工程热力学概念整理
工程热力学概念总结

工程热力学概念总结1.热力学系统:热力学系统是指被研究的物体或物质的一部分,可以是任何大小,包括军舰、蒸汽锅炉、汽车引擎、空调系统等。
系统可以是开放系统、封闭系统或孤立系统。
开放系统可与环境进行能量和物质的交换,封闭系统只能与环境进行能量交换,而孤立系统既不能与环境进行能量交换也不能与环境进行物质交换。
2.状态和状态参量:一个热力学系统具有一组描述其状态的特性,这些特性称为状态参量,包括压力、温度、体积、密度等。
系统的状态是由这些状态参量所决定的。
3.热力学过程:热力学过程是指系统从一个状态变化到另一个状态的过程。
常见的热力学过程有等容过程、等压过程、等温过程、绝热过程等。
4.热力学第一定律:热力学第一定律是能量守恒原理在热力学中的表达。
按照热力学第一定律,系统的能量增量等于系统所吸收的热量减去所做的功。
即ΔU=Q-W,其中ΔU为系统内能的变化,Q为系统所吸收的热量,W为系统所做的功。
5.热力学第二定律:热力学第二定律是热力学中关于能量转化的不可逆性的原理。
它可以通过熵的概念来表达,即熵在任何一个孤立系统中总是增加的。
热力学第二定律也可以用来描述热量只能从高温物体流向低温物体的原因,即热能无法完全转化为功,总会有一部分热能转化为了无用的热能。
6.热机和热泵:热机是根据热能转化为机械功的原理工作的设备,它们可以根据工作物质的不同分为蒸汽机、汽轮机、内燃机等。
而热泵则是根据逆向热力学原理,利用外部能量将低温的热量转移到高温区域的设备。
7.热力学循环:热力学循环是指系统经历一系列热力学过程后又恢复到初始状态的过程。
常见的热力学循环有卡诺循环、斯特林循环、布雷顿循环等。
8.物质和能量平衡:在热力学中,物质和能量都必须满足平衡条件。
物质平衡是指系统中各组分的质量守恒,而能量平衡是指系统中各能量流动的输入和输出必须平衡。
这两个平衡条件是热力学研究中非常重要的基础。
综上所述,工程热力学是研究能量转化和能量流动的科学,包括热力学系统、状态和状态参量、热力学过程、热力学定律、热机和热泵等概念。
工程热力学名词概念总结

工程热力学知识总结第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学知识点总结

工程热力学知识点总结一、热力学基本概念1.1 系统和环境1.2 状态量和过程量1.3 定态和非定态过程1.4 热平衡和热力学温度二、热力学第一定律2.1 能量守恒原理2.2 内能和焓2.3 热机效率和制冷系数三、热力学第二定律3.1 熵的概念与意义3.2 熵增原理与熵减原理3.3 卡诺循环及其效率四、物质的状态方程及其应用4.1 物态方程的概念与分类4.2 伯努利方程及其应用4.3 范德华方程及其应用五、相变热力学基础知识5.1 相变的基本概念5.2 相变过程中的物态方程5.3 相变焓和相变熵六、理想气体状态方程及其应用6.1 理想气体状态方程6.2 绝热过程中理想气体的温度压强关系6.3 恒容过程中理想气体内能变化七、混合气体热力学基础知识7.1 混合气体的概念7.2 混合气体的状态方程7.3 理想混合气体的热力学性质八、化学反应热力学基础知识8.1 化学反应的基本概念8.2 化学反应焓变和熵变8.3 反应平衡条件及其判定九、传热基础知识9.1 传热方式及其特点9.2 热传导方程及其解法9.3 对流传热及其换热系数十、工程热力学分析方法10.1 理想循环分析方法10.2 实际循环分析方法10.3 燃料空气循环分析方法十一、工程热力学实际应用11.1 能量转换装置的工作原理与性能分析11.2 能量转换装置的优化设计与运行控制11.3 工业过程中能量利用与节能技术总结:本文介绍了工程热力学知识点,包括了基本概念、第一定律和第二定律、物质状态方程及其应用、相变热力学基础知识、理想气体状态方程及其应用、混合气体热力学基础知识、化学反应热力学基础知识、传热基础知识、工程热力学分析方法和工程热力学实际应用。
这些知识点是工程热力学的核心内容,对于掌握能源转换与利用技术以及节能减排具有重要意义。
