(集成光电子学导论)第六章常见光波导材料与结构

合集下载

集成光波导

集成光波导

集成光波导姜雨萌12204107集成光学是关于如何在基片上构造光器件与光网络的学科,与电子集成电路技术相类似。

通常,也用集成光电子学与集成光子学来描述这个领域。

光子学本身就是光学与电子学相结合产生的学科。

集成光学提供将光器件与电器件组合在同一衬底上,以便制造出具有特定功能的系统或子系统知识。

集成光器件的尺寸通常在光波长量级,并且具有集成电路的许多优点,如工作稳定、尺寸小以及潜在的低成本。

利用集成光学技术,可以设计完整的光发送机、接收机以及中继器,通过光纤实现长距离的光互连。

电磁波主要在中间层传输,其折射率为n1。

中间层通常很薄,一般小于一个微米,称为薄膜。

薄膜夹在折射率分别为n2和n3的敷层与衬底之间。

光线通过内全反射被束缚在中心薄膜中。

只有当n2和n3都小于n1时才会发生内全反射。

可求得衬底界面上的临界角为 1sin 2n n c =θ, 敷层界面上的临界角可由下式求出13sin n n c =θ。

中心薄膜的不均匀性也会使光产生散射从而增加损耗。

为了有效地传播光信号,材料的吸收损耗必须很低。

对n2=n3的对称结构,我们尤其感兴趣,因为这与光纤的结构很相似。

与其类似。

光纤由折射率为n1的纤芯以及折射率为n2,包围纤芯的包层组成。

n3=1.0的非对称波导也比较重要,这也就是顶部露在空间的集成光路结构。

这种情况下,n2是衬底的折射率。

中心薄膜的场是平面波,按角度θ向上传播,另一个以相同角度向下传播。

这些波的传播因子可写成k=10n k ,其中,0k 是自由空间的传播因子。

若被导波的净传播方向是在水平方向上。

传播因子在这个方向上的分量为θθβsin sin 10n k k ==,通常称之为纵向传播因子。

折射率的定义是光在自由空间的速度与其在无界介质中的速度的比值。

等效折射率eff n 等于自由空间中的光速度与波导中的相速度之比,也就是ωβ/c n eff =。

等效折射率是在中心薄膜材料与其外层材料的折射率之间取值。

《光波导理论与技术》课件

《光波导理论与技术》课件
光计算和光传感等领域。
塑料光波导
塑料光波导具有柔韧性好、制备工 艺简单等优点,在消费电子、汽车 和医疗等领域有广泛应用前景。
玻璃光波导
玻璃光波导具有高透过率、低损耗 等优点,在高端光学仪器和特种应 用领域有重要应用。
光波导技术发展趋势
低损耗、高性能
随着光通信和光计算技术的发展,对光波导的性能要求越来越高 ,低损耗、高性能成为光波导技术的重要发展方向。
光波导的传输模式
要点一
总结词
光波导的传输模式是指光波在光波导中传播时的场分布形 态,不同的模式具有不同的能量分布和传输特性。传输模 式的研究对于光波导器件的性能优化和设计具有重要意义 。
要点二
详细描述
在光波导中,由于光波的传播受到边界条件的限制,其场 分布形态呈现出不同的模式。这些模式决定了光波的能量 分布、传输方向和相位等特性。通过对传输模式的研究, 可以深入了解光波在光波导中的传播行为,为设计高性能 的光波导器件提供重要的理论依据。在实际应用中,根据 需要选择合适的传输模式是实现高效、稳定的光信号传输 的关键。
02
光波导器件
光波导调制器
01 调制器原理
光波导调制器利用电场对光波的相位或振幅进行 调制,实现光信号的开关、调制等功能。
02 调制速度
光波导调制器的调制速度非常快,可达到几十吉 赫兹甚至更高。
03 调制方式
光波导调制器可以采用电吸收、电光效应、热光 效应等多种方式进行调制。
光波导放大器
01 放大原理
THANKS
感谢观看
集成化、小型化
随着微纳加工技术的发展,光波导的集成化和小型化成为可能,这 将有助于提高光波导的集成度和降低成本。
多功能化
光波导的应用领域不断拓展,需要实现更多的功能,如波长选择、 模式控制等,多功能化成为光波导技术的重要发展趋势。

