逆变器电路设计(有参数)

合集下载

大功率逆变器电路设计TL494 400W

大功率逆变器电路设计TL494  400W

大功率逆变器电路设计笔者曾用过300W逆变器,利用12V/60AH蓄电池向上述家用电器供电,一次充满电后,可使用近5小时。

标称功率300W的逆变电源,用于家庭电风扇、电视机,以及日常照明等是不成问题的。

不过,即使蓄电池电压充足,启动180立升的电冰箱仍有困难,因启动瞬间输出电压下降为不足180V而失败。

电冰箱压缩机标称功率多为100W左右,实际启动瞬间电流可达2A以上,若欲使启动瞬间降压不十分明显,必须将输出功率提高至600V A。

如在增大输出功率的同时,采用PWM稳压系统,可使启动瞬间降压幅度明显减小。

无论电风扇还是电冰箱,应用逆变电源供电时,均应在逆变器输出端增设图1中的LC滤波器,以改善波形,避免脉冲上升沿尖峰击穿电机绕组。

采用双极型开关管的逆变器,基极驱动电流基本上为开关电流的1/β,因此大电流开关电路必须采用多级放大,不仅使电路复杂化,可靠性也变差 而且随着输出功率的增大,开关管驱动电流需大于集电极电流的1/β,致使普通驱动IC无法直接驱动。

虽说采用多级放大可以达到目的,但是波形失真却明显增大,从而导致开关管的导通/截止损耗也增大。

目前解决大功率逆变电源及UPS的驱动方案,大多采用MOS FET管作开关器件。

一、MOSFET管的应用近年来,金属氧化物绝缘栅场效应管的制造工艺飞速发展,使之漏源极耐压(VDS)达kV以上,漏源极电流(IDS)达50A已不足为奇,因而被广泛用于高频功率放大和开关电路中。

除此而外,还有双极性三极管与MOS FET管的混合产品,即所谓IGBT绝缘栅双极晶体管。

顾名思义,它属MOS FET管作为前级、双极性三极管作为输出的组合器件。

因此,IGBT 既有绝缘栅场效应管的电压驱动特性,又有双极性三极管饱合压降小和耐压高的输出特性,其关断时间达到0.4μs以下,VCEO达到1.8kV,ICM达到100A的水平,目前常用于电机变频调速、大功率逆变器和开关电源等电路中。

一般中功率开关电源逆变器常用MOS FET管的并联推挽电路。

DCAC逆变器的制作

DCAC逆变器的制作

DCAC逆变器的制作一、材料准备1.N沟道MOSFET(IRF510)x42.电容(100uF,220uF)x13.电感(10mH)x14.整流桥整流器x15.电容(100nF)x16.电容(0.1uF)x17.二极管(1N5408)x48.电阻(1KΩ,10KΩ)x29.变压器(12V/220V)x110.电源开关x111.端子x2二、电路设计原理图中的MOSFET被分为两个组,分别负责开关和逆变的功能。