工程热力学基本概念及重要公式

工程热力学基本概念及重要公式1.热力学系统和热力学过程:热力学系统是指一定空间区域内被观察的物质或物体,它可以是一个封闭系统、开放系统或隔离系统。
热力学过程是指系统经历的状态变化过程,可以分为等温过程、绝热过程、等容过程和等焓过程等。
2.热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表述,即能量守恒原则。
它可以表示为:ΔU=Q-W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。
该定律说明了系统内能的变化等于系统吸收的热量减去系统对外做的功。
3.热力学第二定律:热力学第二定律是热力学中的基本定律之一,也被称为熵增定律。
它可以表述为系统总熵永不减小,即所有自然界的过程和现象都遵循熵增的趋势。
根据熵的定义,dS≥Q/T,其中dS表示系统熵的增量,Q表示吸收的热量,T表示温度。
这个公式说明了系统的熵增量等于吸收的热量除以温度。
4.等温过程和绝热过程:在等温过程中,系统与外界保持温度不变,即温度恒定。
根据理想气体状态方程,PV=常数,即在等温过程中,气体的压强与体积呈反比关系。
在绝热过程中,系统与外界在热量交换上完全隔绝,即吸收或放出的热量为零。
根据理想气体状态方程,PV^γ=常数,其中γ为绝热指数,指的是在绝热过程中,气体压强与体积的幂指数之积的常数。
5.卡诺循环:卡诺循环是热力学中一种完美的热机循环,它由两个等温过程和两个绝热过程组成。
卡诺循环是理想的热机循环,它在可逆过程中实现了最大的功效率。
卡诺循环的功效率可表示为η=(T1-T2)/T1,其中T1表示高温热源的温度,T2表示低温热源的温度。
6.热力学第三定律:热力学第三定律是热力学中的基本定律之一,它表明在温度等于绝对零度时,所有系统的熵都将趋于零。
这个定律的提出为研究低温物理学和凝聚态物理学提供了重要的基础。
这些是工程热力学中的一些基本概念和重要公式。
工程热力学作为能源工程和热力工程等领域的基础学科,对于能量转换和热力设备的设计与运行具有重要作用。
工程热力学概念整理

⼯程热⼒学概念整理⼯程热⼒学与传热学概念整理⼯程热⼒学第⼀章、基本概念1.热⼒系:根据研究问题的需要,⼈为地选取⼀定范围内的物质作为研究对象,称为热⼒系(统),建成系统。
热⼒系以外的物质称为外界;热⼒系与外界的交界⾯称为边界。
2.闭⼝系:热⼒系与外界⽆物质交换的系统。
开⼝系:热⼒系与外界有物质交换的系统。
绝热系:热⼒系与外界⽆热量交换的系统。
孤⽴系:热⼒系与外界⽆任何物质和能量交换的系统3.⼯质:⽤来实现能量像话转换的媒介称为⼯质。
4.状态:热⼒系在某⼀瞬间所呈现的物理状况成为系统的状态,状态可以分为平衡态和⾮平衡态两种。
5.平衡状态:在没有外界作⽤的情况下,系统的宏观性质不随时间变化的状态。
实现平衡态的充要条件:系统内部与外界之间的各种不平衡势差(⼒差、温差、化学势差)的消失。
6.强度参数:与系统所含⼯质的数量⽆关的状态参数。
⼴延参数:与系统所含⼯质的数量有关的状态参数。
⽐参数:单位质量的⼴延参数具有的强度参数的性质。
基本状态参数:可以⽤仪器直接测量的参数。
7.压⼒:单位⾯积上所承受的垂直作⽤⼒。
对于⽓体,实际上是⽓体分⼦运动撞击壁⾯,在单位⾯积上所呈现的平均作⽤⼒。
8.温度T:温度T是确定⼀个系统是否与其它系统处于热平衡的参数。
换⾔之,温度是热⼒平衡的唯⼀判据。
9.热⼒学温标:是建⽴在热⼒学第⼆定律的基础上⽽不完全依赖测温物质性质的温标。
它采⽤开尔⽂作为度量温度的单位,规定⽔的汽、液、固三相平衡共存的状态点(三相点)为基准点,并规定此点的温度为273.16K。
10状态参数坐标图:对于只有两个独⽴参数的坐标系,可以任选两个参数组成⼆维平⾯坐标图来描述被确定的平衡状态,这种坐标图称为状态参数坐标图。
11.热⼒过程:热⼒系从⼀个状态参数向另⼀个状态参数变化时所经历的全部状态的总和。