(集成光电子学导论)第六章常见光波导材料与结构

(集成光电子学导论)第六章常见光波导材料与结构
人类毛发的直径 1 微米
1 cm = 10 000 微米
1、空气净化
From Intel Museum
三道防线: ✓环境净化(clean room) ✓材料清洗(wafer cleaning) ✓吸杂(gettering)
光电所
• 投资4000万元的光电子学研究所实验大楼坐落在深圳大学文山湖畔。这是 一座设施先进、功能完善、配套齐全、专业化水准高的现代化实验大楼,总 面积8200平方米,其中有1200平方米的百级和万级净化实验室,有电子级超 纯水制备系统、各种特殊气体的供送系统以及相应的安全保障和环保设施等。 投资6000万元购置的先进科研仪器设备,构建了显微分析、光谱分析、超快 诊断技术、光电子材料、生物光子学、等离子体显示、应用光学、电子学等 10多个测试实验室和真空光电子器件、半导体光电子材料与器件、平板显示 器件、有机电致发光材料、纳米光电子材料等10多个工艺实验室。主要大型 仪器设备有:金属有机化合物气相沉积(MOCVD)系统、微波等离子体增 强化学气相沉积(MPECVD)系统、等离子体增强化学气相沉积(PECVD) 系统、磁控溅射系统、反应离子刻蚀机、光刻机、高精度丝网印刷机、大型 高精度点胶机、高精度喷砂机、多功能镀膜机、扫描探针显微镜、扫描电子 显微镜、台阶轮廓测试仪、三维视频显微镜、真空紫外单色仪、紫外/可见/近 红外光谱仪、飞秒激光器、皮秒激光器、荧光光谱测试仪、激光拉曼谱仪、 高分辨X射线衍射仪、变磁场霍尔测试仪、多光子激发荧光显微成像系统、高 速示波器、逻辑分析仪和数字电路开发系统等,以及光学设计分析、多物理 场分析等大型软件。这些硬件条件,为建设一流的光电子学研究所奠定了坚 实的基础。
半导体激光器,探测器,放大器, 电光调制器
目前最好的电光调制器,声光调制 器

电子科技大学集成光学考点大全

电子科技大学集成光学考点大全
平板光波导中沿z方向的传播常数记为,它与真空中的波数之间的比值定义为有效折射率N
平板光波导中的导模除了满足全反射以外,还应该满足横向谐振条件,即光在波导层的两个界面往返一次,在x方向上应该满足相涨相干条件(同相位)。
对称平板光波导:基模不截止(m=0),即无论如何都存在。
非对称平板光波导:基模可能截止,即有可能不存在。
电光效应:某些晶体(各向异性介质)在外加电场的作用下,其折射率发生变化,当光波通过此介质时,传播特性就受到影响而随着电场的变化规律改变。
M-Z型电光波导强度调制器
声光效应是指声波与光波的相互作用,具体地说,就是光波被介质内的超声波衍射或散射的现象,声光效应是弹光效应的一种表现。
根据声波和光波的波长以及相互作用区域的长度L的相对大小,存在两种不同的极端声光衍射现象:拉曼-奈斯衍射[低频,面相位光栅]和布拉格衍射[高频,体相位光栅]。
布拉格衍射的显著特点:衍射光强分布不对称,而且只有零级和+1或-1级衍射光。布拉格衍射由于效率高,且调制带宽较宽,故多被采用。
声光调制是利用声光效应将信息加载于光频载波上的一种物理过程。
磁光效应:光与磁场中的物质,或者光与具有自发磁化强度的物质之间相互作用所产生的各种现象。主要包括法拉第效应和科顿-穆顿效应。
粒子数反转分布(必要条件)+激活物质置于光学谐振腔中,对光的频率和方向进行选择=连续的光放大和激光振荡输出。
激光稳定工作的2个条件:合适的谐振腔,增益大于或等于总损耗
激光振荡的相位调条件:L=
间接跃迁需要光子和声子两者参与,而直接跃迁仅需要光子参加,所以直接带隙半导体比间接带隙半导体在光学上更为有效。
回转器是指这样一种非互易器件,它能够使正向和反向传播的光波之间产生π弧度的相位差。了解隔离器,环形器。