当开关组的MOSFET关闭时,逆变组的MOSFET打开,此时正负电压在电感和电容上形成振荡,将12V直流电源转换为110V的交流电源。

三、电路组装1.将电容、电感和原理图中的组件按照图纸连接好,注意接线的正确性和稳固性。

2.将四个IRF510MOSFET插入电路板上对应的焊接孔中,确保焊接牢固。

3.将整流桥整流器、电容和二极管焊接在电路板上,连接好输入输出端子。

4.依照图纸连接好所有的电阻和电容,并将所有的接线焊接好。

5.检查所有接线是否正确,没有接错或短路的情况。

6.连接变压器输入端子和电源开关,进行最后的调试和测试。

四、测试1.将直流电源连接到输入端子,打开电源开关。

2.使用万用表测量输出端子的电压,检查是否输出110V的交流电压。

3.用灯泡或其他负载测试逆变器的输出功率和稳定性。

4.如果在测试过程中出现问题,检查电路连接是否正确,MOSFET是否发热或短路等情况。

五、安全注意事项1.在制作和测试逆变器时,务必注意绝缘和防触电措施,避免电击事故的发生。

2.在测试逆变器时,避免将电源连接错误或短路,以免对电路元件造成损坏。

3.使用逆变器输出交流电源时,需要注意接线正确性和安全使用电器设备。

六、总结通过制作这样一台简易的DCAC逆变器,我们可以了解逆变器的工作原理和电路设计,培养实践能力和动手能力。

相信通过不断地学习和实践,我们可以制作出更高效、更稳定的逆变器,满足不同领域的需求。

希望本文对您有所帮助,谢谢阅读!。

10kW三相光伏并网逆变器主电路参数设计

10kW三相光伏并网逆变器主电路参数设计

10kW三相光伏并网逆变器主电路参数设计夏耘;易映萍【摘要】This paper elaborates the system structure and working principle of 10kW three-phase photovol taic grid -connected inverter and designs the main circuit parameters based on the input/output characteris tics of the inverter. In addition, it analyses the output current and grid current of the inverter through FFT in the modeling and simulation of system based on MATLAB/SIMULINK environment. The simulation and experiment results have verified the correctness of design for the main circuit parameters.%以lOkW三相光伏并网逆变器为研究对象,阐述了并网逆变器的系统结构和工作原理,并根据其输入输出特性对逆变器主电路参数进行设计.最后,在MATLAB/SIMuLINK环境下进行了系统的建模与仿真,通过FFT分析了逆变器输出电流和并网电流,仿真和实验验证了主电路参数设计的正确性.【期刊名称】《湖南工程学院学报(自然科学版)》【年(卷),期】2012(022)003【总页数】4页(P9-12)【关键词】并网逆变器;主电路参数;参数设计;光伏;三相;SIMuLINK环境;输入输出特性;MATLAB【作者】夏耘;易映萍【作者单位】上海理工大学光电信息与计算机工程学院,上海,200093;上海理工大学光电信息与计算机工程学院,上海,200093【正文语种】中文【中图分类】TM464随着当今经济的快速发展,人们对能源的需求日益增长.然而像煤、石油、天然气等不可再生能源的储量已经十分有限,同时这些能源对环境也产生了严重的污染.太阳能、风能等作为绿色无污染的新能源日益受到人们的青睐.新能源发电并网是必然趋势,而光伏并网逆变器是发电并网系统的关键设备,能将光伏阵列所输出的直流电变换成交流电送入电网.在光伏发电系统中,并网逆变器是发电系统和电网的接口设备,因此,它的控制可靠性将影响整个设备的安全性和稳定性.三相光伏并网系统由以下几个部分组成:逆变器主电路、保护电路、检测电路、控制电路、驱动电路等,而逆变器主电路承担着转换、传递能量的任务,是整个逆变器设计的基础.主电路必须安全、可靠,其各部分参数的设计应该以极限工作条件为依据,并保留充分的裕量,保证所选择的器件工作在安全区域[1].本文采用了单级式带隔离变压器的拓扑结构,如图1所示.为了提高滤波效果,采用LCL滤波器代替普通L滤波器.工频隔离变压器变比为400∶270,既可以实现电能隔离保证设备和人员安全,又可以降低直流母线并网电压.这种拓扑结构可以减少硬件成本,因此易于实现产品商业化.此种拓扑结构采用双环控制策略,内环为交流电流环,目的为控制电流从直流到交流的逆变,并能到达高品质因数;外环为直流电压环,目的是稳定直流侧母线电压,最大功率跟踪确定的电压值为直流母线电压给定的指令值.由于三相PWM变流器的拓扑结构与逆变器的拓扑结构是完全一致的,为此可以借用PWM变流器的工作模式来分析逆变器的工作方式.通过对交流侧电流的控制可以保证变流器工作在不同的运行状态,从而实现变流器在四象限运行,工作原理的分析如图2所示.图2中:E为交流电网电动势矢量;U为交流侧电压矢量;UL为交流侧电感电压矢量;I为交流侧电流矢量.图2(a)是纯电感特性运行,图2(b)是单位功率因数整流运行,此时电流方向与电网电压方向一致;图2(c)是纯电容运行,图2(d)单位功率逆变器运行,此时电流方向与电网电压方向反向.当变流器作为逆变器运行时,电压矢量U端点在圆轨迹CDA上运动,此时PWM变流器便处在于有源逆变状态;当电压矢量U 在CD 弧段上运行时,PWM变流器向电网传送有功功率及容性无功功率,电能将从PWM变流器直流侧传输至电网;当电压矢量U 在DA弧段运行时,PWM变流器向电网传输有功功率及感性无功功率,同样电能将从PWM变流器直流侧传输至电网;当PWM变流器运行至D点时,便可实现单位功率因数有源逆变控制.为了减小对电网的影响,并达到单位功率因素控制,当逆变器从电网吸收能量时,其运行于整流工作状态,电网电压和电流同相.当逆变器向电网输入电能时,其电网电流和电流反相,这是光伏并网逆变器运行的理想状态,也是光伏并网逆变器控制系统要努力达到的控制目标[2].