述,
u 出口温度场要求
u 尺寸小、重量轻、发热量大
u 排气污染少
出口温度场要求 径向:一定分布 周向:均匀 轴向:火焰不能伸出燃烧室
工作环境
进口气流速度大 体积小 出口温度受涡轮耐热强度限制 工作条件变化范围宽
二、燃烧室结构形式
相似准则
T2
p1.75e 300 2
q ma
2、燃烧室熄火特性
u 余气系数 u 贫油熄火边界 u 富油熄火边界
u 进气流速
3、总压损失特性
p*
3
b
p*
2
u 单管燃烧室 u 联管燃烧室 u 环形燃烧室
单管燃烧室
u 由多个单独燃烧室组成 u 之间用联焰管相联,传
焰和均压作用
u 每个有自己的火焰筒和 外套
u 优点: u 实验调试用气少 u 便于拆换
u 缺点: u 迎风面大 u 出口温度场不均匀 u 重量大
联管燃烧室
u 有多个单独火焰筒,共用 内、外环形机匣
余气系数
qma qma
qmf l0 qmf
l0
u l0 — 1公斤航空煤油完全燃烧所需理论空气量
l0 =14.7kg/s u 最恰当油气比:f0 = 1/ l0 = 0.068
u = 1: 最恰当油气比 u 1: 富油状态 u 1: 贫油状态
2、基本性能要求
u 压力损失小
环形火焰筒
三、工作过程及主要零组件
1、气流扩压减速
压气机出口气流速度 150m/s 30~45m/s
扩压器
扩压损失
三、工作过程及主要零组件
2、喷油雾化
为使燃油在非常短的时间 内与气流充分掺混,达到 完全燃烧,靠燃油喷嘴喷 入雾状燃油,扩大燃料与 周围气体的接触面,加快 蒸发、汽化,形成混气, 以利于完全燃烧。
三、工作过程及主要零组件
u 掺混冷却
u 约35%由火焰筒上的 微细小孔或缝隙进入 ,在火焰筒壁形成气 膜,保护火焰筒。
u 约20%从后部进入, 掺混降温、到达出口 温度场分布要求。
l 火焰筒设计是燃烧室 的关键部件
l 只有30%的气流参与 燃烧
燃烧过程
四、燃烧室特性
1、燃烧效率特性
影响燃烧效率的因素: 余气系数、进气压力 进气温度、进气速度
u 航空发动机燃油喷嘴必须 具备使燃油雾化的功能。
三、工作过程及主要零组件
3.点火
一般利用外电源,使 高压火花塞打火。 一般有两个点火器。
三、工作过程及主要零组件
4、燃烧回流区的形成 与作用
u 形成:
气流经火焰筒头部的扰 流器,形成一股旋转气 流,在火焰筒的中心造 成低压区,下游一部分 气流逆流补充,形成回 流。
u 作用
u 稳定的点火源
u 对燃油破膜、雾化 、掺混
5、对燃烧过程进行组织
u 分区:主燃区、补燃区、掺混冷却区 u 分不同部位、不同量进气
三、工作过程及主要零组件
约15%的气流从火焰筒头部 旋转进入,形成回流区, 与油碰撞、掺混、燃烧;
约20%的气流从梢后的大孔 进入,回流,补充燃烧;
在火焰筒头部中心处形 成主燃区,按恰当油气 比形成混气,保证燃烧 稳定、充分,燃气温度 高达2600K。