12.热⼒循环:⼯质由某⼀初态出发,经历⼀系列状态变化后,⼜回到原来初始的封闭热⼒循环过程称为热⼒循环,简称循环。
13.准平衡过程:由⼀系列连续的平衡状态组成的过程称为准平衡过程,也成准静态过程。
工程热力学知识点总结

工程热力学知识点总结工程热力学知识点总结1. 热力学基本概念热力学是研究能量转化和能量传递规律的学科,它关注系统的宏观性质和变化。
热力学的基本概念包括系统、界面、过程、平衡状态、状态方程等。
2. 热力学第一定律热力学第一定律是能量守恒的表述,它表示能量的增量等于传热和做功的总和。
数学表达式为ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示热的传递,W表示外界对系统做功。
3. 热力学第二定律热力学第二定律描述了自然界中存在的一种过程的不可逆性,即熵增原理。
它指出孤立系统的熵总是增加或保持不变,不会减少。
熵增原理对热能转化和能量传递的方向提供了限制。
4. 热力学循环热力学循环是一系列热力学过程组成的闭合路径,通过这个路径,系统经历一系列状态变化,最终回到初始状态。
常见的热力学循环有卡诺循环、斯特林循环等。
5. 热力学性质热力学性质是用来描述物质宏观状态的物理量,常用的热力学性质包括温度、压力、内能、焓、熵等。
它们与热力学过程和相变有着密切的关系。
6. 热力学方程热力学方程是用来描述物质宏观状态的数学关系。
常见的热力学方程有状态方程(如理想气体状态方程)、焓的变化方程、熵的变化方程等。
这些方程对于分析和计算热力学过程非常重要。
7. 理想气体理想气体是热力学中一种理想的气体模型。
在理想气体状态方程中,气体的压力、体积和温度之间满足理想气体方程。
理想气体模型对于理解和研究气体性质和行为非常有用。
8. 发动机热力学循环发动机热力学循环是指内燃机和外燃机中进行热能转换的一系列过程。
常见的发动机热力学循环有奥托循环、迪塞尔循环等。
通过研究发动机热力学循环,可以优化发动机的效率和性能。
9. 相变热力学相变热力学研究物质由一种相态转变为另一种相态的过程。
相变热力学包括液体-气体相变、固体-液体相变、固体-气体相变等。
了解相变热力学对于理解物质的性质和行为具有重要意义。
总结:工程热力学是研究能量转化和能量传递规律的学科,它关注系统的宏观性质和变化。
工程热力学知识点电子版

工程热力学知识点电子版
1.热力学基本概念:包括热力学系统、态函数、过程、平衡等基本概念。
2.热力学定律:包括热平衡第一定律(能量守恒),热平衡第二定律(熵增原理)以及热平衡第三定律(绝对零度定律)。
3.理想气体的热力学性质:包括状态方程、卡诺循环、理想气体的内能、焓、熵等性质,以及理想气体的不可逆过程等。
4.热功学:包括热力学势、热力学基本方程、热力学关系、开放系统
的热力学分析等。
5.蒸汽循环与汽轮机:包括蒸汽循环的基本原理、热力学效率、汽轮
机的工作原理和热力学分析等。
6.冷热交换过程:包括传热方式、传热定律、传热设备的热力学设计等。
7.蒸发和冷凝:包括蒸发和冷凝的热力学原理、热传导、传质机制等。
8.混合物与溶液的热力学性质:包括理想混合物的热力学分析、溶解度、等温吸收和等温蒸馏等。
9.平衡态的热力学:包括平衡态判定、化学反应的平衡和平衡常数等。
10.非平衡态的热力学:包括非平衡态的基本概念、非平衡态热力学
平衡准则等。
11.热力学循环与工作系统:包括往复式热机循环(如柴油循环、克
氏循环等)、蒸汽循环的分析、制冷循环等。
以上仅列举了一些工程热力学的基本知识点,具体内容还包括一些相关的热力学计算方法和应用,如热力学分析软件的应用、能源转化系统的分析等。
工程热力学的概念

工程热力学的概念1.热力学是一门研究物质的能量、能量传递和转换以及能量与物质之间的普遍关系的科学。
2.工程热力学重点研究热能和其它形式的能(主要是机械能之间的转换规律及其工程应用。
3.研究内容:工质性质,基本定律,热力过程,热力循环。
4.各类热动力装置工作的共同本质:由媒介物通过吸热-膨胀做功-排热。
5.工质:人们把实现热能和机械能相互转化的媒介物质叫做工质。