该并网逆变器的输入电压范围为400~820V,功率因数不小于99%,额定输出功率为10kW.主电路主要由光伏阵列、直流母线电容、三相逆变桥、LCL滤波器、三相隔离变压器等组成.以下分别讨论IGBT的选型,直流母线电容的确定,以及滤波器电容、电感的设计[3].IGBT的选取需要考虑三方面的因素:开关速度、额定电压和额定电流.根据10kW 光伏逆变器的技术要求,直流母线电压最高为850V,考虑到关断尖峰可能要达到1.2倍,因此IGBT耐压要超过850*1.2=1020V.系统的额定功率为10kW,考虑到1.1倍的过载能力,流过IGBT的最大电流为其中因此流过IGBT峰值电流为结合目前主要的IGBT规格以及供货周期、价格等因素综合选取型号.最后IGBT的型号选定为FF200R12KE3(英飞凌),主要技术参数为:最大电流200A,耐压1200V.直流电容对逆变器的谐波、功率因素、直流母线电压波动等有重要影响,因此直流母线电压和母线电容参数的确定至关重要.直流母线电压既要满足电网电压的要求,还要通过控制使流过LCL滤波器的电流为正弦波.从电源的控制角度来说,直流电压过低不仅会导致逆变出的交流侧电流产生严重畸变,甚至达不到跟随指定电压的目的;直流电压过高一方面会提高元器件的耐压等级,提高了系统硬件成本,同时系统的可靠性因此会降低.一般而言,为达到电压环控制的快速响应,直流母线电容应选取的尽量小;而为达到电压环控制的抗扰性,直流母线电容应选取的尽量大,防止在有负载扰动时直流电压值的动态降落.逆变器输出相电压的有效值为:考虑到电网最大10%的电压波动时:当三相电压不平衡时,由于负序分量的作用,并网逆变器直流母线侧电容上能量将以2ω波动,则:式(5)中:Vm为电网电压峰值,In为电网电流峰值,ω为电网角频率,θ为初始相角.考虑5%直流母线电压纹波,同时直流电压为400V,则电容的值为:根据参数要求、电容厂家、供货周期等,本文选取Nichicon(尼吉康)两个4700μF的电解电容串联的方式,电容型号为LNW2W472MSEH,电容参数为耐压450V,容值为4700μF.随着并网光伏发电技术的发展,大功率并网发电已经成为一种必然趋势.由于容量通常较大,为了降低开关损坏和其他损耗,开关频率一般比较低.在大功率逆变器中一般采用LCL滤波器,LCL滤波器不仅可以减少体积、节约成本,而且具有更好滤除高频谐波的能力.本文采用LCL滤波器,首先根据电感的允许电压降确定电感的上限值,然后依据电路中的纹波电流指标进而确定电感的下限值,根据计算结果综合考虑参数的选取.在SVPWM调制下,直流母线的电压利用率为1,所以此时逆变器交流侧线电压峰值就是Udc,此时可以得到L的上限值:式中L为电网侧和网侧逆变器的总电感;Emp为电网相电压基波有效值和峰值;Udc为直流母线电压;I,Imp为交流侧电流矢量.电路中相电流的最大电流纹波为:由此得到电感的下限:电感值的大小会影响电流性能的好坏,电感值越小电流的跟踪能力和系统的响应就会得到提高,电感的值越大,电抗器滤除高次谐波的能力会更好.为了使系统稳定,根据常规一般选取L1=2L2.根据上述计算,选定滤波器为L1=0.12mH,L2=0.06mH.以下介绍滤波电容的选取,由于滤波器电容的使用,会引起无功功率的增加从而会降低功率因数.为了保证系统的高功率因数输出,选取额定功率的5%作为电容吸收无功功率的上限值,可得出选取电容的标准为C≤5%Cb.综合考虑,本文选取30μF的交流滤波电容.为防止发生滤波器谐振,取10f≤fs≤0.5fsw,根据这个约束条件来核算选取的参数是否合适,fs的计算公式为(11),带入相关参数得fs=1434Hz,满足设计要求.根据光伏并网逆变器的系统结构,采用MATLAB仿真工具搭建了仿真模型如图3所示.电池板模型的开路电压为620V,短路电流为25A.根据电池板模型的输出特性曲线,电池板在最大输出功率点处的电压为510V,电流为22A.直流母线电容取2350μF,LCL型滤波器中电网侧电感L2取0.6 mH,Cu取30μF,逆变器侧电感L1取1.2mH,开关频率为4.2kHz.在实际电路中,逆变器输出电流通过工频变压器并网,变比为270∶400.在仿真模型中,为简化分析,将电网线电压的峰值设为270V,相当于隔离变压器并网之前的电压[4-5].并网时A相输出电流和电网电压波形如图4所示,由图可知:交流侧的输出电流接近理想的正弦波,并网逆变器输出电流与电网电压同频同相,将能量回馈到了电网.达到了单位功率因数运行的效果.图5为逆变器输出电流FFT分析,以验证LCL滤波器的滤波效果.从波形分析可以看出,通过双闭环控制,输出谐波THD值含量为4.51%,低于5%的国家标准.在1000~2000Hz频率段,由于LCL滤波器的谐振作用,THD有所增大,但对于2000 Hz以上的高次谐波有很好的抑制效果.仿真结果表明,该光伏并网逆变器主电路设计符合逆变器并网要求,是光伏并网逆变器主电路设计的一种可行方案. 为验证光伏并网逆变器的主电路设计符合逆变器并网要求,进行了并网试验,试验波形如图6所示.图6中CH3为A相电网电压(CH3进行了反相),CH2为A相电网电流,由于前端调压器容量有限,长时间运行时有功指令Id给定-11A,此时并网功率为此时测得并网电流THD=5.3%,达到了预期目标,成功实现并网.本文通过对10kW光伏并网系统进行了MATLAB建模和仿真,分析了逆变器主电路的工作原理,并推导出主电路元件参数的计算公式.在理论分析和推导计算公式的基础上,结合主电路实际工作的特点,合理的选择了各元件的参数.仿真和实验结果表明,根据计算结果选择元件搭建的主电路工作稳定,符合要求,可作为工程应用的参考.【相关文献】[1]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学硕士论文,2003.[2]王飞,余世杰,苏建徽,等.光伏并网发电系统的研究及实现[J].太阳能学报,2006,26(5):605-608.[3]董密,罗安.光伏并网发电系统中逆变器的设计与控制方法[J].南京:电力系统自动化,2006,30(20):97-102.[4]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社,2006:5-56.[5]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251.。