集成光波导

集成光波导
Pin/2 Pin
Pin/2
23
Multiport splitters can be constructed by cascading 2-port couplers as indicated schematically below:
1 x 8 Coupler
24
4.6.2 有源器件
▪ 有源器件按其功能可分为两类:
21
For the ideal coupler, the coupling to port 4 (the isolated port) is zero. Thus,
10 log P4/P1 = 10 log 0 = -
22
An integrated optic power splitter is constructed with the waveguide pattern indicated below:
图4.5 对称平板波导的



1
4.5.1 波导色散
▪ 随波长的变化,有效折射率neff与折射率n一样会导致脉冲展
宽。在通常情况下,材料是色散的,因此波导色散与材料色 散会同时存在。
图4.5 对称平板波 导的模式图 (n1=3.6,n2=3.5 5)
2
4.5.1 波导色散
▪ 由波导色散所引起的脉冲展宽幅度与材料色散所导致的脉冲
图4.24 电光开关
26
As in the passive coupler, the power distribution is given by:
P2/P1 = cos2 (pL/2Lc) P3/P1 = sin2 (pL/2Lc) L is the interaction length and Lc is the coupling length.

《集成光波导》课件

《集成光波导》课件
2 集成光波导的意义与价值
在光通信、光传感、医学检测等领域有重要的应用价值。
3 展望集成光波导的未来发展趋势
将继续向超高速率、超长距离、高可靠性、低能耗等方向迈进。
4
通过激光处理获得所需的光波导纹理。
分立器法
将芯片分离出来再进行加工组装。
定向凝固法
将溶液导入反应腔体中,通过凝固实现 制备。
集成光波导的应用
光通信
将各种功能的光模块一同集 成,可大大降低光通信系统 的成本。
光传感
可用于温度、压力、光强等 物理量的测量传感。
生物医学领域
可用于医学检测、实验室研 究等方面。
发展现状与前景
集成光波导的发展历程
自1980年代初期,集成光波导的 性能与可靠性都得到了突破性发 展。
集成光波导的未来发展方向 集成光波导的应用前景
超高速率、超长距离、高可靠性、 低能耗。
在医学检测、光学成像、传感器 等领域具有广泛的应用前景。
总结
1 集成光波导的优缺点
高集成度、小型化、高性能、低成本,但也有加工难度大和生产周期长等缺点。
集成光波导
本次PPT将详细讲解集成光波导的定义、基础知识、制备方法、应用前景及未 来发展趋势,希望能为您了解光波导技术提供帮助。
概述
1 光波导的定义
光波导是指导波不断变化而传输的一种光学器件。
2 集成光波导的概念
将微波电路、光学波导、探测器等元件集成在一起,构成一个小型化光通信接口的技术。
3 集成光波导的优势
具有高集成度、小型化、高性能、低成本等优势。
基础知识
光波导的类型
光波导的基本结构
有单模光纤和多模光纤两种类型。
是由高折射率材料的核心层和低 折射率材料的包层构成。

平板波导

平板波导

As e
q ( x a )
, x a
根据边界条件,在x=a,-a处,有 E y , H z连续(E y 和它的偏导数)
q h p t an(ha ) h t an( ha )
q p h (2a) m arctan( ) arctan( ) h h
2h 212 210
5
如果相干相长,即满足谐振条件,则此入射角对应的光 线(模式)可以被导波所接受
2h 212 210 2m
物理意义:在波导厚度h确定的情况下,平板波导所能 维持的导模模式数量是有限的,此时m只能取有限个整 数值,这个方程也称作平板波导的本征方程
以上相移公式是在n1 n2介质界面上推倒得到,如果是在n0 n1介质界面,只需将n2换成n0
7
那么具体的特征方程可表示为:
p0 p2 h m arct an( ) arct an( )


TE Mode
n12 p0 n12 p2 h m arct an( 2 ) arct an( 2 ) n0 n2
4
波矢量之间的关系:
| k | n1k 0
k0 n1 cos k0 n1 sin
E~e
i ( x z )
(重点)当只考虑x方向上光线传播时,可见光线总是在上下两表面反射 现假设一光线入射到下界面,发生全反射,然后又与上表面发生全反射, 再次回到下表面发生全反射。此时,此光线会与原先从下表面出发的光波 叠加在一起,发生干涉。并且两束相干光波的位相差为:
iz
2 Ey x
2
k 2 2 Ey 0