6.对工质的要求:(1)膨胀性(2)流动性(3)热容量好(4)稳定性、安全性(5)对环境友善(6)价廉,易大量获取。
物质三态中气态最适宜6.热源:把与工质进行热交换的物质系统称为热源。
若细分,则把工质从中吸取热能的物系叫做热源(或称高温热源);把接受工质排出热能的物系叫做冷源(或称低温热源)。
7.热力系统:被认为的分割出来作为热力学分析对象的有限物质系统叫做热力系统。
8.外界:与系统发生智能交换的物体系统称外界。
9.边界:系统和外界之间的分界面叫做边界。
10.边界可以是:(1)刚性的或可变形的或有弹性的(2)固定的或可移动的(3)实际的或虚拟的11.闭口系统:一个热力系统如果和外界只有能量交换而无物质交换,则该系统叫做闭口系统(又称闭口系)。
12.开口系统:如果热力系统和外界不仅有能量交换而且有物质交换,则该系统叫做开口系统(又称开口系)。
13.绝热系统:当热力系统和外界间无热量交换时,该系统称为绝热系统(又称为绝热系)。
14.孤立系统:当一个热力系统和外界间无热量交换又无物质交换时,则该系统就成为孤立系统(又称孤立系)。
15.孤立系统必定是绝热的,但绝热系不一定是孤立系。
16.简单可压缩系:由可压缩物质组成,无化学反应,与外界有交换容积变化功的有限物质系统称为简单可压缩系。
17.热力学状态:人们把工质在热力变化过程中的某一瞬间所呈现的宏观物理状况称为工质的热力学状态,简称状态。
18.状态参数:用来描述工质所处平衡状态时的宏观物理量称为状态参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程热力学与传热学概念整理工程热力学第一章、基本概念1.热力系:根据研究问题的需要,人为地选取一定范围内的物质作为研究对象,称为热力系(统),建成系统。
热力系以外的物质称为外界;热力系与外界的交界面称为边界。
2.闭口系:热力系与外界无物质交换的系统。
开口系:热力系与外界有物质交换的系统。
绝热系:热力系与外界无热量交换的系统。
孤立系:热力系与外界无任何物质和能量交换的系统3.工质:用来实现能量像话转换的媒介称为工质。
4.状态:热力系在某一瞬间所呈现的物理状况成为系统的状态,状态可以分为平衡态和非平衡态两种。
5.平衡状态:在没有外界作用的情况下,系统的宏观性质不随时间变化的状态。
实现平衡态的充要条件:系统内部与外界之间的各种不平衡势差(力差、温差、化学势差)的消失。
6.强度参数:与系统所含工质的数量无关的状态参数。
广延参数:与系统所含工质的数量有关的状态参数。
比参数:单位质量的广延参数具有的强度参数的性质。
基本状态参数:可以用仪器直接测量的参数。
7.压力:单位面积上所承受的垂直作用力。
对于气体,实际上是气体分子运动撞击壁面,在单位面积上所呈现的平均作用力。
8.温度T:温度T是确定一个系统是否与其它系统处于热平衡的参数。
换言之,温度是热力平衡的唯一判据。
9.热力学温标:是建立在热力学第二定律的基础上而不完全依赖测温物质性质的温标。
它采用开尔文作为度量温度的单位,规定水的汽、液、固三相平衡共存的状态点(三相点)为基准点,并规定此点的温度为273.16K。
10状态参数坐标图:对于只有两个独立参数的坐标系,可以任选两个参数组成二维平面坐标图来描述被确定的平衡状态,这种坐标图称为状态参数坐标图。
11.热力过程:热力系从一个状态参数向另一个状态参数变化时所经历的全部状态的总和。
12.热力循环:工质由某一初态出发,经历一系列状态变化后,又回到原来初始的封闭热力循环过程称为热力循环,简称循环。
13.准平衡过程:由一系列连续的平衡状态组成的过程称为准平衡过程,也成准静态过程。
实现条件:推动过程进行的势差无限小。
这样保证系统在任意时刻皆无限接近平衡状态。
14.可逆过程:如果一个系统完成一个热力过程后,再沿原路径逆向进行时,能使系统和外界都返回原来状态,而不留下任何变化的过程。
实现条件:过程为准静态过程且无任何耗散效应。
15.状态量:描述工质状态的参数。