无源三相PWM逆变器控制电路设计

无源三相PWM逆变器控制电路设计

目录第一章:课程设计的目的及要求 (2)第二章整流电路 (5)第三章逆变电路 (9)第四章 PWM逆变电路的工作原理 (11)第五章三相正弦交流电源发生器 (14)第六章三角波发生器 (15)第七章比较电路 (16)第八章死区生成电路 (18)第九章驱动电路 (20)附录参考文献课程设计的心得体会第一章:课程设计的目的及要求一、课程设计的目的通过电力电子计术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。

2、培养学生综合分析问题、发现问题和解决问题的能力。

3、培养学生运用知识的能力和工程设计的能力。

4、培养学生运用仿真工具的能力和方法。

5、提高学生课程设计报告撰写水平。

二、课程设计的要求1. 自立题目题目:无源三相PWM逆变器控制电路设计注意事项:①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。

首先要明确自己课程设计的设计内容。

控制框图设计装置(或电路)的主要技术数据主要技术数据输入交流电源:三相380V,f=50Hz交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 设计内容:整流电路的设计和参数选择滤波电容参数选择三相逆变主电路的设计和参数选择IGBT电流、电压额定的选择三相SPWM驱动电路的设计画出完整的主电路原理图和控制电路原理图2.在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。