可以写出3个区域的亥姆赫兹方程:

(集成光电子学导论)第六章常见光波导材料与结构

(集成光电子学导论)第六章常见光波导材料与结构

芯层/包层材 料
Ge:SiO2 /SiO2 Si/SiO2
芯层/包层折 射率差 0-0.5%
50-70%
损耗dB/cm @1550nm 0.05
0.1
3.2
inP、GaAs/ ~100%
3
空气
2.2
Ag(Ti):LiNbO 0.5%
0.5
3/ LiNbO3
1.3-1.7
都是聚合物, 0-35%
0.1
不同材料矩形单模波导的宽度
SiO2:n=1.44 Ge: SiO2:n=1.45
两种波导的 优缺点?
SiO2:n=1.44
5~6 μm
220nm
30~40μm
Si: n=3.4
500nm
做出的器件尺寸大,但与光 纤耦合损耗很小
做出的器件尺寸很小,但与 光纤耦合损耗大
如希望对光纤耦合损耗小:不同材 料的光波导结构
靠配比改变
折射率差
波导折射率与模式
n2 θc
n1
n2
sin c
n2 n1
同样厚度 的硅波导 和二氧化 硅波导哪 个能有更 多模式?
为什么通常希望 波导厚度与模使式用单模波导?
Helmholtz equation:
[ 2 xk0 2n22]U (x)0
x nclad ncore nclad
n nclad ncore
平面光波导的类型
1-d 光限制
cladding core
nlow nhigh
cladding
nlow
平板波导
氧化硅、聚合物
2-d 光限制 硅、三五族
core
nlow
nhigh
cladding
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Schrödinger equation:
[21m2 xVE](x)0
V
?
V0
Vwell
E3 E2 E1 x
1-d potential well (particle in a well)
对波导折射率差越大相当 于势阱越深,芯层厚度越 大代表势阱越宽,那么可 以容纳的模数就越多
单模波导最小宽度:
Wc 2 2n n
• 无源器件:不对光信号形式产生任何改变, 只改变光传播路径等(光耦合器,光纤光 栅,阵列波导光栅,光滤波器等)
有源器件材料的应用场合
不同材料矩形单模波导的宽度
SiO2:n=1.44 Ge: SiO2:n=1.45
两种波导的 优缺点?
SiO2:n=1.44
5~6 μm
220nm
30~40μm
Si: n=3.4
500nm
做出的器件尺寸大,但与光 纤耦合损耗很小
做出的器件尺寸很小,但与 光纤耦合损耗大
如希望对光纤耦合损耗小:不同材 料的光波导结构
表4 光纤发展阶段及所需材料
发展阶段 波长 (m)
第一阶段 第二阶段 第三阶段 第四阶段
0.85 1.30 1.55 2 -- 5
模数Байду номын сангаас
多模 单模 单模
衰耗 (dB/km)
1.5
0.8
0.16 3×10-4
中继距离 (Km) 10 60 500 2500
光纤材料:
石英玻璃: SiO2、SiO2-GeO2、 SiO2-B2O3F
(集成光电子学导论)第六章常见光波导材料与结构
光电子材料包括:
(1) 激光材料(20世纪60年代初) 激光:高亮度、单色、高方向性 红宝石(Cr3+:Al2O3 )
(2) 非线性光学晶体(变频晶体) KDP(磷酸二氢钾)、KTP(磷酸钛氢
钾) LBO(三硼酸锂)…
(3)红外探测材料(军用为主) HgCdTe、 InSb、 CdZnTe、 CdTe
芯层/包层材 料
Ge:SiO2 /SiO2 Si/SiO2
芯层/包层折 射率差 0-0.5%
50-70%
损耗dB/cm @1550nm 0.05
0.1
3.2
inP、GaAs/ ~100%
3
空气
2.2
Ag(Ti):LiNbO 0.5%
0.5
3/ LiNbO3
1.3-1.7
都是聚合物, 0-35%
0.1
靠配比改变
折射率差
波导折射率与模式
n2 θc
n1
n2
sin c
n2 n1
同样厚度 的硅波导 和二氧化 硅波导哪 个能有更 多模式?
为什么通常希望 波导厚度与模使式用单模波导?
Helmholtz equation:
[ 2 xk0 2n22]U (x)0
x nclad ncore nclad
n nclad ncore
GaAs、InP、GaSb
器件 超高速 IC FET LD 红外 LED LEP — — —
用途 电脑 携带电话 光通讯 遥控耦合器 出外显示器 热成像仪 红外探测器 太阳能电池
(5)显示材料 发光二级管(LED)如表 3
表3 LED 发光材料及可见光区
发光尺
Ga0.65Al0.35As GaAs0.35P0.65(N) GaAs0.1P0.9(N) GaAs0.1P0.9(N) GaP
(4)半导体光电子材料,见表2
表2 主要化合物半导体及其用途
领域 微电子
光电子