16.功:系统与外界之间在压力差的推动下,通过宏观有序运动(有规则运动)的方式传递的能量。
17.热:系统与外界在温差的推动下,通过微观粒子的无需运动(无规则运动)的方式传递的能量。
第二章、热力学第一定律1.热力学第一定律:当热量与其他形式的能量相互转化时,能的总量保持不变。
热力学第一定律也可表述为:第一类永动机是不可能制造成功的。
2.内部储存能:热力学能(状态参数)它包括:(1)分子热运动形成的内动能,它是温度的参数。
(2)分子间相互作用形成的内位能,它是比体积的参数。
(3)维持一定分子结构的化学能、原子核内部的原子能及电磁场作用下电磁能。
3.外部储存能:需要用在系统外的参考坐标测量的参数表示的能量称为外部储存能,它包括系统的宏观动能和重力位能。
4.迁移能:功和热量都是系统与外界所传递的能量,而不是系统本身具有的能量,与过程有关的过程量称为迁移能。
5.体积变化功W :系统体积变化时完成的膨胀功或压缩功统称为体积变化功。
6.推动功:开口系因工质流动传递的功。
7.技术工:技术上可以利用的功称为技术工,它是稳定流系统的动能、位能的增量和轴功三项的总和,即S z f t W mg C m W +∆+∆=221。
8.有用功和无用功:凡是可以用来提升重物、驱动机器的功称为有用功;反之,则称为无用功。
9.焓:焓的定义式为pV U H +=或pvu h +=因为在流动过程中,工质携带的能量除热力学能外,总伴有推动功,所以为工程应用的方便起见,把U 和pV 组合起来,引入推动功。
焓可以理解为由于工质流动而携带的,并取决于热力状态参数的能量,及热力学能与推动功的总和。
10.稳定流动:开口系内任意一点的工质状态参数不随时间的流动过程称为稳定流动。
实现稳定流动的必要条件:①:进出口截面的参数不随时间而改变。
②:系统与外界的功和热量的交换不随时间而改变。
③:工质的质量流量不随时间而改变,且进出口质量流量相等。
可以概括为:系统与外界进行物质和能量交换不随时间而改变。
11.总能:热力学能与宏观运动动能及位能的总和,叫做工质的储存能,简称总能。
zf mg mC U E ∆++=221第三章、理想气体的性质与过程1.理想气体:理性气体实际上是一种并不存在的假想气体,其分子是些弹性的、不具体积的点,分子之间没有相互作用力。
2.克拉贝隆方程:表示理想气体在任一平衡状态时P 、V 、T 之间的关系的方程式3.热容:物体的温度升高1K (或1℃)所需要的热量。
4.绝热过程:状态变化的任何微元过程中系统与外界不交换热量的过程。
第四章、热力学第二定律1.自发过程:在自然界中能够独立、无条件自动进行的过程。
2.非自发过程:不能独立自动进行而需要外接帮助作为补充条件的过程。
3.热力学第二定律的克劳修斯说法:热不可能自发地、无条件地从低温物体转移至高温物体。
非自发过程进行必须同时伴随一个自发过程作为代价,补充条件。
4.热力学第二定律的开尔文说法:不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机,开尔文说法意味着用任何技术手段都不可能使其取自热源的热全部转换为机械功,不可避免地有一部分要排给低温物体。
5.卡诺定理:定理一:在相同温度的高温热源和相同的温度的低温物体之间工作的一切可逆循环,其热效率都相等,与可逆循环的种类物管,与采用哪一种工质也无关。
定理二:在温度同为1T 的热源和同为2T 的冷源之间工作的一切不可逆循环,其热效率必小于可逆循环。
6.克劳修斯不等式:工质经过任意不可逆循环,微量rT Q δ沿整个循环积分必小于零,即∫<0r T Q δ。
7.熵产:闭口系不可逆过程中熵由于不可逆因素引起的耗散效应,使损失的机械工转化为热被工质吸收。
这部分由于耗散产生的熵增量叫做熵产。
8.绝对熵:假设纯物质在热力学温度0K 时的熵为零,以此为起点的熵叫做绝对熵。
相对熵:人为规定一个参照下状态的熵值0=基准点S ,从而得出的相对值称为相对熵。
9.熵流:系统与外界换热量与热源温度的比值,称为热熵流,简称熵流。