主电路具体电路元器件的选择应有计算和说明。

课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。

PWM型逆变器输出LC滤波器参数设计

PWM型逆变器输出LC滤波器参数设计

PWM型逆变器输出LC滤波器参数设计PWM型逆变器是一种常用的电力电子装置,用于将直流电转换为交流电。

为了减少输出波形的谐波成分,提高逆变器的输出电压质量,通常需要添加LC滤波器。

LC滤波器是一种由电感器和电容器组成的滤波电路,通过电感和电容的频率特性来滤除高频噪音和谐波。

在设计PWM型逆变器的LC滤波器时,需要考虑多个参数,包括输出电压的纹波、电感和电容的数值以及滤波器的品质因数。

下面将分别介绍这些参数的设计方法。

首先,输出电压纹波是指逆变器输出电压中的交流成分的大小。

为了减小纹波,可以选择合适的电感器和电容器的数值以及滤波电路的拓扑结构。

比较常用的拓扑结构包括陷波器型、π型和T型滤波器。

在选择电感器的数值时,可以根据预期的输出波形纹波来计算。

通常,输出电压的纹波量可以用下式计算:Vr=(ΔI/(2*f*c))其中,ΔI是负载电流的变化量,f是交流成分的频率,c是输出电容器的数值。

根据计算结果选择合适的电感器数值,使得输出电压纹波在可接受范围内。

接下来是选择输出电容器的数值。

输出电容器的数值决定了滤波器的截止频率,即滤波器开始对高频噪声和谐波进行滤除的频率。

为了保证滤波效果,输出电容器的数值应该与电感器的数值匹配。

通常可以使用下式计算输出电容器的数值:C=(ΔI/(2*f*Vr))其中,ΔI是负载电流的变化量,f是交流成分的频率,Vr是输出电压的纹波量。

根据计算结果选择合适的输出电容器数值。

最后需要考虑滤波器的品质因数。

品质因数是滤波器的一个重要指标。

它表示滤波器对输入信号的衰减程度,品质因数越高,滤波效果越好。

品质因数可以通过以下公式计算:Q = 1 / (R * sqrt(LC))其中,R是滤波器的阻抗,L是电感器的数值,C是电容器的数值。

根据计算结果选择合适的品质因数。

综上所述,PWM型逆变器输出LC滤波器参数的设计包括选择合适的电感器和电容器数值以及滤波器的品质因数。

这些参数的选择应该考虑输出电压纹波、滤波器的截止频率和滤波效果,以提高逆变器输出电压的质量。

单相PWM逆变电路设计

单相PWM逆变电路设计

单相PWM逆变电路设计
摘要
随着信息技术的发展,单相PWM逆变器的使用越来越广泛,由于其优
良的调制效果,结构简单、维护方便,可以用于电力系统的变频调速和电
力供应装置的电源,如逆变器、纯电池供电系统以及微型电源等,这些应
用领域都需要非常精确的电力输出。

因此,研究和设计单相PWM逆变电路
显得尤为重要。

本文将以豪斯多夫模型为基础,介绍单相PWM逆变器的原理,分析其
工作原理,探讨其控制电路设计的要点,并基于此,设计一款稳定可靠的
单相PWM逆变电路,检验了其原理模型及其实际参数的吻合性。