GaAs、InP
GaAs
GaAs InP Sb InAs
GaAs
GaP、GaAs、GaAsP、GaAlAs、 InGaAlP
CdTe、CdZnTe、HgCdTe
InSb、CdTe、HgCdTe、PbS、 PbZnTe
平面光波导的类型
1-d 光限制
cladding core
nlow nhigh
cladding
nlow
平板波导
氧化硅、聚合物
2-d 光限制 硅、三五族
core
nlow
nhigh
cladding
条形(矩形)波导
nlow nhigh nlow 脊形波导
cladding core
阶跃折射率光纤
铌酸锂 渐变折射率 (GRIN) 光纤
多组分玻璃:SiO2-GaO-Na2O、 SiO2-B2O3– Na2O
红外玻璃: 重金属氧化物、卤化物 掺稀土元素玻璃: Er、Nd、… 多模只适于小容量近距离(40Km,100M bps) 单模可传输调制后的信号≥40Gbps 到200Km, 而不需放大。
(7)记录材料
21世纪将是以信息存储为核心的计算机时代,在军事 方面,如何快速准确地获取记录、存储、交换与发送信 息是制胜的关键。
(8)敏感材料
1. 计算机的控制灵敏度与精确度有赖于敏感 材料的灵敏度与稳定性。
2. 敏感材料种类繁多,涉及半导体材料、功 能陶瓷、高分子、生物酶与核酸链(DNA) 等。
集成光电子材料
材料
SiO2 Si
InP LiNbO3 聚合物(如 PMMA)
芯层折射率 @1550nm 1.45
3.4-3.5
衬底
GaAs GaP GaP GaP Gap
发光颜色
红 红 橙 黄 绿
波长(nm)
660 650 610 583 555
GaN
Α-Al2O3

490
SiC
SiC

480(全包显示屏)
液晶显示(LCD)材料(1968年发明)为21世纪上半叶主要显示材料
(6)光纤与光缆材料(网络)(表4)
一条光纤带宽所容纳信息量相当于全世界无线电 带宽的1000倍. (25 T bps vs 25 G bps )
WHY?
脊形光波导
脊形光波导的作用是增 大光斑面积
对大折射率差材料, 如用普通矩形,则 单模波导尺寸很小
为了方便把更多的能量耦合进入芯 层10微米左右直径的光纤里去
渐变折射率波导
这类波导有什么用?
AgNO3
V
Li
Ag
LiNbO3
集成光器件的分类
• 有源器件:用于光信号产生,检测,调制 及放大(半导体激光器,光调制器,光放 大器,光探测器)
磁记录在21世纪初仍有很强的生命力,通过垂直磁 记录技术和纳米单磁畴技术,再加先进磁头(如巨磁电 阻)(GMR)的采用,有可能使每平方英寸的密度达 100GB,所用介质为氧化物磁粉(γ-Fe2O3及加 Co γ -Fe2O3、CrO2),金属磁粉或钡铁氧体粉。
磁光记录:与磁记录不同之处在于记录传感元件是 光头而不是磁头。磁光盘的介质主要是稀土-过渡族金属, 如TbFeCo、GdTbFe、NdFeCo,最新的是Pb/Co多层调制膜 或Bi石榴石薄膜。磁光盘的特点在于可重写,可交换介 质。
相关文档
最新文档