10.质熵流:∑∑−=j j j i i i m f m S m S S δδδ,称为质熵流,∑i i i m S δ是输入系统的物质带进的熵,∑j j jm S δ是离开系统的物质带走的熵。
11.耗散功:由于摩擦等耗散效应而损失的机械工称为耗散功,以i W 表示。
12.(火无):由于单一热源提供的热量不可能是连续的,因而由他们提供的热量无法变为机械工,他们是不可转换的能量,从动力的观点称其为废热,或者(火无)。
13.(火用):在环境条件下,能量中可以转化为有用功的最高份额称为该能量的(火用)。
14.(火无):在环境条件下,能量中不可能转化为有用功的那部分能量叫做(火无)。
15.热量(火用):在温度0T 的环境条件下,系统所提供热量中可转化为有用功的最大值称为热量(火用),用Q X E ,表示。
16.冷量(火用):温度低于环境温度的系统,吸入热量0Q 时做出的最大有用功称为冷量(火无)。
17.闭口系的(火用):闭口热利系与环境作用下,从给定状态以可逆方式变换到与环境平衡的状态所能做出的最大有用功,称为该状态下闭口系的(火用),或称热力学能(火用)。
18.能量的贬值:(火用)损失不是使系统所具有的能量的数量减少,而是能量品质的贬值,这种现象称为能量的贬值。
19.熵:熵是一种广延性参数。
熵的定义式是TQ d rev s δ=,即熵的变化等于可逆过程中系统与外界交换的热量与热力学温度的比值。
第五章、热力学一般关系式及实际气体的性质1.压缩因子:温度、压力相同时的实际气体比体积与理想气体的比体积之比。
2.束缚能:S T ∆是可逆定温条件下热力学能中无法转变为功的那部分,称为束缚能。
第六章、蒸汽的热力性质1.饱和状态:当液体分子脱离表面的气化速度与气体分子回到液体中的凝结速度相等时,汽化与凝结过程虽然仍在不断进行,但总的结果状态不再改变。
这种液体和整齐处于动态平衡的状态,称为饱和状态。
2.临界点:当温度高过一定的温度c T 时,液相不可能存在而只能是汽相。
c T 称为临界温度,与临界温度相对应的饱和压力称为临界压力。
3.三相点:当压力低于tp P 时,液相也不可能存在汽相或固相,tp P 称为三项点压力,与三相压力点相对应的饱和温度tp t 称为三相点温度。
第七章、理想气体混合物及空气1.分压力i P :混合气体中第i 种组元气体单独占有与混合气体相同的体积V ,并处于混合气体相同的温度T 时,所呈现的压力。
2.分体积i V :混合气体中第i 种组元气体在混合气体温度T 和压力P 单独存在时占有的体积。
3.饱和湿空气:如果湿空气中水蒸气分压力V P 达到了湿空气温度T 所对应的饱和压力s P ,则成其为饱和湿空气,否则称为未饱和湿空气。
4.露点:在一定的压力V P 下,未饱和湿空气冷却达到饱和空气,即将结出露珠时的温度。
5.干球温度:用普通温度计侧得的湿空气的温度。
6.湿球温度:用纱布包裹的湿球温度计测得的湿纱布中水的温度。
7.相对湿度:是空气中水蒸气分压力与同温度下水蒸气饱和压力之比。
8.含湿量:单位质量的干空气所含的水蒸气的质量。
9.湿空气的比焓:含有1Kg 干空气的湿空气的焓值。
10.绝热加湿:在绝热条件下像空气喷水,或水蒸气而向空气加入水蒸气的过程。
第八章、气体和蒸汽的流动1.绝热滞至过程:气体在绝热流动过程中,因受到某种物体的阻碍,而流速降低为零的过程2.节流现象:流体在管道内流动时,有时流经阀门,孔板设备时,由于局部阻力,使流体压力降低,这种现象称为节流现象。
第九章、气体和蒸汽的压缩1.余隙容积:在实际的活塞式压缩机中,因为制造公差,金属材料的热胀性及安装进、排气阀等零件的需要,当活塞运动到上死点位置时,在活塞顶面与气缸盖之间留有一定的间隙,该空间的容积称为余隙容积。
第十章、热力循环及其装置1.活塞排量:上止点和下止点之间的气缸容积差。
2.抽气式回热循环:从汽轮机的适当部位抽出尚未完全膨胀的,压力,温度相对较高的少量水蒸气去加热低温凝结水的循环方式。
3.冷吨:1冷吨是1000Kg0℃的饱和水在24小时冷冻为0℃的冰所需要的制冷量,这个制冷Kj/。
量可以换算为386s。