本文首先介绍了单相PWM逆变器的工作原理及其基本原理模型,然后,介绍了其调制电路的设计要素,以及极限保护系统的控制方法。

接着,本
文介绍了一种基于微控制器的单相PWM逆变器的设计方案,用以实现单相
逆变系统的运行。

最后,本文提出了一种实际参数化的测试方案,采用多
种电压、电流和频率的负载条件进行实验,验证了该设计方案的有效性和
可靠性。

经过实验的检验,本文设计的单相PWM逆变器具有较高的运行精度、
稳定性和可靠性,能够满足其应用场景的要求。

关键词:单相PWM逆变,调制电路。

单相桥式有源逆变电路设计

单相桥式有源逆变电路设计

单相桥式有源逆变电路设计1. 引言有源逆变器是一种将直流电源转换为交流电源的装置,常用于电力电子领域。

单相桥式有源逆变电路是其中一种常见的拓扑结构,可以实现从直流电源到交流电源的有效转换。

本文将介绍单相桥式有源逆变电路的设计原理和步骤。

2. 单相桥式有源逆变电路的原理单相桥式有源逆变电路由四个开关管和一个电源组成,其中两个开关管为上桥臂开关管,另外两个开关管为下桥臂开关管。

开关管通过开关控制器进行开关操作,通过改变开关管的状态来实现对电流的控制和转换。

在正半周的工作状态下,上桥臂的开关管S1和S2打开,下桥臂的开关管S3和S4关闭。

此时,电源的正极连接至负载,负载的交流电路通过开关管S1和S2直接接通。

在负半周的工作状态下,上桥臂的开关管S1和S2关闭,下桥臂的开关管S3和S4打开。

此时,电源的负极连接至负载,负载的交流电路通过开关管S3和S4直接接通。

通过交替切换开关管的状态,可以实现直流电源到交流电源的转换。

3. 单相桥式有源逆变电路的设计步骤3.1 确定输入和输出参数在设计单相桥式有源逆变电路时,首先需要确定输入和输出的参数。

输入参数包括直流电压和电流的范围,输出参数包括交流电压和电流的要求。

3.2 选择开关管和开关控制器根据输入和输出参数的要求,选择适合的开关管和开关控制器。

开关管需要能够承受输入参数的范围,并具有较低的开关损耗和导通损耗。

开关控制器需要能够实现准确的开关控制,并具有过流保护和过温保护等功能。

3.3 设计滤波电路为了减小逆变电路的谐波含量,需要设计合适的滤波电路。

滤波电路可以采用LC滤波器或LCL滤波器,通过选择合适的电感和电容参数来实现滤波效果。

3.4 进行仿真和优化在设计完成后,使用电路仿真软件对单相桥式有源逆变电路进行仿真。

通过仿真可以评估电路的性能,如电压波形的失真程度和效率等。

根据仿真结果进行优化,调整参数和设计,以达到设计要求。

3.5 PCB布线和制作根据最终的设计结果,进行PCB布线设计。

10kW三相光伏并网逆变器主电路参数设计

10kW三相光伏并网逆变器主电路参数设计

传 输 有 功 功 率 及 感 性 无 功 功 率 , 样 电 能 将 从 同 P M 变 流 器 直 流侧 传 输 至 电 网 ; P W 当 WM 变 流 器 运 行 至 D 点 时 , 可实现 单位 功 率 因数 有 源逆 变 控 便 制 . 了减小 对 电网 的影响 , 达 到单位 功率 因素 控 为 并
制, 当逆 变器 从 电网吸 收能量 时 , 运行 于整 流工作 其
状 态 , 网 电 压 和 电 流 同 相 . 逆 变 器 向 电 网输 入 电 电 当
电容应 选取 的尽 量 大 , 防止 在 有 负 载扰 动 时 直 流 电 压 值 的动态 降落.
逆变器 输 出相电压 的有 效值 为 :
I T的选 取 需 要 考 虑 三 方 面 的 因 素 : 关 速 GB 开
度 、 定 电压 和额 定 电流 . 额 根据 1 W 光 伏 逆 变 器 0k 的技 术要求 , 流母线 电压最 高为 8 0V, 虑 到关 直 5 考
断尖 峰可 能要 达 到 1 2倍 , . 因此 I B 耐压 要 超 过 G T 8 0*1 2 0 0V. 统 的额 定 功 率 为 1 W , 5 . =1 2 系 0k 考 虑到 1 1 的过 载能 力 , . 倍 流过 I B 的最 大 电流为 G T
外 环 为 直 流 电 压 环 , 的是 稳 定 直 流 侧 母 线 电压 , 目 最
随着 当今 经 济 的快 速 发 展 , 们 对 能 源 的需 求 人
日益增 长. 而像 煤 、 然 石油 、 然气 等 不 可 再 生 能 源 天
的储 量 已经 十 分 有 限 , 时 这 些 能 源 对 环 境 也 产 生 同
逆 变器 运行 , 此时 电流 方 向与电 网电压方 向反 向. 当 变 流器 作为逆 变器 运行 时 , 电压 矢 量 U 端点 在 圆 轨 迹C DA 上 运 动 , 时 P 此 WM 变 流 器 便 处 在 于 有 源 逆变状态 ; 电压 矢 量 U 在 C 弧 段上 运行 时 , 当 D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档